1. bookVolumen 9 (2019): Edición 2 (April 2019)
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

Fine Tuning of Agent-Based Evolutionary Computing

Publicado en línea: 31 Dec 2018
Volumen & Edición: Volumen 9 (2019) - Edición 2 (April 2019)
Páginas: 81 - 97
Recibido: 18 Jan 2018
Aceptado: 10 May 2018
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

Evolutionary Multi-agent System introduced by late Krzysztof Cetnarowicz and developed further at the AGH University of Science and Technology became a reliable optimization system, both proven experimentally and theoretically. This paper follows a work of Byrski further testing and analyzing the efficacy of this metaheuristic based on popular, high-dimensional benchmark functions. The contents of this paper will be useful for anybody willing to apply this computing algorithm to continuous and not only optimization.

Keywords

[1] P. Adamidis. Parallel evolutionary algorithms: A review. In Proceedings of the 4th Hellenic-European Conference on Computer Mathematics and its Applications (HERCMA 1998), Athens, Greece, 1998.Search in Google Scholar

[2] T. Bäck and H.-P. Schwefel. Evolutionary computation: An overview. In T. Fukuda and T. Furuhashi, editors, Proceedings of the Third IEEE Conference on Evolutionary Computation. IEEE Press, 1996.Search in Google Scholar

[3] A. Byrski, M. Kisiel-Dorohinicki, and E. Nawarecki. Agent-based evolution of neural network architecture. In M. Hamza, editor, Proc. of the IASTED Int. Symp.: Applied Informatics. IASTED/ACTA Press, 2002.Search in Google Scholar

[4] A. Byrski, M. Kisiel-Dorohinicki, and N. Tusinski. Extending estimation of distribution algorithms with agent-based computing inspirations. Transactions on Computational Collective Intelligence, XXVII, 2017.10.1007/978-3-319-70647-4_13Search in Google Scholar

[5] A. Byrski, R. Schaefer, M. Smołka, and C. Cotta. Asymptotic guarantee of success for multi-agent memetic systems. Bulletin of the Polish Academy of Sciences – Technical Sciences, 61(1), 2013.10.2478/bpasts-2013-0025Search in Google Scholar

[6] Aleksander Byrski. Tuning of agent-based computing. Computer Science, 14(3):491, 2013.10.7494/csci.2013.14.3.491Search in Google Scholar

[7] Aleksander Byrski. Tuning of agent-based computing. Computer Science (accepted), 2013.10.7494/csci.2013.14.3.491Search in Google Scholar

[8] Aleksander Byrski, Roman Debski, and Marek Kisiel-Dorohinicki. Agent-based computing in an augmented cloud environment. Computer Systems Science and Engineering, 27(1), 2012.Search in Google Scholar

[9] Aleksander Byrski, Rafal Drezewski, Leszek Siwik, and Marek Kisiel-Dorohinicki. Evolutionary multi-agent systems. Knowledge Eng. Review, 30(2):171–186, 2015.10.1017/S0269888914000289Search in Google Scholar

[10] Aleksander Byrski and Marek Kisiel-Dorohinicki. Immune-based optimization of predicting neural networks. In Vaidy S. Sunderam, Geert Dick van Albada, Peter M. A. Sloot, and Jack Dongarra, editors, Computational Science – ICCS 2005, pages 703–710, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.10.1007/11428862_96Search in Google Scholar

[11] Aleksander Byrski and Marek Kisiel-Dorohinicki. Agent-based evolutionary and immunological optimization. In Yong Shi, Geert Dick van Albada, Jack Dongarra, and Peter M. A. Sloot, editors, Computational Science – ICCS 2007, pages 928–935, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.10.1007/978-3-540-72586-2_129Search in Google Scholar

[12] Aleksander Byrski and Marek Kisiel-Dorohinicki. Agent-based model and computing environment facilitating the development of distributed computational intelligence systems. In Gabrielle Allen, Jarosław Nabrzyski, Edward Seidel, Geert Dick van Albada, Jack Dongarra, and Peter M. A. Sloot, editors, Computational Science – ICCS 2009, pages 865–874, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.10.1007/978-3-642-01973-9_96Search in Google Scholar

[13] Aleksander Byrski and Marek Kisiel-Dorohinicki. Evolutionary Multi-agent Systems: From inspirations to applications, volume 680 of Studies in Computational Intelligence. Springer, 2017.10.1007/978-3-319-51388-1Search in Google Scholar

[14] E. Cantú-Paz. A summary of research on parallel genetic algorithms. IlliGAL Report No. 95007. University of Illinois, 1995.Search in Google Scholar

[15] E. Cantú-Paz. A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et Systems Repartis, 10(2):141–171, 1998.Search in Google Scholar

[16] K. Cetnarowicz, M. Kisiel-Dorohinicki, and E. Nawarecki. The application of evolution process in multi-agent world (MAW) to the prediction system. In M. Tokoro, editor, Proc. of the 2nd Int. Conf. on Multi-Agent Systems (ICMAS’96). AAAI Press, 1996.Search in Google Scholar

[17] J. Digalakis and K. Margaritis. An experimental study of benchmarking functions for evolutionary algorithms. International Journal of Computer Mathemathics, 79(4):403–416, April 2002.10.1080/00207160210939Search in Google Scholar

[18] Rafał Dre˙zewski. Co-evolutionary multi-agent system with speciation and resource sharing mechanisms. Computing and Informatics, 25(4):305–331, 2006.Search in Google Scholar

[19] Rafał Dre˙zewski, Jan Sepielak, and Leszek Siwik. Classical and agent-based evolutionary algorithms for investment strategies generation. In Anthony Brabazon and Michael O’Neill, editors, Natural Computing in Computational Finance, volume 185 of Studies in Computational Intelligence, pages 181–205. Springer-Verlag, 2009.10.1007/978-3-540-95974-8_9Search in Google Scholar

[20] Stan Franklin and Art Graesser. Is it an agent, or just a program?: A taxonomy for autonomous agents. In Proceedings of the Workshop on Intelligent Agents III, Agent Theories, Architectures, and Languages, ECAI ‘96, pages 21–35, London, UK, UK, 1997. Springer-Verlag.10.1007/BFb0013570Search in Google Scholar

[21] D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal function optimization. In J. J. Grefenstette, editor, Proceedings of the 2nd International Conference on Genetic Algorithms, pages 41–49. Lawrence Erlbaum Associates, 1987.Search in Google Scholar

[22] L. Hanna and J. Cagan. Evolutionary multi-agent systems: An adaptive and dynamic approach to optimization. ASME Journal of Mechanical Design, 131(1), 2009.10.1115/1.3013847Search in Google Scholar

[23] M. Kisiel-Dorohinicki. Agent-oriented model of simulated evolution. In William I. Grosky and Frantisek Plasil, editors, SofSem 2002: Theory and Practice of Informatics, volume 2540 of LNCS. Springer-Verlag, 2002.10.1007/3-540-36137-5_19Search in Google Scholar

[24] Marek Kisiel-Dorohinicki. Agent-based models and platforms for parallel evolutionary algorithms. In Marian Bubak, Geert Dick van Albada, Peter M. A. Sloot, and Jack Dongarra, editors, Computational Science - ICCS 2004, pages 646–653, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.10.1007/978-3-540-24688-6_84Search in Google Scholar

[25] Wojciech Korczynski, Aleksander Byrski, and Marek Kisiel-Dorohinicki. Buffered local search for efficient memetic agent-based continuous optimization. Journal of Computational Science, 20:112 – 117, 2017.10.1016/j.jocs.2017.02.001Search in Google Scholar

[26] L. Placzkiewicz, M. Sendera, A. Szlachta, M. Paciorek, A. Byrski, M. Kisiel-Dorohinicki, and M. Godzik. Hybrid swarm and agent-based evolutionary optimization. In Proc. of International Conference on Computational Science, Wuxi, China (accepted). 2018.10.1007/978-3-319-93701-4_7Search in Google Scholar

[27] Leszek Siwik and Rafał Dre˙zewski. Agent-based multi-objective evolutionary algorithms with cultural and immunological mechanisms. In Wellington Pinheiro dos Santos, editor, Evolutionary computation, pages 541–556. In-Teh, 2009.10.5772/9621Search in Google Scholar

[28] Kenneth Sörensen. Metaheuristicsthe metaphor exposed. International Transactions in Operational Research, 22(1):3–18, 2015.10.1111/itor.12001Search in Google Scholar

[29] Jan Stypka, Wojciech Turek, Aleksander Byrski, Marek Kisiel-Dorohinicki, Adam D. Barwell, Christopher Brown, Kevin Hammond, and Vladimir Janjic. The missing link! a new skeleton for evolutionary multi-agent systems in erlang. International Journal of Parallel Programming, 46(1):4–22, Feb 2018.10.1007/s10766-017-0503-4Search in Google Scholar

[30] Wojciech Turek, Jan Stypka, Daniel Krzywicki, Piotr Anielski, Kamil Pietak, Aleksander Byrski, and Marek Kisiel-Dorohinicki. Highly scalable erlang framework for agent-based metaheuristic computing. J. Comput. Science, 17:234–248, 2016.10.1016/j.jocs.2016.03.003Search in Google Scholar

[31] D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 67(1), 1997.10.1109/4235.585893Search in Google Scholar

[32] M.J. Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons, 2009.Search in Google Scholar

[33] Weicai Zhong, Jing Liu, Mingzhi Xue, and Licheng Jiao. A multiagent genetic algorithm for global numerical optimization. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(2):1128–1141, 2004.10.1109/TSMCB.2003.821456Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo