1. bookVolumen 27 (2019): Edición 4 (December 2019)
Detalles de la revista
Primera edición
30 Jul 2013
Calendario de la edición
4 veces al año
access type Acceso abierto

A comparison of four approaches to river landscape delineation: The case of small watercourses in the Czech Republic

Publicado en línea: 21 Jan 2020
Volumen & Edición: Volumen 27 (2019) - Edición 4 (December 2019)
Páginas: 229 - 240
Recibido: 09 May 2019
Aceptado: 25 Nov 2019
Detalles de la revista
Primera edición
30 Jul 2013
Calendario de la edición
4 veces al año

River landscapes represent key areas of great importance to human society as they perform many functions and provide valuable services. Traditionally, these areas have been perceived as geomorphological phenomena characterised by specific soil conditions, hydrological regimes and unique habitats. Due to the availability of detailed data, it is possible to perform a spatial delineation of river landscapes by interpreting these data using several different approaches. The results of these different approaches can vary considerably, since it is particularly challenging to define the river landscape along small watercourses for which the availability of suitable data is limited. The main aim of this study is to analyse the various methodological approaches that may be used to define the river landscapes of small streams, and to evaluate the efficiency of those approaches that can be applied in nature and landscape conservation. Two medium-sized catchments in the Czech Republic were selected as the study areas in order to ensure different natural conditions and degrees of anthropogenic pressure. As a result, an approach based on combining soil characteristics and topographic information is considered the most appropriate solution to delineate the river ecosystem.


ALBER, A., PIÉGAY, H. (2011): Spatial aggregation procedure for characterizing physical structures of fluvial networks: applications to the Rhône basin. Geomorphology, 125(3): 343–360.10.1016/j.geomorph.2010.09.009Search in Google Scholar

ALTDORF, D., EPTING, J., KRUK, J. V. D., DIETRICH, P., HUGGENBERGER, P. (2013): Delineation of fluvial sediment architecture of subalpine riverine systems using noninvasive hydrogeophysical methods. Environmental earth sciences, 69(2): 633–644.10.1007/s12665-013-2304-4Search in Google Scholar

AMOROS, C., ROUX, A. L. (1988): Interactions between water bodies within the floodplains of large rivers: function and development of connectivity. In: Schreiber, K. F. [ed.]: Connectivity in landscape ecology (pp. 125–130). Muenster, Muensterische Geographische Arbeit.Search in Google Scholar

BLAUHUT, V., STAHL, K., STAGGE, J. H., TALLAKSEN, L. M., STEFANO, L. D., VOGT, J. (2016): Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors. Hydrology and Earth System Sciences, 20(7): 2779–2800.10.5194/hess-20-2779-2016Abierto DOISearch in Google Scholar

CARBONNEAU, P., FONSTAD, M. A., MARCUS, W. A., DUGDALE, S. J. (2012): Making riverscapes real. Geomorphology, 137: 74–86.10.1016/j.geomorph.2010.09.030Search in Google Scholar

CLUBB, F. J., MUDD, S. M., MILODOWSKI, D. T., VALTERS, D. A., SLATER, L. J., HURST, M. D., LIMAYE, A. B. (2017): Geomorphometric delineation of floodplains and terraces from objectively defined topographic thresholds. Earth Surface Dynamics, 5(3): 369–385.10.5194/esurf-5-369-2017Search in Google Scholar

COLLIN, P. H. (1988): Dictionary of Ecology and the Environment. Peter Collin Publishing, Teddington Park.Search in Google Scholar

DEMARCHI, L., BIZZI, S., PIÉGAY, H. (2016): Hierarchical Object-Based Mapping of Riverscape Units and in-Stream Mesohabitats Using LiDAR and VHR Imagery. Remote Sensing, 8(2): 97.10.3390/rs8020097Search in Google Scholar

DESHPANDE, S. S. (2013): Improved Floodplain Delineation Method Using High-Density LiDAR Data. Computer-Aided Civil and Infrastructure Engineering, 28: 68–79.10.1111/j.1467-8667.2012.00774.xSearch in Google Scholar

DÉCAMPS, H. A., FORTUNE, M., GAZELLE, F., PAUTOU, G. (1988): Historical influence of man on the riparian dynamics of a fluvial landscape. Landscape Ecology, 1: 163–173.10.1007/BF00162742Search in Google Scholar

DUFOUR, S., RODRÍGUEZ-GONZÁLES, P. M., LASLIER, M. (2019): Tracing the scientific trajectory of riparian vegetation studies: Main topics, approaches and needs in a globally changing world. Science of the Total Environment, 653: 1168–1185.10.1016/j.scitotenv.2018.10.383Search in Google Scholar

EEA (2016): Floodplain management: reducing flood risks and restoring healthy ecosystems. European Environment Agency. Available at: https://www.eea.europa.eu/highlights/floodplain-management-reducing-flood-risksSearch in Google Scholar

FAO (1988): Soil map of the world. Revised legend. World Soil Resources Report, No. 60. Rome, FAO–UNESCO–ISRIC.Search in Google Scholar

FAUSCH, K. D., TORGERSEN, C. E., BAXTER, C. V., LI, H. W. (2002): Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. BioScience, 52(6): 483–498.10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2Abierto DOISearch in Google Scholar

GILBERT, J. T., MACFARLANE, W. W., WHEATON, J. M. (2016): The Valley Bottom Extraction Tool (V-BET): A GIS tool for delineating valley bottoms across entire drainage networks. Computers & Geosciences, 97: 1–14.10.1016/j.cageo.2016.07.014Abierto DOISearch in Google Scholar

GURNELL, A. M., PETTS, G. E. (2002): Island-dominated landscapes of large floodplain rivers: A European perspective. Freshwater Biology, 47: 581–600.10.1046/j.1365-2427.2002.00923.xAbierto DOISearch in Google Scholar

HEIN, T., SCHWARZ, U., HABERSACK, H., NICHERSU, I., PREINER, S., WILLBY, N., WEIGELHOFER, G. (2016): Current status and restoration options for floodplains along the Danube River. Science of the Total Environment, 543: 778–790.10.1016/j.scitotenv.2015.09.073Search in Google Scholar

HUGGETT, R. J. (2003): Fundamentals of geomorphology. London, Routledge.Search in Google Scholar

CHARRIER, R., LI, Y. (2012): Assessing resolution and source effects of digital elevation models on automated floodplain delineation: a case study from the Camp Creek Watershed, Missouri. Applied Geography, 34: 38–46.10.1016/j.apgeog.2011.10.012Search in Google Scholar

CHUMAN, T. (2008): Vymezení nivy pomocí pedologických a biogeografických podkladů na příkladu povodí Opavy. In: Langhammer, J. [ed.]: Údolní niva jako prostor ovlivňující průběh a následky povodní (pp. 178–184). Praha, KFGG PřF UK.Search in Google Scholar

ILHARDT, B. L., VERRY, E. S., PALIK, B. J. (2000): Defining Riparian Areas. In: Wagner, R. G., Hagan, J. M. [ed.]: Forestry and the riparian zone (pp. 7–14). Conference Proceedings. University of Maine.Search in Google Scholar

JUNK, W. J., WELCOMME, R. L. (1989): Management of floodplains. In: Patten, B., C. [ed.]: Wetlands and shallow continental water bodies. Hague, SPB Academic Publishing.Search in Google Scholar

KATSUYAMA, M. N. OHTE, N., KABEYA, N. (2005): Effects of bedrock permeability on hillslope and riparian groundwater dynamics in a weathered granite catchment, Water Resources Research, 41(1): W0101010.1029/2004WR003275Abierto DOISearch in Google Scholar

KILIANOVÁ, H., PECHANEC, V., BRUS, J., KIRCHNER, K., MACHAR, I. (2017): Analysis of the development of land use in the Morava River floodplain, with special emphasis on the landscape matrix. Moravian Geographical Reports, 25(1): 46–59.10.1515/mgr-2017-0005Search in Google Scholar

KREIBICH, H., BLAUHUT, V., AERTS, J. C., BOUWER, L. M., VAN LANEN, H. A., ... & VAN LOON, A. F. (2019): How to improve attribution of changes in drought and flood impacts. Hydrological sciences journal, 64(1): 1–18.10.1080/02626667.2018.1558367Search in Google Scholar

KREJČÍ, L. (2012): Strategie adaptačních opatření pro POP Moravy. Část A – Říční nivy. Olomouc, Koalice pro řeky.Search in Google Scholar

KŘÍŽEK, M., HARTVICH, F., CHUMAN, T., ŠEFRNA, L., ŠOBR, M., ZÁDOROVÁ, T. (2006): Floodplain and its delimitation. Geografie, 111(3): 260–273.10.37040/geografie2006111030260Search in Google Scholar

LEOPOLD, L. B., MARCHANT, M. O. (1968): On the Quantitative Inventory of the Riverscape. Water Resources Research, 4(4): 709–717.10.1029/WR004i004p00709Abierto DOISearch in Google Scholar

LEWIN, J., MANTON, M. M. M. (1975): Welsh floodplain studies: The nature of floodplain geometry. Journal of Hydrology, 25(1–2): 37–50.10.1016/0022-1694(75)90037-2Abierto DOISearch in Google Scholar

LINDSAY, J. B. (2003): A physically based model for calculating contributing area on hillslopes and along valley bottoms, Water Resources Research, 39(12): 1332.10.1029/2003WR002576Abierto DOISearch in Google Scholar

MALANSON, G. P. (1993): Riparian Landscapes. Cambridge Studies in Ecology. Cambridge University Press, Cambridge.10.1017/CBO9780511565434Search in Google Scholar

MCGLYNN, B. L., SEIBERT, J. (2003): Distributed assessment of contributing area and riparian buffering along stream networks, Water Resources Research, 39(4): 1082.10.1029/2002WR001521Abierto DOISearch in Google Scholar

NANSON, G. C., CROKE, J. C. (1992): A genetic classification of floodplains. In: Brakenridge, G. R., Hagedorn, J. [eds.]: Floodplain Evolution. Geomorphology, 4: 459–486.10.1016/0169-555X(92)90039-QAbierto DOISearch in Google Scholar

NARDI, F., VIVONI, E. R., GRIMALDI, S. (2006): Investigating a floodplain scaling relation using a hydrogeomorphic delineation method. Water Resources Research, 42: W09409.10.1029/2005WR004155Search in Google Scholar

NARDI, F., BISCARINI, C., FRANCESCO, S. D., MANCIOLA, P., UBERTINI, L. (2013): Comparing a large-scale DEM-based floodplain delineation algorithm with standard flood maps: the Tiber River basin case study. Irrigation and Drainage, 62(2): 11–19.10.1002/ird.1818Abierto DOISearch in Google Scholar

NARDI, F., MORRISON, R. R., ANNIS, A., GRANTHAM, T. E. (2018): Hydrologic scaling for hydrogeomorphic floodplain mapping: Insights into human-induced floodplain disconnectivity. River Research and Applications, 34(7): 675–685.10.1002/rra.3296Abierto DOISearch in Google Scholar

NARDI, F., ANNIS, A., DI BALDASSARRE, G., VIVONI, E. R., GRIMALDI, S. (2019). GFPLAIN250m, a global high-resolution dataset of Earth’s floodplains. Scientific data, 6: 180309.Search in Google Scholar

NILSSON, C., REIDY, C. A., DYNESIUS, M., REVENGA, C. (2005): Fragmentation and Flow Regulation of the World’s Large River Systems. Science, 308 (5720): 405–408.10.1126/science.1107887Search in Google Scholar

NOMAN, N. S., NELSON, E. J., ZUNDEL, A. K. (2003): Improved process for floodplain delineation from digital terrain models. Journal of water resources planning and management, 129 (5): 427–436.10.1061/(ASCE)0733-9496(2003)129:5(427)Search in Google Scholar

NOTEBAERT, B., PIÉGAY, H. (2013): Multi-scale factors controlling the pattern of floodplain width at a network scale: The case of the Rhône basin, France. Geomorphology, 200: 155–171.10.1016/j.geomorph.2013.03.014Search in Google Scholar

POWEL, S. J., JAKEMAN, A., CROKE, B. (2014): Can NDVI response indicate the effective flood extent in macrophyte dominated floodplain wetlands? Ecological Indicators, 45: 486–493.10.1016/j.ecolind.2014.05.009Abierto DOISearch in Google Scholar

RATHJENS, H., BIEGER, K., CHAUBEY, I., ARNOLD, J. G., ALLEN, P. M., SRINIVASAN, R., BOSCH, D. D., VOLK, M. (2016): Delineating floodplain and upland areas for hydrologic models: a comparison of methods. Hydrological Processes, 30: 4367–4383.10.1002/hyp.10918Search in Google Scholar

RINALDI, M., WYZGA, B., DUFOUR, S., BERTOLDI, W., GURNELL, A. (2013): River Processes and Implications for Fluvial Ecogeomorphology: A European Perspective. In: Schroder J. F. [ed.]: Treatise in geomorphology 12(4): 37–52.10.1016/B978-0-12-374739-6.00321-3Search in Google Scholar

ROUX, C., ALBER, A., BERTRAND, M., VAUDOR, L., PIÉGAY, H. (2015): “FluvialCorridor”: A new ArcGIS toolbox package for multiscale riverscape exploration. Geomorphology, 242: 29–37.10.1016/j.geomorph.2014.04.018Search in Google Scholar

SCHINDLER, S., O’NEILL, F. H., BIRÓ, M., DAMM, C., GASSO, V., KANKA, R., ... & PUSCH, M. (2016): Multifunctional floodplain management and biodiversity effects: a knowledge synthesis for six European countries. Biodiversity and conservation, 25(7): 1349–1382.10.1007/s10531-016-1129-3Abierto DOISearch in Google Scholar

ŠTĚRBA, O. a kol. (2008): Říční krajina a její ekosystémy. Univerzita Palackého v Olomouci, Olomouc.Search in Google Scholar

TGM WRI (2019): Digital Base of Water Management Data [online]. Available at: http://www.dibavod.cz/Search in Google Scholar

TOCKNER, K., MALARD, F., WARD, J. V. (2000): An extension of the flood pulse concept. Hydrological Processes, 14: 2861–2883.10.1002/1099-1085(200011/12)14:16/17<2861::AID-HYP124>3.0.CO;2-FAbierto DOISearch in Google Scholar

TOCKNER, K., STANFORD, J. A. (2002): Riverine Flood Plains: Present State and Future Trends. Environmental Conservation, 29: 308–330.10.1017/S037689290200022XAbierto DOISearch in Google Scholar

VANNOTE, R. L., MINSHALL, G. W, CUMMINS, K. W., SEDELL, J. R., CUSHING, C. E. (1980): The river continuum concept. Canadian journal of fisheries and aquatic sciences, 37(1): 130–137.10.1139/f80-017Search in Google Scholar

WAKPP (2016): Webový archiv Komplexního průzkumu půd. Výzkumný ústav meliorací a ochrany půd [online]. [cit. 31. 5. 2017]. Available at: http://wakpp.vumop.cz/Search in Google Scholar

WARD, R. (1978): Floods: A Geographical Perspective. Macmillan, Press LTD, London.10.1007/978-1-349-27916-6Search in Google Scholar

WARD, J. V. (1998): Riverine landscapes: biodiversity patterns, disturbance regimes, and aquatic conservation. Biological conservation, 83(3): 269–278.10.1016/S0006-3207(97)00083-9Search in Google Scholar

WARD, J. V., ROBINSON, C. T., TOCKNER, K. (2002): Applicability of ecological theory to riverine ecosystems. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 28(1): 443–450.10.1080/03680770.2001.11902621Search in Google Scholar

WIENS, J. A. (2002): Riverine landscapes: taking landscape ecology into the water. Freshwater biology, 47(4): 501–515.10.1046/j.1365-2427.2002.00887.xAbierto DOISearch in Google Scholar

WILLIAMS, W. A., JENSEN, M. E., WINNE, J. C., REDMOND, R. L. (2000): An automated technique for delineating and characterizing valley-bottom settings. In: Sandhu, S. S. et al. [eds.]: Monitoring Ecological Condition in the Western United States (pp. 105–114). Dordrecht, Springer.10.1007/978-94-011-4343-1_10Search in Google Scholar

WINTER, T. C. (2001): The Concept of Hydrological Landscapes. Journal of the American Water Resources Association, 37(2): 335–349.10.1111/j.1752-1688.2001.tb00973.xAbierto DOISearch in Google Scholar

WITNER, D. B. (1966): Soils and Their Role in Planning a Suburban Community. In: Bartelli, L. J. Klingebiel, A. A. Baird, J. V., Heddleson, M. R. [eds.]: Soil Surveys and Land Use Planning (pp. 15–30). Madison, Soil Science Society of America and American Society of Agronomy.Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo