1. bookVolumen 30 (2022): Edición 1 (March 2022)
Detalles de la revista
License
Formato
Revista
eISSN
1338-3973
Primera edición
23 May 2011
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

The Impact of Climate Change on Stochastic Variations of the Hydrology of the Flow of the Indus River

Publicado en línea: 13 Apr 2022
Volumen & Edición: Volumen 30 (2022) - Edición 1 (March 2022)
Páginas: 33 - 41
Detalles de la revista
License
Formato
Revista
eISSN
1338-3973
Primera edición
23 May 2011
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

Pakistan’s agricultural economy is reliant on the Indus River’s irrigation system, which is fed by the water coming from the great Himalayas-Karakoram Glacier Mountains. Because of hilly terrain areas, the climatic variations have an intense effect on the river flow, especially during the winter and monsoon months. Consequently, significant variations, which are observed annually, result in flooding situations in the monsoon months and reduced flows in the winter season. Thousands of people have lost their lives and massive property destruction has taken place due to disastrous floods that occurred during 2010 and 2016. Past studies have focused on proper water resources and the management of extreme events such as floods and droughts; however, modelling and forecasting based on the various climatic factors and stochastic variations are rare. This paper attempts to forecast Indus River flows using multiple linear regression (MLR), the stochastic time series, the seasonal autoregressive integrated moving average (SARIMA), and its reduced heteroscedasticity model, i.e., SARIMA-GARCH (generalized autoregressive conditional heteroscedasticity) methods at the Kalabagh station. The results show that MLR is best over the short-term; SARIMA is better over the long-term, and SARIMA-GARCH may be superior for a very long-term forecast.

Keywords

Adenan, N. H. - Noorani, M. S. M. (2014) Nonlinear prediction of river flow in different watershed acreage, KSCE Journal of Civil Engineering, vol. 18, no. 7, pp. 2268-2274. Search in Google Scholar

Agnolucci, P. (2009) Volatility in crude oil futures: a comparison of the predictive ability of GARCH and implied volatility models, Energy Economics, vol. 31, no. 2, pp. 316-321. Search in Google Scholar

Ahmad, M. S. - Ahmad, M. I. - Naeem, H. M. - Sarwar, M. (1993) Time Series Modelling of Annual Maximum Flow of River Indus At Sukkur, Pak. J. Agri. Sci, vol. 30, no.1. Search in Google Scholar

Akaike, H. (1974) A new look at the statistical model identification Automatic Control, IEEE Transactions on, vol. 19, no. 6, pp. 716-723. Search in Google Scholar

Al-Masudi, R. K. (2011) Fitting ARIMA Models for Forecasting to Inflow of Dokan Reservoir, Journal of Babylon University, vol. 19, no. 4. Search in Google Scholar

Bollerslev, T. (1986) Generalized autoregressive conditional heteroskedasticity, Journal of econometrics, vol. 31, no.3, pp. 307-327. Search in Google Scholar

Box, G.E.P. - Jenkins, G.M. (1994) Time Series Analysis; Forecasting and Control, Holden Day, San Francisco, CA, USA. Search in Google Scholar

Eldaw, A. K. - Salas, J. D. - Garcia, L. A. (2003) Long-range forecasting of the Nile River flows using climatic forcing, Journal of Applied Meteorology, vol.42, no.7, pp. 890-904. Search in Google Scholar

Engle, R. F. (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica: Journal of the Econometric Society, pp. 987-1007. Search in Google Scholar

Fowler, H. J. - Archer, D. R. (2005) Hydro-climatological variability in the Upper Indus Basin and implications for water resources, Regional Hydrological Impacts of Climatic Change—Impact Assessment and Decision Making, vol. 295, pp.131-138. Search in Google Scholar

Hamza, K. - Hassan, S. A. (2015) Stochastic River Flow Modelling and Forecasting of Upper Indus Basin, Journal of Basic & Applied Sciences, vol. 11, pp. 630-636. Search in Google Scholar

Hassan, S. A. - Ansari, M. R. K. (2010) Nonlinear analysis of seasonality and stochasticity of the Indus River, Hydrological Sciences Journal–Journal des Sciences Hydrologiques, vol. 55, no. 2, pp. 250-265. Search in Google Scholar

Hassan, S. A. - Ansari, M. R. K. (2015) Hydro-climatic aspects of Indus River flow propagation, Arabian Journal of Geosciences, vol. 8, no.12, pp.10977-10982. Search in Google Scholar

Jamil, S. - Khan, M. N. (2012) Seasonal variations of vivax and falciparum malaria: an observation at a tertiary care hospital, J. Ayub Med Coll Abbottabad, vol. 24, no.1. Search in Google Scholar

Khalid, S. - Qasim, M. - Farhan, D. (2013) Hydro-meteorological characteristics of Indus River Basin at extreme north of Pakistan, J. Earth Sci. Clim. Change, vol.5, no.2. Search in Google Scholar

Khan, A. R. (2001) Analysis of hydro-meteorological time series: Searching evidence for climatic change in the Upper Indus Basin, International Water Management Institute (IWMI), Lahore, Pakistan. Search in Google Scholar

Khatibi, R. - Ghorbani, M. A. - Naghipour, L. - Jothiprakash, V. - Fathima, T. A. - Fazelifard, M. H. (2014) Inter-comparison of time series models of lake levels predicted by several modeling strategies, Journal of Hydrology, vol. 511, pp. 530-545. Search in Google Scholar

Kiem, A. S. - Austin, E. K. - Verdon-Kidd, D. C. (2016) Water resource management in a variable and changing climate: hypothetical case study to explore decision making under uncertainty, Journal of Water and Climate Change. Vol. 7, no. 2, pp. 263-279. Search in Google Scholar

Kwon, H. H., Brown, C., Kaiqin, X. and Lall, U. (2009) Seasonal and annual maximum streamflow forecasting using climate information: application to the Three Gorges Dam in the Yangtze River basin, China, Hydrological sciences journal, vol. 54, no. 3, pp. 582-595. Search in Google Scholar

Markridakis, S. - Wheelwright, S.C. - Hyndman, R. J. (2008) Forecasting methods and application, John Wiley & Sons. Search in Google Scholar

Modarres, R. - Ouarda, T. B. M. J. (2013a) Generalized autoregressive conditional heteroscedasticity modelling of hydrologic time series, Hydrological Processes, vol. 27, no. `22, pp. 3174-3191.10.1002/hyp.9452 Search in Google Scholar

Modarres, R. - Ouarda, T. B. M. J. (2013b) Modelling heteroscedasticty of streamflow times series, Hydrological sciences journal, vol. 58, no.1, pp. 54-64.10.1080/02626667.2012.743662 Search in Google Scholar

Naheed, G. - Kazmi, D. H. - Rasul, G. (2013) Seasonal Variation of Rainy Days in Pakistan, Pakistan Journal of Meteorology, vol. 9, no.18. Search in Google Scholar

Nelson, D. B. (1991) Conditional heteroskedasticity in asset returns: A new approach, Econometrica: Journal of the Econometric Society, pp. 347-370. Search in Google Scholar

Pahlavani, M. - Roshan, R. (2015) The Comparison among ARIMA and hybrid ARIMA-GARCH Models in Forecasting the Exchange Rate of Iran, International Journal of Business and Development Studies, vol. 7, no.1, pp. 31-50. Search in Google Scholar

Schwarz, G. (1978) Estimating the dimension of a model, The annals of statistics, vol. 6, no. 2, pp. 461-464. Search in Google Scholar

Senaviratna, N. A. M. R. - Cooray, T. M. J. A. (2017) Forecasting gold prices in Sri Lanka using generalized autoregressive conditional heteroscedasticity approach, International Research Journal of Natural and Applied Sciences, vol. 4, no.7, pp. 99-110. Search in Google Scholar

Shakir, A. S. - Rehman, H. - Ehsan, S. (2010) Climate Change Impact on River Flows in Chitral Watershed, Pakistan Journal of Engineering & Applied Sciences, vol. 7, pp. 12-23. Search in Google Scholar

Sigauke, C. - Chikobvu, D. (2011) Prediction of daily peak electricity demand in South Africa using volatility forecasting models, Energy Economics, vol. 33, no. 5, pp. 882-888. Search in Google Scholar

Thevakaran, A. - Suppiah, R. - Sonnadara, U. (2019) Trends in extreme rainfall events in Sri Lanka, 1961-2010, Journal of the National Science Foundation of Sri Lanka, vol. 47, no. 3.10.4038/jnsfsr.v47i3.9280 Search in Google Scholar

Wang, H. - Gao, X. - Qian L. - Yu, S. (2012) Uncertainty analysis of hydrological processes based on ARMA-GARCH model, Science China Technological Sciences, pp. 1-11. Search in Google Scholar

Wang, W. (2006) Stochasticity, nonlinearity and forecasting of streamflow processes (Doctoral dissertation, TU Delft, Delft University of Technology). Search in Google Scholar

Wang, W. - Van Gelder, P. H. A. J. M. - Vrijling J. K. - Ma, J. (2005), Testing and modelling autoregressive conditional heteroskedasticity of streamflow processes, Nonlinear processes in Geophysics, vol. 12, no.1, pp. 55-66. Search in Google Scholar

Yaziz, S. R. - Azizan, N. A. - Zakaria, R. - Ahmad, M. H. (2013) The performance of hybrid ARIMA-GARCH modeling in forecasting gold price, In 20th International Congress on Modelling and Simulation, Adelaide, pp.1-6. Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo