1. bookVolumen 24 (2022): Edición 1 (April 2022)
Detalles de la revista
License
Formato
Revista
eISSN
2344-3219
Primera edición
30 Oct 2013
Calendario de la edición
2 veces al año
Idiomas
Inglés
access type Acceso abierto

Palynological Analysis of Surface Sediments in a High Arctic Pond, Revealing Desmids as Indicators of Wetlands and Climate Change

Publicado en línea: 30 Apr 2022
Volumen & Edición: Volumen 24 (2022) - Edición 1 (April 2022)
Páginas: 1 - 16
Detalles de la revista
License
Formato
Revista
eISSN
2344-3219
Primera edición
30 Oct 2013
Calendario de la edición
2 veces al año
Idiomas
Inglés
Abstract

This is a first attempt to study the palynological remains from the surface sediments of a pond near the Kongsfjorden coast in Ny-Alesund, Svalbard, Norway. The palynomorphs display a high relative abundance of desmids, Cladocera, thecamoebians, chironomids, and fungal remains inherent to the inland aquatic ecosystem. The Cosmarium indicators characterize water as neutral pH, fresh, mesotrophic, without organic pollution, Class 2 of Water Quality as in wetlands with coastal vegetation. The single procedure of palynological analysis excluding the acetolysis step, and bioindicators allows us to perceive the basic framework of the ecosystem, consisting of in-situ and transported remains. This approach could be effectively used for paleoenvironmental reconstructions in High Arctic Regions.

Keywords

1. Adamus P. R. and Brandt K., 1990 – Impacts on quality of inland wetlands of the United States survey of indicators techniques and applications of community level biomonitoring data, Corvallis, Oregon, USA, 392. Search in Google Scholar

2. Allison C. W. and Awramik S. M., 1989 – Organic-walled microfossils from Earliest Cambrian or Latest Proterozoic Tindir Group Rocks, Northwest Canada, Precambrian Research, 43, 253-294.10.1016/0301-9268(89)90060-0 Search in Google Scholar

3. Barinova S., 2017a – Essential and practical bioindication methods and systems for the water quality assessment, International Journal of Environmental Sciences and Natural Resources, 2, 3, 555588, https://doi.org/10.19080/ijesnr.2017.02.555588.10.19080/IJESNR.2017.02.555588 Search in Google Scholar

4. Barinova S., 2017b – On the classification of water quality from an ecological point of view, International Journal of Environmental Sciences and Natural Resources, 2, 2, 1-8, https://doi.org/DOI:10.19080/IJESNR.2017.02.555581.10.19080/IJESNR.2017.02.555581 Search in Google Scholar

5. Barinova S., Bilous O. and Tsarenko P. M., 2019 – Algal indication of water bodies in Ukraine: methods and perspectives, Haifa University Publishing House, Haifa, Kiev, 367. (in Russian) Search in Google Scholar

6. Barinova S., Medvedeva L. A. and Anissimova O. V., 2006 – Diversity of algal indicators in environmental assessment, Tel Aviv, Pilies Studio, 458. (in Russian) Search in Google Scholar

7. Birks H. J. B., Birks H. H. and Ammann B., 2016 – The fourth dimension of vegetation: 100 years ago, Lennart von Post first used pollen analysis to reconstruct past ecosystems, Science, 354, 412-413, https://doi.org/10.1126/science.aai8737.10.1126/science.aai873727789825 Search in Google Scholar

8. Brooks S. J. and Birks H. J. B., 2004 – The dynamics of Chironomidae (Insecta: Diptera) assemblages in response to environmental change during the past 700 years on Svalbard, Journal of Paleolimnology, 31, 483-498, https://doi.org/10.1023/B:JOPL.0000022547.98465.d3.10.1023/B:JOPL.0000022547.98465.d3 Search in Google Scholar

9. Coesel P. F. M. and Meesters J., 2007 – Desmids of the Lowlands, Mesotaeniaceae and Desmidiaceae of the European Lowlands, KNNV Uitgeverij, 352.10.1163/9789004277922 Search in Google Scholar

10. Coesel P. F. M., 1982 – Structural characteristics and adaptations of desmid communities, Journal of Ecology, 70, 163-177.10.2307/2259871 Search in Google Scholar

11. Croasdale H. and Flint E. A., 1988 – Flora of New Zealand. Freshwater Algae, Chlorophyta, Desmids, II, DSIR, Botany Division, Christchurch, DOI:10.2307/3668173, 147.10.2307/3668173 Search in Google Scholar

12. Denboh T., Hendrayanti D. and Ichimura T., 2001 – Monophyly of the genus Closterium and the order Desmidiales (Charophyceae, Chlorophyta) inferred from nuclear small subunit rDNA data, Journal of Phycology, 37, 1063-1072.10.1046/j.1529-8817.2001.00146.x Search in Google Scholar

13. Denisov D. B. and Barinova S., 2015 – Algal diversity and ecological variables in the Arctic lakes of the Kola Peninsula, Russian North, Issues of Modern Algology, 2, 9, 1-47, http://algology.ru/742. Search in Google Scholar

14. Dillard G. E., 1991 – Freshwater algae of the southeastern United States, 4, Chlorophyceae: Zygnematales: Desmidiaceae, 2, 4, Chlorophyceae: Zygnematales: Desmidiaceae, 2, Cramer J., Stuttgart, Bibliotheca Phycologica, 89, 1-205. Search in Google Scholar

15. Dimante-Deimantovica I., Chertoprud M., Chertoprud E., Christoffersen K. S., Novichkova A. and Walseng B., Nina Publications, 2015 – 1218 FREMONEC: Effect of climate change and related stressors on fresh and brackish water ecosystems in Svalbard, 40. Search in Google Scholar

16. Forster K., 1982 – Conjugatophyceae: Zygnematales und Desmidiales (excl. Zygnemataceae), in Huber-Pestalozzi G. (ed.), Das Phytoplankton des Süsswassers: systematik und biologie, Stuttgart, Schweizerbart’sche Verlagsbuchhandlung, 543. Search in Google Scholar

17. Gelorini V., Verbeken A., van Geel B., Cocquyt C. and Verschuren D., 2011 – Modern non-pollen palynomorphs from East African lake sediments, Review of Palaeobotany and Palynology, 164, 143-173, https://doi.org/10.1016/j.revpalbo.2010.12.00. Search in Google Scholar

18. Gilichinsky D. A., Wagener S. and Vishnivetskaya T. A., 1995 – Permafrost microbiology, Permafrost and Periglacial Processes, 6, 4, 281-291.10.1002/ppp.3430060402 Search in Google Scholar

19. Gilichinskiy D. A., Friedmann I., Vorobieva E. A., Wilson G., Rivkina E. M., Soina B. C., Ostroumov V. E., McKay S., Shcherbakova V. A. Vishnivetskaya T. A., Chanton J., Erokhina L. G., 1996 – Study of the permafrost of Antarctica as a paleobank of ancient life forms for the reconstruction of Cenozoic history, Abstract of Basic research of the Earth’s cryosphere in the Arctic and Subarctic, Pushchino, 41-43. Search in Google Scholar

20. Kim G. H., Klochkova T. A., Han J. W., Kang S. H., Choi H. G., Chung K. W and Kim S. J., 2011 – Freshwater and Terrestrial Algae from Ny-Ålesund and Blomstrandhalvøya Island (Svalbard), Arctic, 64, 1, 25-31.10.14430/arctic4077 Search in Google Scholar

21. Holmgren S. U., Bigler C., Ingólfsson Ó. and Wolfe A. P., 2010 – The Holocene-Anthropocene transition in lakes of western spitsbergen, Svalbard (Norwegian high arctic): Climate change and nitrogen deposition, Journal of Paleolimnology, 43, 393-412, https://doi.org/10.1007/s10933-009-9338-3.10.1007/s10933-009-9338-3 Search in Google Scholar

22. Kvíderová J., 2012 – Research on cryosestic communities in Svalbard: the snow algae of temporary snowfields in Petuniabukta, Central Svalbard, Czech Polar Reports, 2, 8-19.10.5817/CPR2012-1-2 Search in Google Scholar

23. Jiang S., Liu X., Sun J., Yuan L., Sun L. and Wang Y., 2011 – A multi-proxy sediment record of late Holocene and recent climate change from a lake near Ny-Ålesund, Svalbard, Boreas, 40, 468-480, https://doi.org/10.1111/j.1502-3885.2010.00198.x.10.1111/j.1502-3885.2010.00198.x Search in Google Scholar

24. Kim G. H., Klochkova T. A. and Kang S. H., 2008 – Notes on freshwater and terrestrial algae from Ny-Alesund, Svalbard (high Arctic sea area), Journal of Environmental Biology, 29, 4, 485-491. Search in Google Scholar

25. Lenzenweger R. and Lütz C., 2006 – A contribution to knowledge of the desmid flora (Desmidiaceae, Zygnemaphyceae) of Spitzbergen, Algological Studies/Archiv für Hydrobiologie, 119, 79-89, https://doi.org/10.1127/1864-1318/2006/0119-0079.10.1127/1864-1318/2006/0119-0079 Search in Google Scholar

26. Nikulina T. V., Kalitina E. G., Vakh E. A. and Kharitonova N. A., 2016 – List of diatoms from three hot springs from Kamchatka-Malkinskiye, Nachikinskiye and Verhne-Paratunskiye (Russia), in Freshwater Life; Bogatov V. V., ed.; Dalnauka, Vladivostok, Russia, 2, 108-115. (in Russian) Search in Google Scholar

27. Prach K., Košnar J., Klimešová J. and Hais M., 2010 – High Arctic vegetation after 70 years: A repeated analysis from Svalbard, Polar Biology, 33, 635-639, https://doi.org/10.1007/s00300-009-0739-6.10.1007/s00300-009-0739-6 Search in Google Scholar

28. Prager A., Theuerkauf M., Couwenberg J., Barthelmes A., Aptroot A. and Joosten H., 2012 – Pollen and non-pollen palynomorphs as tools for identifying alder carr deposits: A surface sample study from NE-Germany, Review of Palaeobotany and Palynology, 186, 38-57, https://doi.org/10.1016/j.revpalbo.2012.07.006.10.1016/j.revpalbo.2012.07.006 Search in Google Scholar

29. Prescott G. W., Croasdale H. T., Vinyard W. C. and Bicudo C. E. M., 1981 – A synopsis of North American Desmids, II, Desmidiaceae: Placodermae, 3, University of Nebraska, Lincoln, 720. Search in Google Scholar

30. Prescott G. W., Croasdale H. T. and Vinyard W. C., 1982 – A synopsis of North American Desmids, II, Desmidiaceae: Placodermae, 4, University of Nebraska, Lincoln, 704. Search in Google Scholar

31. Richter D., 2018 – Diversity of cyanobacteria and microalgae in hydro-terrestrial habitats in Svalbard and its ecological evaluation, Polish Polar Research, 39, 255-311. https://doi.org/10.24425/11874. Search in Google Scholar

32. Richter D., Matuła J., Pietryka M., Wojtuń B., Zwolicki A., Zmudczyńska-Skarbek K. and Stempniewicz L., 2018 – Cyanobacterial and green algal assemblages in various tundra habitats in the high Arctic (West Spitsbergen, Norway), Acta Societatis Botanicorum Poloniae, 87, 4, 1-21, https://doi.org/10.5586/asbp.360. Search in Google Scholar

33. Richter D., Pietryka M. and Matuła J., 2015 – Relationship of cyanobacterial and algal assemblages with vegetation in the high Arctic tundra (West Spitsbergen, Svalbard Archipelago), Polish Polar Research, 36, 239-260, https://doi.org/10.1515/popore-2015-0013.10.1515/popore-2015-0013 Search in Google Scholar

34. Singh V., Pandita S. K., Tewari R., Van Hengstum P. J., Pillai S. S. K., Agnihotri D., Kumar K. and Bha, G. D., 2015 – Thecamoebians (Testate Amoebae) straddling the permian-triassic boundary in the Guryul Ravine Section, India: Evolutionary and palaeoecological implications, PLoS One, 10, 8, e0135593, https://doi.org/10.1371/journal.pone.0135593.10.1371/journal.pone.0135593454605726288245 Search in Google Scholar

35. Treut L., Somerville R., Cubasch U., Ding Y., Mauritzen C., Mokssit A., Peterson T., Prather M., Qin D., Manning M., Chen Z., Marquis M., Averyt K. B. and Tignor M., 2007 – Historical overview of climate change science, Earth, 43, 93-127, https://doi.org/10.1016/j.soilbio.2010.04.001.10.1016/j.soilbio.2010.04.001 Search in Google Scholar

36. Tyson R. V., 1995 – Sedimentary organic matter; organic facies and palynofacies, Chapman and Hall, London, 633.10.1007/978-94-011-0739-6 Search in Google Scholar

37. Vishnivetskaya Т., Erokhina L., Spirina Е., Shatilovich A., Vorobyova Е. А. and Gilichinsky D., 2001 – Ancient viable green algae and cyanobacteria from permafrost, in Algae and extreme environments, (eds Elster J., Seckbach J., Vincent W. and Lhotsky O.), Nova Hedwigia Beiheft, 123, 427-441. Search in Google Scholar

38. Vorobyova E. A., Gilichinsky D. A., Soina V. S., Gorlenko M. A., Minkovskaya N. E., Rivkina E. M. and Vishnivetskaya T. A., 1997 – Deep cold biosphere: facts and hypothesis, FEMS Microbiological Reviews, 20, 3-4, 277-290.10.1111/j.1574-6976.1997.tb00314.x Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo