1. bookVolumen 32 (2022): Edición 2 (June 2022)
    Towards Self-Healing Systems through Diagnostics, Fault-Tolerance and Design (Special section, pp. 171-269), Marcin Witczak and Ralf Stetter (Eds.)
Detalles de la revista
License
Formato
Revista
eISSN
2083-8492
Primera edición
05 Apr 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

Fault–Tolerant Tracking Control for a Non–Linear Twin–Rotor System Under Ellipsoidal Bounding

Publicado en línea: 04 Jul 2022
Volumen & Edición: Volumen 32 (2022) - Edición 2 (June 2022)<br/>Towards Self-Healing Systems through Diagnostics, Fault-Tolerance and Design (Special section, pp. 171-269), Marcin Witczak and Ralf Stetter (Eds.)
Páginas: 171 - 183
Recibido: 28 Dec 2021
Aceptado: 09 May 2022
Detalles de la revista
License
Formato
Revista
eISSN
2083-8492
Primera edición
05 Apr 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

A novel fault-tolerant tracking control scheme based on an adaptive robust observer for non-linear systems is proposed. Additionally, it is presumed that the non-linear system may be faulty, i.e., affected by actuator and sensor faults along with the disturbances, simultaneously. Accordingly, the stability of the robust observer as well as the fault-tolerant tracking controller is achieved by using the ℋ approach. Furthermore, unknown actuator and sensor faults and states are bounded by the uncertainty intervals for estimation quality assessment as well as reliable fault diagnosis. This means that narrow intervals accompany better estimation quality. Thus, to cope with the above difficulty, it is assumed that the disturbances are over-bounded by an ellipsoid. Consequently, the performance and correctness of the proposed fault-tolerant tracking control scheme are verified by using a non-linear twin-rotor aerodynamical laboratory system.

Keywords

Abbaspour, A., Yen, K.K., Forouzannezhad, P. and Sargolzaei, A. (2018). A neural adaptive approach for active fault-tolerant control design in UAV, IEEE Transactions on Systems, Man, and Cybernetics: Systems 50(9): 3401–3411.10.1109/TSMC.2018.2850701 Search in Google Scholar

Altan, A. and Hacıoğlu, R. (2020). Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances, Mechanical Systems and Signal Processing 138(2020): 106548.10.1016/j.ymssp.2019.106548 Search in Google Scholar

Azzoug, Y., Sahraoui, M., Pusca, R., Ameid, T., Romary, R. and Cardoso, A.J.M. (2021). Current sensors fault detection and tolerant control strategy for three-phase induction motor drives, Electrical Engineering 103(2): 881–898.10.1007/s00202-020-01120-5 Search in Google Scholar

Camci, F., Medjaher, K., Atamuradov, V. and Berdinyazov, A. (2019). Integrated maintenance and mission planning using remaining useful life information, Engineering Optimization 51(10): 1794–1809.10.1080/0305215X.2018.1552951 Search in Google Scholar

Chen, F., Gong, J. and Li, Y. (2019). Adaptive diagnosis and compensation for hypersonic flight vehicle with multisensor faults, International Journal of Robust and Nonlinear Control 29(17): 6145–6163.10.1002/rnc.4711 Search in Google Scholar

Chung, W. and Son, H. (2020). Fault-tolerant control of multirotor UAVs by control variable elimination, IEEE/ASME Transactions on Mechatronics 25(5): 2513–2522.10.1109/TMECH.2020.2982436 Search in Google Scholar

Habibi, H., Howard, I. and Simani, S. (2019). Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review, Renewable Energy 135(2019): 877–896.10.1016/j.renene.2018.12.066 Search in Google Scholar

Hamadi, H., Lussier, B., Fantoni, I., Francis, C. and Shraim, H. (2020). Comparative study of self tuning, adaptive and multiplexing FTC strategies for successive failures in an octorotor UAV, Robotics and Autonomous Systems 133(2020): 103602.10.1016/j.robot.2020.103602 Search in Google Scholar

Hamdi, H., Rodrigues, M., Rabaoui, B. and Benhadj Braiek, N. (2021). A fault estimation and fault-tolerant control based sliding mode observer for LPV descriptor systems with time delay, International Journal of Applied Mathematics and Computer Science 31(2): 247–258, DOI: 10.34768/amcs-2021-0017. Abierto DOISearch in Google Scholar

Hu, K., Li, W. and Cheng, Z. (2021). Fuzzy adaptive fault diagnosis and compensation for variable structure hypersonic vehicle with multiple faults, PLOS ONE 16(8): e0256200.10.1371/journal.pone.0256200836302534388226 Search in Google Scholar

INTECO (2007). Two Rotor Aerodynamical System: User’s Manual, INTECO, Kraków. Search in Google Scholar

Kukurowski, N., Pazera, M. and Witczak, M. (2021). Fault-tolerant tracking control and remaining useful life estimation for Takagi–Sugeno fuzzy system, 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Luxembourg, pp. 687–693. Search in Google Scholar

Li, L., Luo, H., Ding, S.X., Yang, Y. and Peng, K. (2019). Performance-based fault detection and fault-tolerant control for automatic control systems, Auto-matica 99(2019): 308–316.10.1016/j.automatica.2018.10.047 Search in Google Scholar

Liu, F., Tang, H., Luo, J., Bai, L. and Pu, H. (2021). Fault-tolerant control of active compensation toward actuator faults: An autonomous underwater vehicle example, Applied Ocean Research 110(2021): 102597.10.1016/j.apor.2021.102597 Search in Google Scholar

Manohar, M. and Das, S. (2020). Notice of removal: Current sensor fault-tolerant control of induction motor driven electric vehicle using flux-linkage observer, 2020 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, USA, pp. 884–889. Search in Google Scholar

Mrugalski, M. (2014). Advanced Neural Network-based Computational Schemes for Robust Fault Diagnosis, Springer, Berlin.10.1007/978-3-319-01547-7 Search in Google Scholar

Nguyen, D.-T., Saussié, D. and Saydy, L. (2017). Robust self-scheduled fault-tolerant control of a quadrotor UAV, IFAC-PapersOnLine 50(1): 5761–5767.10.1016/j.ifacol.2017.08.1141 Search in Google Scholar

Patel, H.R. and Shah, V.A. (2019). A passive fault-tolerant control strategy for a non-linear system: An application to the two tank conical non-interacting level control system, Maskay 9(1): 1–8.10.24133/maskay.v9i1.1094 Search in Google Scholar

Pazera, M. and Witczak, M. (2019). Towards robust simultaneous actuator and sensor fault estimation for a class of nonlinear systems: Design and comparison, IEEE Access 7: 97143–97158.10.1109/ACCESS.2019.2929764 Search in Google Scholar

Petritoli, E., Leccese, F. and Ciani, L. (2018). Reliability and maintenance analysis of unmanned aerial vehicles, Sensors 18(9): 3171.10.3390/s18093171616507330235897 Search in Google Scholar

Prochazka, K.F. and Stomberg, G. (2020). Integral sliding mode based model reference FTC of an over-actuated hybrid UAV using online control allocation, 2020 American Control Conference (ACC), Denver, USA, pp. 3858–3864. Search in Google Scholar

Rodrigues, L.R., Gomes, J.P. and Alcântara, J.F. (2018). Embedding remaining useful life predictions into a modified receding horizon task assignment algorithm to solve task allocation problems, Journal of Intelligent & Robotic Systems 90(1): 133–145.10.1007/s10846-017-0649-8 Search in Google Scholar

Sadhu, V., Zonouz, S. and Pompili, D. (2020). On-board deep-learning-based unmanned aerial vehicle fault cause detection and identification, 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, pp. 5255–5261. Search in Google Scholar

Saied, M., Lussier, B., Fantoni, I., Shraim, H. and Francis, C. (2020). Active versus passive fault-tolerant control of a redundant multirotor UAV, Aeronautical Journal 124(1273): 385–408.10.1017/aer.2019.149 Search in Google Scholar

Sun, K. and Liu, X. (2021). Path planning for an autonomous underwater vehicle in a cluttered underwater environment based on the heat method, International Journal of Applied Mathematics and Computer Science 31(2): 289–301, DOI: 10.34768/amcs-2021-0020. Abierto DOISearch in Google Scholar

Taimoor, M., Lu, X., Maqsood, H. and Sheng, C. (2021). Adaptive rapid neural observer-based sensors fault diagnosis and reconstruction of quadrotor unmanned aerial vehicle, Aircraft Engineering and Aerospace Technology 93(5): 847–861.10.1108/AEAT-01-2021-0005 Search in Google Scholar

Tang, H., Chen, Y. and Zhou, A. (2021). Actuator fault-tolerant control for four-wheel-drive-by-wire electric vehicle, IEEE Transactions on Transportation Electrification 8(2): 2361–2373.10.1109/TTE.2021.3136893 Search in Google Scholar

Veremey, E.I. (2021). An approximate solution of the affine-quadratic control problem based on the concept of optimal damping, International Journal of Applied Mathematics and Computer Science 31(1): 5–15, DOI: 10.34768/amcs-2021-0001. Abierto DOISearch in Google Scholar

Vural, S.Y., Dasdemir, J. and Hajiyev, C. (2018). Passive fault tolerant lateral controller design for an UAV, IFACPapersOnLine 51(30): 446–451.10.1016/j.ifacol.2018.11.320 Search in Google Scholar

Wang, X. (2020). Active fault tolerant control for unmanned underwater vehicle with sensor faults, IEEE Transactions on Instrumentation and Measurement 69(12): 9485–9495.10.1109/TIM.2020.3003108 Search in Google Scholar

Witczak, M. (2014). Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems, Springer, Heidelberg.10.1007/978-3-319-03014-2 Search in Google Scholar

Witczak, M., Buciakowski, M. and Aubrun, C. (2016a). Predictive actuator fault-tolerant control under ellipsoidal bounding, International Journal of Adaptive Control and Signal Processing 30(2): 375–392.10.1002/acs.2567 Search in Google Scholar

Witczak, M., Buciakowski, M. and Mrugalski, M. (2014). An H_infinity approach to fault estimation of non-linear systems: application to one-link manipulator, Methods and Models in Automation and Robotics, MMAR, Międzyzdroje, Poland, pp. 456–461. Search in Google Scholar

Witczak, M., Buciakowski, M., Puig, V., Rotondo, D. and Nejjari, F. (2016b). An LMI approach to robust fault estimation for a class of nonlinear systems, International Journal of Robust and Nonlinear Control 26(7): 1530–1548.10.1002/rnc.3365 Search in Google Scholar

Witczak, M., Mrugalski, M., Pazera, M. and Kukurowski, N. (2020). Fault diagnosis of an automated guided vehicle with torque and motion forces estimation: A case study, ISA Transactions 104(2020): 370–381.10.1016/j.isatra.2020.05.01232439131 Search in Google Scholar

Yu, Z., Zhang, Y., Jiang, B., Su, C.-Y., Fu, J., Jin, Y. and Chai, T. (2021). Nussbaum-based finite-time fractional-order backstepping fault-tolerant flight control of fixed-wing UAV against input saturation with hardware-in-the-loop validation, Mechanical Systems and Signal Processing 153(2021): 107406.10.1016/j.ymssp.2020.107406 Search in Google Scholar

Zemouche, A. and Boutayeb, M. (2013). On LMI conditions to design observers for Lipschitz nonlinear systems, Auto-matica 49(2): 585–591.10.1016/j.automatica.2012.11.029 Search in Google Scholar

Zhang, X., Zhao, Z., Wang, Z. and Wang, X. (2021). Fault detection and identification method for quadcopter based on airframe vibration signals, Sensors 21(2): 581.10.3390/s21020581783065033467463 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo