1. bookVolumen 32 (2022): Edición 2 (June 2022)
    Towards Self-Healing Systems through Diagnostics, Fault-Tolerance and Design (Special section, pp. 171-269), Marcin Witczak and Ralf Stetter (Eds.)
Detalles de la revista
License
Formato
Revista
eISSN
2083-8492
Primera edición
05 Apr 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

A Graph Theory–Based Approach to the Description of the Process and the Diagnostic System

Publicado en línea: 04 Jul 2022
Volumen & Edición: Volumen 32 (2022) - Edición 2 (June 2022)<br/>Towards Self-Healing Systems through Diagnostics, Fault-Tolerance and Design (Special section, pp. 171-269), Marcin Witczak and Ralf Stetter (Eds.)
Páginas: 213 - 227
Recibido: 09 Jan 2022
Aceptado: 15 Apr 2022
Detalles de la revista
License
Formato
Revista
eISSN
2083-8492
Primera edición
05 Apr 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

The paper proposes an original, comprehensive, and methodically consistent graph theory-based approach to the description of the diagnosed process and the diagnosing system. The main baseline of the presented approach is in the dichotomous approach to diagnosing. It involves a separate description of both the process and the diagnostic system. This approach reflects the practice of designing implementable diagnostic systems. Thus, it can be seen as a proposal of a new, alternative, and, at the same time, flexible design procedure with great potential for applications. The primary motivation behind it was an attempt to circumvent the numerous limitations of well-known and well-established diagnosis approaches proposed by the communities working on fault detection and isolation (FDI) and artificial intelligence theories for diagnosis (DX). Accordingly, the paper identifies and provides an extensive discussion and a critical analysis of the existing limitations. Numerous examples and references to practical applications of the approach are indicated.

Keywords

Bartyś, M. (2014). Chosen Issues of Fault Isolation, Polish Scientific Publishers PWN, Warsaw. Search in Google Scholar

Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2015). Diagnosis and Fault-Tolerant Control, Springer, New York.10.1007/978-3-662-47943-8 Search in Google Scholar

Bregón, A., Alonso-González, C.J. and Pulido, B. (2014). Integration of simulation and state observers for online fault detection of nonlinear continuous systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems 44(12): 1553–1568.10.1109/TSMC.2014.2322581 Search in Google Scholar

Bregón, A., Biswas, G., Pulido, B., Alonso-Gonzalez, C. and Khorasgani, H. (2013). A common framework for compilation techniques applied to diagnosis of linear dynamic systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems 44(7): 863–876.10.1109/TSMC.2013.2284577 Search in Google Scholar

Chanthery, E., Sztyber, A., Louise Travé-Massuyés, C. and Perez-Zuñiga, C.G. (2020). Process decomposition and test selection for distributed fault diagnosis, in H. Fujita et al. (Eds), Trends in Artificial Intelligence Theory and Applications: Artificial Intelligence Practices, Springer, Cham, pp. 914–925.10.1007/978-3-030-55789-8_78 Search in Google Scholar

Chen, J. and Patton, R. (2012). Robust Model-Based Fault Diagnosis for Dynamic Systems, Springer, New York. Search in Google Scholar

Cho, S. and Jiang, J. (2019). A fault detection and isolation technique using nonlinear support vectors dichotomizing multi-class parity space residuals, Journal of Process Control 82: 31–43.10.1016/j.jprocont.2019.07.006 Search in Google Scholar

Chow, E. and Willsky, A. (1984). Analytical redundancy and the design of robust failure detection systems, IEEE Transactions on Automatic Control 29(3): 603–614.10.1109/TAC.1984.1103593 Search in Google Scholar

Cordier, M.O., Dague, P., Lévy, F., Montmain, J., Staroswiecki, M. and Travé-Massuyés, L. (2004). Conflicts versus analytical redundancy relations: A comparative analysis of the model based diagnosis approach from the artificial intelligence and automatic control perspectives, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics 34(5): 2163–2177.10.1109/TSMCB.2004.83501015503514 Search in Google Scholar

Daigle, M., Koutsoukos, X. and Biswas, G. (2009). A qualitative event-based approach to continuous systems diagnosis, IEEE Transactions on Control Systems Technology 17(4): 780–793.10.1109/TCST.2008.2011648 Search in Google Scholar

Ding, S. (2008). Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools, Springer, London. Search in Google Scholar

Ding, S. (2014). Data-driven design of monitoring and diagnosis systems for dynamic processes: A review of subspace technique based schemes and some recent results, Journal of Process Control 24(2): 431–449.10.1016/j.jprocont.2013.08.011 Search in Google Scholar

Düstegör, D., Frisk, E., Cocquempot, V., Krysander, M. and Staroswiecki, M. (2006). Structural analysis of fault isolability in the Damadics benchmark, Control Engineering Practice 14(6): 597–608.10.1016/j.conengprac.2005.04.008 Search in Google Scholar

Frank, P. (1987). Fault diagnosis in dynamic systems via state estimations methods. A survey, in S. Tzafestas et al. (Eds), System Fault Diagnostics, Reliability and Related Knowledge-Based Approaches, Springer, Dordrecht, pp. 35–98. Search in Google Scholar

Frank, P.M. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy, Automatica 26(3): 459–474.10.1016/0005-1098(90)90018-D Search in Google Scholar

Frisk, E. and Krysander, M. (2007). Sensor placement for maximum fault isolability, 18th International Workshop on Principles of Diagnosis (DX-07), Nashville, USA, pp. 106–113. Search in Google Scholar

Gertler, J. (1998). Fault Detection and Diagnosis in Engineering Systems, Marcel Dekker, New York. Search in Google Scholar

Greiner, R., Smith, B. and Wilkerson, R. (1989). A correction to the algorithm in Reiter’s theory of diagnosis, Artificial Intelligence 41(1): 79–88.10.1016/0004-3702(89)90079-9 Search in Google Scholar

Hamdi, H., Rodrigues, M., Rabaoui, B. and Benhadj Braiek, N. (2021). A fault estimation and fault-tolerant control based sliding mode observer for LPV descriptor systems with time delay, International Journal of Applied Mathematics and Computer Science 31(2): 247–258, DOI: 10.34768/amcs-2021-0017. Abierto DOISearch in Google Scholar

Iri, M., Aoki, K., O’Shima, E. and Matsuyama, H. (1979). An algorithm for diagnosis of system failures in the chemical process, Computers & Chemical Engineering 3(1–4): 489–493.10.1016/0098-1354(79)80079-4 Search in Google Scholar

Isermann, R. (1984). Process fault detection based on modeling and estimation. methods: A survey, Automatica 20(4): 387–404. Search in Google Scholar

Isermann, R. (2006). Fault Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer, Heidelberg.10.1007/3-540-30368-5_1 Search in Google Scholar

Jakobsson, E., Petterson, R., Frisk, E. and Krysander, M. (2020). Fatigue damage monitoring for mining vehicles using data driven models, International Journal of Prognostics on and Health Management 11(1): 1–15. Search in Google Scholar

Jung, D. (2020). Data-driven open-set fault classification of residual data using Bayesian filtering, IEEE Transactions on Control Systems Technology 28(5): 2045–2052.10.1109/TCST.2020.2997648 Search in Google Scholar

Jung, D., Frisk, E. and Krysander, M. (2015). Quantitative isolability analysis of different fault modes, IFACPapersOnLine 48(21): 1275–1282.10.1016/j.ifacol.2015.09.701 Search in Google Scholar

Jung, D., Ng, K., Frisk, E. and Krysander, M. (2018). Combining model-based diagnosis and data-driven anomaly classifiers for fault isolation, Control Engineering Practice 80: 146–156.10.1016/j.conengprac.2018.08.013 Search in Google Scholar

de Kleer, J. (2011). Hitting set algorithms for model-based diagnosis, Proceedings of 22nd International Workshop on Principles of Diagnosis, Murnau, Germany, pp. 1–6. Search in Google Scholar

de Kleer, J. and Kurien, J. (2003). Fundamentals of model-based diagnosis, 5th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Washington DC, USA, pp. 25–36. Search in Google Scholar

de Kleer, J. and Williams, B. (1987). Diagnosing multiple faults, Artificial Intelligence 32(1): 97–130.10.1016/0004-3702(87)90063-4 Search in Google Scholar

Korbicz, J. and Kościelny, J.M. (Eds) (2010). Modeling, Diagnostics and Process Control. Implementation in the Di-aSter System, Springer, Berlin/Heidelberg. Search in Google Scholar

Kościelny, J.M. (1999). Application of fuzzy logic fault isolation in a three-tank system, 14th IFAC World Congress IFAC, Bejing, China, pp. 7754–7759. Search in Google Scholar

Kościelny, J.M. and Bartyś, M. (2021). Comparative study of fault distinguishability based on bi-and three-valued diagnostic signals, 32nd International Workshop on Principles of Diagnosis, DX-2021, Hamburg, Germany, pp. 1–6. Search in Google Scholar

Kościelny, J.M., Bartyś, M. and Grudziak, Z. (2021b). Tri-valued evaluation of residuals as a method of addressing the problem of fault compensation effect, in J. Korbicz and K. Patan (Eds), Advances in Diagnostics of Processes and Systems, Springer, Cham, pp. 31–44.10.1007/978-3-030-58964-6_3 Search in Google Scholar

Kościelny, J.M., Bartyś, M. and Rostek, K. (2019). The comparison of fault distinguishability approaches—Case study, Bulletin of the Polish Academy of Sciences: Technical Sciences 67(6): 1059–1068. Search in Google Scholar

Kościelny, J., Bartyś, M. and Sztyber, A. (2021a). Diagnosing with a hybrid fuzzy-Bayesian inference approach, Engineering Applications of Artificial Intelligence 104(104345): 1–11.10.1016/j.engappai.2021.104345 Search in Google Scholar

Kościelny, J.M., Rostek, K., Syfert, M. and Sztyber, A. (2016). Fault isolability with different forms of the faults–symptoms relation, International Journal of Applied Mathematics and Computer Science 26(4): 815–826, DOI: 10.1515/amcs-2016-0058. Abierto DOISearch in Google Scholar

Kościelny, J.M., Syfert, M., Fajdek, B. and Kozak, A. (2017). The application of a graph of a process in HAZOP analysis in accident prevention system, Journal of Loss Prevention in the Process Industries 50: 55–66.10.1016/j.jlp.2017.09.003 Search in Google Scholar

Kościelny, J.M., Syfert, M. and Wnuk, P. (2021c). Diagnostic row reasoning method based on multiple-valued evaluation of residuals and elementary symptoms sequence, Energies 14(9), Paper no. 2476.10.3390/en14092476 Search in Google Scholar

Kościelny, J.M. and Sztyber, A. (2018). Decomposition of complex diagnostic systems, IFAC-PapersOnLine 51(24): 755–762.10.1016/j.ifacol.2018.09.660 Search in Google Scholar

Krysander, M. (2006). Design and Analysis of Diagnosis Systems Using Structural Methods, PhD thesis, Linköping University, Linköping. Search in Google Scholar

Krysander, M., Aslund, J. and Nyberg, M. (2007). An efficient algorithm for finding minimal overconstrained subsystems for model-based diagnosis, IEEE Transactions on Systems, Man, and Cybernetics A: Systems and Humans 38(1): 197–206.10.1109/TSMCA.2007.909555 Search in Google Scholar

Łabęda-Grudziak, Z. and Lipiński, M. (2021). The identification method of the coal mill motor power model with the use of machine learning techniques, Bulletin of the Polish Academy of Sciences: Technical Sciences 69(1): e135842. Search in Google Scholar

Mejdi, S., Messaoud, A. and Ben Abdennour, R. (2020). Fault tolerant multicontrollers for nonlinear systems: A real validation on a chemical process, International Journal of Applied Mathematics and Computer Science 30(1): 61–74, DOI: 10.34768/amcs-2020-0005. Abierto DOISearch in Google Scholar

Mrugalski, M. (2014). Advanced Neural Network-Based Computational Schemes for Robust Fault Diagnosis, Springer, Berlin.10.1007/978-3-319-01547-7 Search in Google Scholar

Mur, A., Travé-Massuyés, L., Chanthery, E., Pons, R. and Ribot, P. (2022). A neural algorithm for the detection and correction of anomalies: Application to the landing of an airplane, Sensors 22(6): 2334.10.3390/s22062334895455535336505 Search in Google Scholar

Odendaal, H. and Jones, T. (2014). Actuator fault detection and isolation: An optimised parity space approach, Control Engineering Practice 26: 222–232.10.1016/j.conengprac.2014.01.013 Search in Google Scholar

Patan, K. (2008). Artificial Neural Networks for the Modelling and Fault Diagnosis of Technical Processes, Springer, Berlin. Search in Google Scholar

Patton, R. and Chen, J. (1991). A review of parity space approaches to fault diagnosis, IFAC Proceedings Volumes 24(6): 65–81.10.1016/S1474-6670(17)51124-6 Search in Google Scholar

Pazera, M., Buciakowski, M., Witczak, M. and Mrugalski, M. (2020). A quadratic boundedness approach to a neural network-based simultaneous estimation of actuator and sensor faults, Neural Computing and Applications 32(2): 379–389.10.1007/s00521-018-3706-8 Search in Google Scholar

Pulido, B., Zamarreo, J., Merino, A. and Bregon, A. (2019). State space neural networks and model-decomposition methods for fault diagnosis of complex industrial systems, Engineering Applications of Artificial Intelligence 79: 67–86.10.1016/j.engappai.2018.12.007 Search in Google Scholar

Qin, S. (2012). Survey on data-driven industrial process monitoring and diagnosis, Annual Reviews in Control 36(2): 220–234.10.1016/j.arcontrol.2012.09.004 Search in Google Scholar

Reiter, R.A. (1987). Theory of diagnosis from first principles, Artificial Intelligence 32(1): 57–95.10.1016/0004-3702(87)90062-2 Search in Google Scholar

Rodler, P. (2020). Reuse, reduce and recycle: Optimizing Reiter’s HS-tree for sequential diagnosis, 24th European Conference on Artificial Intelligence ECAI 2020, Santiago de Compostella, Spain, pp. 873–880. Search in Google Scholar

Romero, L., Blesa, J., Puig, V. and Cembrano, G. (2022). Clustering-learning approach to the localization of leaks in water distribution networks, Journal of Water Resources Planning and Management 148(4): 04022003.10.1061/(ASCE)WR.1943-5452.0001527 Search in Google Scholar

Rotondo, D., Buciakowski, M. and Witczak, M. (2021). Simultaneous state and process fault estimation in linear parameter varying systems using robust quadratic parameter varying observers, International Journal of Robust and Nonlinear Control 31(17): 8390–8407.10.1002/rnc.5395 Search in Google Scholar

Simani, S., Farsoni, S. and Castaldi, P. (2018). Data-driven techniques for the fault diagnosis of a wind turbine benchmark, International Journal of Applied Mathematics and Computer Science 28(2): 247–268, DOI: 10.2478/amcs-2018-0018. Abierto DOISearch in Google Scholar

Song, Y., Zhong, M., Xue, T., Ding, S. and Li, W. (2020). Parity space-based fault isolation using minimum error minimax probability machine, Control Engineering Practice 95, Paper no. 104242. Search in Google Scholar

Syfert, M., Bartyś, M. and Kościelny, J.M. (2018). Refinement of fuzzy diagnosis in decentralized two-level diagnostic structure, IFAC-PapersOnLine 51(24): 160–167.10.1016/j.ifacol.2018.09.550 Search in Google Scholar

Sztyber, A. (2017). Sensor placement for fault diagnosis using graph of a process, Journal of Physics—Conference Series 783(1), Paper no. 012007. Search in Google Scholar

Sztyber, A. and Kościelny, J. (2016). Diagnostic reasoning framework combining fuzzy logic and Dempster–Shafer theory, IEEE International Conference Prognostics and Health Management (ICPHM), Ottawa, Canada, pp. 1–6. Search in Google Scholar

Sztyber, A., Ostasz, A. and Kościelny, J. (2015). Graph of a process—A new tool for finding model’s structures in model based diagnosis, IEEE Transactions on Systems, Man, and Cybernetics: Systems 45(7): 1004–1017.10.1109/TSMC.2014.2384000 Search in Google Scholar

Taheri, M., Khorasani, K., Shames, I. and Meskin, N. (2020). Cyber attack and machine induced fault detection and isolation methodologies for cyber-physical systems, arXiv 2009.06196v1. Search in Google Scholar

Travé-Massuyés, L. (2014a). Bridges between diagnosis theories from control and AI perspectives, in J. Korbicz and M. Kowal (Eds), Intelligent Systems in Technical and Medical Diagnostics, Springer, Berlin/Heidelberg, pp. 3–28.10.1007/978-3-642-39881-0_1 Search in Google Scholar

Travé-Massuyés, L. (2014b). Bridging control and artificial intelligence theories for diagnosis: A survey, Engineering Applications of Artificial Intelligence 27: 1–16.10.1016/j.engappai.2013.09.018 Search in Google Scholar

Travé-Massuyés, L., Escobet, T. and Milne, R. (2006). Diagnosability analysis based on component-supported analytical redundancy relations, IEEE Transactions on Systems, Man and Cybernetics, A: Systems and Humans 36(6): 1146–1160.10.1109/TSMCA.2006.878984 Search in Google Scholar

Vanden-Daele, R., Peng, Y. and Kinnaert, M. (1997). Fault diagnosis using belief functions, 3rd IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes SAFEPROCESS’97, Hull, UK, pp. 546–551. Search in Google Scholar

Witczak, M. (2007). Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems: From Analytical to Soft Computing Approaches, Springer, Berlin. Search in Google Scholar

Witczak, M. (2014). Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems: Analytical and Soft Computing Approaches, Springer, Cham.10.1007/978-3-319-03014-2 Search in Google Scholar

Witczak, M., Mrugalski, M., Pazera, M. and Kukurowski, N. (2020). Fault diagnosis of an automated guided vehicle with torque and motion forces estimation: A case study, ISA Transactions 104: 370–381.10.1016/j.isatra.2020.05.01232439131 Search in Google Scholar

Xu, F., Puig, V., Ocampo-Martinez, C., Olaru, S. and Niculescu, S.-I. (2017). Robust MPC for actuator-fault tolerance using set-based passive fault detection and active fault isolation, International Journal of Applied Mathematics and Computer Science 27(1): 43–61, DOI: 10.1515/amcs-2017-0004. Abierto DOISearch in Google Scholar

Yang, F., Sirish, L. and Xiao, D. (2010). Signed directed graph modeling of industrial processes and their validation by data-based methods, Conference on Control and Fault-Tolerant Systems (SysTol), Nice, France, pp. 387–392. Search in Google Scholar

Zhai, S., Wang, W. and Ye, H. (2015). Fault diagnosis based on parameter estimation in closed-loop systems, IET Control Theory and Application 9(7): 1146–1153.10.1049/iet-cta.2014.0717 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo