1. bookVolume 67 (2016): Edition 4 (December 2016)
Détails du magazine
License
Format
Magazine
eISSN
1848-6312
Première parution
26 Mar 2007
Périodicité
4 fois par an
Langues
Anglais
access type Accès libre

Age and sex differences in genome damage between prepubertal and adult mice after exposure to ionising radiation

Publié en ligne: 22 Dec 2016
Volume & Edition: Volume 67 (2016) - Edition 4 (December 2016)
Pages: 297 - 303
Reçu: 01 Aug 2016
Accepté: 01 Dec 2016
Détails du magazine
License
Format
Magazine
eISSN
1848-6312
Première parution
26 Mar 2007
Périodicité
4 fois par an
Langues
Anglais

1. Singh VK, Romaine PL, Newman VL. Biologics as countermeasures for acute radiation syndrome: where are we now? Expert Opin Biol Ther 2015;15:465-71. doi: 10.1517/14712598.2015.986453Search in Google Scholar

2. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly with Scientific Annexes. Vol. II Scientific Annex B New York: United Nations; 2013.Search in Google Scholar

3. Kovalchuk O, Ponton A, Filkowski J, Kovalchuk I. Dissimilar genome response to acute and chronic low-dose radiation in male and female mice. Mutat Res 2004;550:59-72. DOI: 10.1016/j.mrfmmm.2004.02.00710.1016/j.mrfmmm.2004.02.00715135641Search in Google Scholar

4. Fucic A, Gamulin M. Interaction between ionizing radiation and estrogen: what we are missing? Med Hypotheses 2011;77:966-9. doi: 10.1016/j.mehy.2011.08.021Search in Google Scholar

5. Suman S, Johnson MD, Fornace AJ Jr., Datta K. Exposure to ionizing radiation causes long-term increase in serum estradiol and activation of PI3K-Akt signaling pathway in mouse mammary gland. Int J Radiat Oncol Biol Phys 2012;84:500-7. doi: 10.1016/j.ijrobp.2011.12.033Search in Google Scholar

6. Hyodo H, Ishiguro H, Tomita Y, Takakura H, Koike T, Shimizu T, et al. Decreased serum testosterone levels in long-term adult survivors with fatty liver after childhood stem cell transplantation. Biol Blood Marrow Transplant 2012;18:1119-27. doi: 10.1016/j.bbmt.2012.01.004Search in Google Scholar

7. Fucic A, Gamulin M, Ferencic Z, Rokotov DS, Katic J, Bartonova A, Lovasic IB, Merlo DF. Lung cancer and environmental chemical exposure: a review of our current state of knowledge with reference to the role of hormones and hormone receptors as an increased risk factor for developing lung cancer in man. Toxicol Pathol 2010;38:849-55. doi: 10.1177/0192623310378136Search in Google Scholar

8. Okoh V, Deoraj A, Roy D. Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophys Acta 2011;1815:115-33. PubMed doi: 10.1016/j.bbcan.2010.10.005Search in Google Scholar

9. Tanaka Y, Sasaki M, Kaneuchi M, Fujimoto S, Dahiya R. Estrogen receptor alpha polymorphisms and renal cell carcinoma: a possible risk. Mol Cell Endocrinol 2003;202:109-16. doi: 10.1016/S0303-7207(03)00071-6Search in Google Scholar

10. Lowenfels AB, Maisonneuve P. Epidemiology and risk factors for pancreatic cancer. Best Pract Res Clin Gastroenterol 2006;20:197-209. doi: 10.1016/j.bpg.2005.10.001Search in Google Scholar

11. Newman MR, Sykes PJ, Blyth BJ, Bezak E, Lawrence MD, Morel KL, Ormsby RJ. The methylation of DNA repeat elements is sex-dependent and temporally different in response to X radiation in radiosensitive and radioresistant mouse strains. Radiat Res 2014;181:65-75. doi: 10.1667/ RR13460.1Search in Google Scholar

12. Antwih DA, Gabbara KM, Lancaster WD, Ruden DM, Zielske SP. Radiation-induced epigenetic DNA methylation modification of radiation-response pathways. Epigenetics 2013;8:839-48. doi: 10.4161/epi.25498Search in Google Scholar

13. Imaoka T, Nishimura M, Iizuka D, Nishimura Y, Ohmachi Y, Shimada Y. Pre- and postpubertal irradiation induces mammary cancers with distinct expression of hormone receptors, ErbB ligands, and developmental genes in rats. Mol Carcinog 2011;50:539-52. doi: 10.1002/mc.20746Search in Google Scholar

14. Davis TA, Clarke TK, Mog SR, Landauer MR. Subcutaneous administration of genistein prior to lethal irradiation supports multilineage, hematopoietic progenitor cell recovery and survival. International journal of radiation biology. 2007;83:141-51. doi: 10.1080/09553000601132642Search in Google Scholar

15. Grebeniuk AN, Bykov VN, Miasnikov VA, Zatsepin VV, Aksenova NV. [The experimental evaluation of antiradiation effectiveness of beta-estradiol on survival rates and bone marrow hemopoiesis of X-ray irradiated mice, in Russian]. Radiats Biol Radioecol 2012;52:175-80. PMID: 22690580.Search in Google Scholar

16. Salama S, Diaz-Arrastia C, Patel D, Botting S, Hatch S. 2-Methoxyestradiol, an endogenous estrogen metabolite, sensitizes radioresistant MCF-7/FIR breast cancer cells through multiple mechanisms. Int J Radiat Oncol Biol Phys 2011;80:231-9. doi: 10.1016/j.ijrobp.2010.10.080Search in Google Scholar

17. Shao C, Folkard M, Held KD, Prise KM. Estrogen enhanced cell-cell signalling in breast cancer cells exposed to targeted irradiation. BMC Cancer 2008;8:184. doi: 10.1186/1471-2407-8-184Search in Google Scholar

18. Polkinghorn WR, Parker JS, Lee MX, Kass EM, Spratt DE, Iaquinta PJ, Arora VK, Yen WF, Cai L, Zheng D, Carver BS, Chen Y, Watson PA, Shah NP, Fujisawa S, Goglia AG, Gopalan A, Hieronymus H, Wongvipat J, Scardino PT, Zelefsky MJ, Jasin M, Chaudhuri J, Powell SN, Sawyers CL. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov 2013;3:1245-53. doi: 10.1158/2159-8290.CD-13-0172.Search in Google Scholar

19. Filchenkov GN, Popoff EH, Naumov AD. The low dose gamma ionising radiation impact upon cooperativity of androgen-specific proteins. J Environ Radioact 2014;127:182-90. doi: 10.1016/j.jenvrad.2013.02.002Search in Google Scholar

20. Bruheim K, Svartberg J, Carlsen E, Dueland S, Haug E, Skovlund E, Tveit KM, Guren MG. Radiotherapy for rectal cancer is associated with reduced serum testosterone and increased FSH and LH. Int J Radiat Oncol Biol Phys 2008;70:722-7. doi: 10.1016/j.ijrobp.2007.10.043Search in Google Scholar

21. Mantovani A, Fucic A. Puberty dysregulation and increased risk of disease in adult life: possible modes of action. Reprod Toxicol 2014;44:15-22. doi: 10.1016/j.reprotox.2013.06.002Search in Google Scholar

22. Fucic A, Brunborg G, Lasan R, Jezek D, Knudsen LE, Merlo DF. Genomic damage in children accidentally exposed to ionizing radiation: a review of the literature. Mutat Res 2008;658:111-23. doi: 10.1016/j.mrrev.2007.11.003Search in Google Scholar

23. Tang J, Fernandez-Garcia I, Vijayakumar S, Martinez-Ruis H, Illa-Bochaca I, Nguyen DH, Mao JH, Costes SV, Barcellos-Hoff MH. Irradiation of juvenile, but not adult, mammary gland increases stem cell self-renewal and estrogen receptor negative tumors. Stem Cells 2014;32:649-61. doi: 10.1002/stem.1533Search in Google Scholar

24. Dygalo NN, Sakharov DG, Shishkina GT. Kortikosteron i testosteron v krovi vzroslykh krys: effekty nizkikh doz i sroka deistviia ioniziruiushchei radiatsii v period vnutriutrobnogo razvitiia [Corticosterone and testosterone in the blood of adult rats: the effects of low doses and the times of the action of ionizing radiation during intrauterine development, in Russian]. Radiats Biol Radioecol 1997;37:377-81. PMID: 9244526.Search in Google Scholar

25. Baquedano MS, Saraco N, Berensztein E, Pepe C, Bianchini M, Levy E, Goñi J, Rivarola MA, Belgorosky A. Identification and developmental changes of aromatase and estrogen receptor expression in prepubertal and pubertal human adrenal tissues. J Clin Endocrinol Metab 2007;92:2215-22. doi: 10.1210/jc.2006-2329Search in Google Scholar

26. U.S. Environmental Protection Agency (US EPA). Radiogenic Cancer Risk Models and Projections for the U.S. Population. Washington: U.S. Environmental Protection Agency Office of Radiation and Indoor Air; 2011.Search in Google Scholar

27. Hayashi M, Tice RR, MacGregor JT, Anderson D, Blakey DH, Kirsh-Volders M, Oleson FB Jr, Pacchierotti F, Romagna F, Shimada H, Sutou S, Vannier B. In vivo rodent erythrocyte micronucleus assay. Mutat Res 1994;312:293-304. doi: 10.1016/0165-1161(94)90039-6Search in Google Scholar

28. Liu L, Liu Y, Ni G, Liu S. Flow cytometric scoring of micronucleated reticulocytes as a possible high-throughput radiation biodosimeter. Environ Mol Mutagen 2010;51:215-21. doi: 10.1002/em.20523Search in Google Scholar

29. Li MJ, Wang WW, Chen SW, Shen Q, Min R. Radiation dose effect of DNA repair-related gene expression in mouse white blood cells. Med Sci Monit 2011;17:BR290-7. doi: 10.12659/ MSM.881976Search in Google Scholar

30. Maurya DK, Devasagayam TP. Ferulic acid inhibits gamma radiation-induced DNA strand breaks and enhances the survival of mice. Cancer Biother Radiopharm 2013;28:51-7. doi: 10.1089/cbr.2012.1263Search in Google Scholar

31. Mackova NO, Fedorocko P. Recovery of peripheral blood cells in irradiated mice pretreated with bacterial extract IRS-19. Physiol Res 2000;49:703-10. PMID: 11252537Search in Google Scholar

32. Linden MW JM, Cherina S. Haematopoietic and lymphoid tissues, comparative anatomy and histology. In: Treuting PM, Dintzis SM, Liggitt D, Frevert CW, editor. Comparative Anatomy and Histology A Mouse and Human Atlas. Amsterdam: Elsevier; 2012.Search in Google Scholar

33. Dertinger SD, Tsai Y, Nowak I, Hyrien O, Sun H, Bemis JC, Torous DK, Keng P, Palis J, Chen Y. Reticulocyte and micronucleated reticulocyte responses to gamma irradiation: dose-response and time-course profiles measured by flow cytometry. Mutat Res 2007;634:119-25. doi: 10.1016/j. mrgentox.2007.06.010Search in Google Scholar

34. Nair GG, Nair CK. Radioprotective effects of gallic acid in mice. Biomed Res Int 2013;2013:953079. doi: 10.1155/2013/953079Search in Google Scholar

35. Hudson D, Kovalchuk I, Koturbash I, Kolb B, Martin OA, Kovalchuk O. Induction and persistence of radiation-induced DNA damage is more pronounced in young animals than in old animals. Aging (Albany NY) 2011;3:609-20. doi: 10.18632/aging.100340Search in Google Scholar

36. Utsuyama M, Hirokawa K. Radiation-induced-thymic lymphoma occurs in young, but not in old mice. Exp Mol Pathol 2003;74:319-25. doi: 10.1016/S0014-4800(03)00026-1Search in Google Scholar

37. Grande T, Bueren JA. Involvement of the bone marrow stroma in the residual hematopoietic damage induced by irradiation of adult and young mice. Exp Hematol 1994;22:1283-7. PMID: 7957714Search in Google Scholar

38. Nikkels PG, de Jong JP, Ploemacher RE. Radiation sensitivity of hemopoietic stroma: long-term partial recovery of hemopoietic stromal damage in mice treated during growth. Radiat Res 1987;109:330-41. PMID: 380940210.2307/3576958Search in Google Scholar

39. Brenner DJ, Hall EJ. Computed tomography - an increasing source of radiation exposure. New Engl J Med 2007;357:2277-84. doi: 10.1056/NEJMra072149Search in Google Scholar

40. Sorensen KJ, Zetterberg LA, Nelson DO, Grawe J, Tucker JD. The in vivo dose rate effect of chronic gamma radiation in mice: translocation and micronucleus analyses. Mutat Res 2000;457:125-36. doi: 10.1016/S0027-5107(00)00136-6Search in Google Scholar

41. Pogribny I, Raiche J, Slovack M, Kovalchuk O. Dosedependence, sex- and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes. Biochem Biophys Res Commun 2004;320:1253-61. doi: 10.1016/j.bbrc.2004.06.081Search in Google Scholar

42. Ilnytskyy Y, Zemp FJ, Koturbash I, Kovalchuk O. Altered microRNA expression patterns in irradiated hematopoietic tissues suggest a sex-specific protective mechanism. Biochem Biophys Res Commun 2008;377:41-5. doi: 10.1016/j. bbrc.2008.09.080Search in Google Scholar

43. Dobrzynska MM. DNA damage in organs of female and male mice exposed to nonylphenol, as a single agent or in combination with ionizing irradiation: a comet assay study. Mutat Res Genet Toxicol Environ Mutagen 2014;772:14-9. doi: 10.1016/j.mrgentox.2014.07.003Search in Google Scholar

44. Davis TA, Mungunsukh O, Zins S, Day RM, Landauer MR. Genistein induces radioprotection by hematopoietic stem cell quiescence. Int J Radiat Biol 2008;84:713-26. doi: 10.1080/09553000802317778Search in Google Scholar

45. Zhou Y, Mi MT. Genistein stimulates hematopoiesis and increases survival in irradiated mice. J Radiat Res 2005;46:425-33. PMID: 1639463310.1269/jrr.46.425Search in Google Scholar

46. Lebedev VG, Moroz BB, Vorotnikova TV, Deshevoi Iu B. Issledovanie mekhanizma formirovaniia radiorezistentnogo sostoianiia sistemy krovetvoreniia pod deistviem dietilstill’bstrola [Mechanism of radioresistance of the hematopoietic system after treatment with diethylstilbestrol in Russian]. Radiats Biol Radioecol 1994;34:565-71. PMID: 7951885Search in Google Scholar

47. Ricoul M, Dutrillaux B. Hyper-radiosensibilite chromosomique des souris en fin de gestation [Chromosome hyper-radiosensitivity in mice at the end of pregnancy, in French]. C R Acad Sci III 1991;312:635-9. PMID: 1913237Search in Google Scholar

48. MacLusky NJ, Chaptal C, McEwen BS. The development of estrogen receptor systems in the rat brain and pituitary: postnatal development. Brain Res 1979;178:143-60. PMID: 49785710.1016/0006-8993(79)90094-5Search in Google Scholar

49. Azria D, Larbouret C, Cunat S, Ozsahin M, Gourgou S, Martineau P, Evans DB, Romieu G, Pujol P, Pèlegrin A. Letrozole sensitizes breast cancer cells to ionizing radiation. Breast Cancer Res 2005;7:R156-63. doi: 10.1186/bcr969Search in Google Scholar

50. Zhao X, Zhang Q. [Clinical efficacy of letrozole in boys with idiopathic central precocious puberty, in Chinese]. Zhongguo Dang Dai Er Ke Za Zhi 2014;16:397-400. doi: 10.7499/j. issn.1008-8830.2014.04.018Search in Google Scholar

51. Ankarberg C, Norjavaara E. Diurnal rhythm of testosterone secretion before and throughout puberty in healthy girls: correlation with 17beta-estradiol and dehydroepiandrosterone sulfate. J Clinl Endocrinol Metab 1999;84:975-84. doi: 10.1210/jcem.84.3.5524Search in Google Scholar

52. Khairullah A, Klein LC, Ingle SM, May MT, Whetzel CA, Susman EJ, Paus T. Testosterone trajectories and reference ranges in a large longitudinal sample of male adolescents. PLoS One 2014;9(9):e108838. doi: 10.1371/journal. pone.0108838Search in Google Scholar

53. Courant F, Aksglaede L, Antignac JP, Monteau F, Sorensen K, Andersson AM, Skakkebaek NE, Juul A, Bizec BL. Assessment of circulating sex steroid levels in prepubertal and pubertal boys and girls by a novel ultrasensitive gas chromatography-tandem mass spectrometry method. J Clin Endocrinol Metab 2010;95:82-92. doi: 10.1210/jc.2009-1140Search in Google Scholar

54. Belgorosky A, Rivarola MA. Progressive increase in nonsex hormone-binding globulin-bound testosterone and estradiol from infancy to late prepuberty in girls. J Clin Endocrinol Metab 1988;67:234-7. doi: 10.1210/jcem-67-2-234 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo