1. bookVolume 8 (2018): Edition 4 (October 2018)
Détails du magazine
License
Format
Magazine
eISSN
2449-6499
Première parution
30 Dec 2014
Périodicité
4 fois par an
Langues
Anglais
access type Accès libre

The Least Eigenvalue of the Graphs Whose Complements Are Connected and Have Pendent Paths

Publié en ligne: 17 May 2018
Volume & Edition: Volume 8 (2018) - Edition 4 (October 2018)
Pages: 303 - 308
Reçu: 27 Jan 2018
Accepté: 16 Mar 2018
Détails du magazine
License
Format
Magazine
eISSN
2449-6499
Première parution
30 Dec 2014
Périodicité
4 fois par an
Langues
Anglais
Abstract

The adjacency matrix of a graph is a matrix which represents adjacent relation between the vertices of the graph. Its minimum eigenvalue is defined as the least eigenvalue of the graph. Let Gn be the set of the graphs of order n, whose complements are connected and have pendent paths. This paper investigates the least eigenvalue of the graphs and characterizes the unique graph which has the minimum least eigenvalue in Gn.

Keywords

[1] F. Bell, D. Cvetković, P. Rowlinson, S. Simić, Graph for which the least eigenvalues is minimal, I. Linear Algebra Appl., 429, 2008, 234-241.10.1016/j.laa.2008.02.032Search in Google Scholar

[2] F. Bell, D. Cvetković, P. Rowlinson, S. Simić, Graph for which the least eigenvalues is minimal, II. Linear Algebra Appl., 429, 2008, 2168-2176.10.1016/j.laa.2008.06.018Search in Google Scholar

[3] D. Cardoso, D. Cvetković, P. Rowlinson, S. Simić. A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph, Linear Algebra Appl., 429, 2008, 2770-2780.10.1016/j.laa.2008.05.017Search in Google Scholar

[4] Y. Fan, Y. Wang, Y. Gao, Minimizing the least eigenvalues of unicyclic graphs with application to spectralspread, Linear Algebra Appl., 429, 2008, 577-588.10.1016/j.laa.2008.03.012Search in Google Scholar

[5] Y. Fan, F. Zhang, Y. Wang, The least eigenvalue of the complements of tree, Linear Algebra Appl., 435, 2011, 2150-2155.10.1016/j.laa.2011.04.011Search in Google Scholar

[6] W. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl., 227-228, 1995, 593-616.10.1016/0024-3795(95)00199-2Search in Google Scholar

[7] S. Li, S. Wang, The least eigenvalue of the signless Laplacian of the complements of trees, Linear Algebra Appl., 436, 2012, 2398-2405.10.1016/j.laa.2011.09.032Search in Google Scholar

[8] R. Liu, M. Zhai, J. Shu Th,e least eigenvalues of unicyclic graph with n vertices and k pendant vertices. Linear Algebra Appl., 431, 2009, 657-665.Search in Google Scholar

[9] M. Petrović, B. Borovićanin, T. Aleksić, Bicyclic graphs for which the least eigenvalue is minimum. Linear Algebra Appl., 430, 2009, 1328-1335.10.1016/j.laa.2008.10.026Search in Google Scholar

[10] Y. Tan, Y. Fan, The vertex(edge) independence number, vertex(edge) cover number and the least eigenvalue of a graph, Linear Algebra Appl., 433, 2010, 790-795.10.1016/j.laa.2010.04.009Search in Google Scholar

[11] Y. Wang, Y. Fan, The least eigenvalue of a graph with cut vertices. Linear Algebra Appl., 433, 2010, 19-27.10.1016/j.laa.2010.01.030Search in Google Scholar

[12] Y. Wang, Y. Fan, X. Li, et al. The least eigenvalue of graphs whose complements are unicyclic, Discussiones Mathematicae Graph Theory, 35(2), 2013, 1375-1379.Search in Google Scholar

[13] M. Ye, Y. Fan, D. Liang. The least eigenvalue of graphs with given connectivity. Linear Algebra Appl., 430, 2009, 1375-1379.10.1016/j.laa.2008.10.031Search in Google Scholar

[14] G. Yu, Y. Fan, Y.Wang, Quadratic forms on graphs with application to minimizing the least eigenvalue of signless Laplacian over bicyclic graphs, Electronic J. Linear Algebra, 27, 2014, 213-236.10.13001/1081-3810.1614Search in Google Scholar

[15] G. Yu, Y. Fan. The least eigenvalue of graphs. Math. Res. Expo., 32(6), 2012, 659-665. Search in Google Scholar

[16] G.Yu, Y.Fan, The least eigenvalue of graphs whose complements are 2-vertex or 2-edge connected, Operations Research Transactions, 17(2), 2013, 81-88.Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo