1. bookVolume 22 (2022): Edition 1 (January 2022)
Détails du magazine
License
Format
Magazine
eISSN
2300-8733
Première parution
25 Nov 2011
Périodicité
4 fois par an
Langues
Anglais
access type Accès libre

Protective Effects of Non-Encapsulated and Microencapsulated Lactobacillus Delbrueckii Subsp. Bulgaricus in Rainbow Trout (Oncorhynchus Mykiss) Exposed to Lead (Pb) Via Diet

Publié en ligne: 04 Feb 2022
Volume & Edition: Volume 22 (2022) - Edition 1 (January 2022)
Pages: 325 - 348
Reçu: 15 Jan 2021
Accepté: 15 Apr 2021
Détails du magazine
License
Format
Magazine
eISSN
2300-8733
Première parution
25 Nov 2011
Périodicité
4 fois par an
Langues
Anglais
Abstract

The present study was designed to investigate the effects of dietary non-encapsulated and microencapsulated Lactobacillus delbrueckii subsp. bulgaricus on growth performance, intestinal enzymatic activities, antioxidant capacity and hepato-biochemical parameters of rainbow trout before or after exposure to lead via diet. Fingerling fish (16 ± 4 g) were divided into four groups: negative control (NC), positive control (PC), probiotic (PR) and encapsulated probiotic (EN-PR). During the pre-exposure period (days 0–45), fish in the NC and PC groups received the basal diet, whereas fish in the PR and EN-PR groups were fed with basal diet containing 108 CFU g−1 feed of non-encapsulated and microencapsulated probiotic, respectively. During the exposure period (days 46–66), the fish in the probiotic and PC groups were co-treated with 500 μg g−1 feed of lead nitrate. Blood, liver and gut samples were taken at days 0, 45, 52, 59 and 66. The results revealed that growth performance and intestinal enzymatic activities were significantly (P<0.05) improved in the probiotic groups compared to the NC group (day 45). Dietary exposure to lead resulted in the highest levels of liver aspartate aminotransferase (AST), liver alkaline phosphatase (ALP) and serum malondialdehyde (MDA), and the lowest activities of serum superoxide dismutase (SOD) and catalase (CAT) in the PC group (day 66). The levels of liver ALP were significantly (P<0.05) lower in the probiotic groups compared to the NC and PC groups prior to and after exposure to dietary lead. Serum levels of total protein, albumin, SOD, CAT and glutathione (GSH) were significantly increased in fish fed with both non-encapsulated and microencapsulated probiotics (P<0.05). However, microencapsulated probiotic showed the greatest potential for alleviation of the disturbed activities of intestinal and hepatic enzymes, and improvement of serum biochemical and antioxidant parameters. Our findings suggest that L. delbrueckii subsp. bulgaricus, particularly in the microencapsulated form, can be used as a potential probiotic to protect rainbow trout from dietborne lead toxicity.

Keywords

Abdel-Tawwab M., Mousa M.A., Mohammed M.A. (2010). Use of live baker’s yeast, Saccharomyces cerevisiae, in practical diet to enhance the growth performance of Galilee tilapia, Sarotherodon galilaeus (L.), and its resistance to environmental copper toxicity. J. World Aquacult. Soc., 41: 214–223.Search in Google Scholar

Adamse P., Vander Fels-Klerx H.J., de Jong J. (2017). Cadmium, lead, mercury and arsenic in animal feed and feed materials–trend analysis of monitoring results. Food Additives Contamin. Part A, 34: 1298–1311.Search in Google Scholar

Ahamed M., Siddiqui M.K.J. (2007). Environmental lead toxicity and nutritional factors. Clin. Nutr., 26: 400–408.Search in Google Scholar

Ahmed F., Soliman F.M., Adly M.A., Soliman H.A., El-Matbouli M., Saleh M. (2021). Dietary chitosan nanoparticles: potential role in modulation of rainbow trout (Oncorhynchus mykiss) antibacterial fefense and intestinal immunity against enteric redmouth disease. Marine Drugs, 19: 72.Search in Google Scholar

Ahmed M.K., Parvin E., Islam M.M., Akter M.S., Khan S., Al-Mamun M.H. (2014). Lead- and cadmium-induced histopathological changes in gill, kidney and liver tissue of freshwater climbing perch Anabas testudineus (Bloch, 1792). Chem. Ecol., 30: 532–540.Search in Google Scholar

Al-Dohail M.A., Hashim R., Aliyu-Paiko M. (2011). Evaluating the use of Lactobacillus acidophilus as a biocontrol agent against common pathogenic bacteria and the effects on the haematology parameters and histopathology in African catfish Clarias gariepinus juveniles. Aquacult. Res. 42: 196–209.Search in Google Scholar

Ali H., Khan E., Ilahi I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J. Chem., https://doi.org/10.1155/2019/673030510.1155/2019/6730305Search in Google Scholar

Álvarez-González C.A., Martínez-Sánchez L., Peña-Marín E.S., Guerrero-Zárate R., Jesús-Ramírez F., Morales-García V., Uribe-López M., Núñez-Nogueira G. (2020). Effects on the growth and digestive enzyme activity in Nile tilapia fry (Oreochromis niloticus) by lead exposure. Water Air Soil Pollut., 231: 1–15.Search in Google Scholar

Alves L.C., Glover C.N., Wood C.M. (2006). Dietary Pb accumulation in juvenile freshwater rainbow trout (Oncorhynchus mykiss). Archiv. Environ. Contamin. Toxicol., 51: 615.Search in Google Scholar

Anal A.K., Singh H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol., 18: 240–251.Search in Google Scholar

Awoyemi O.M., Bawa-Allah K.A., Otitoloju A.A. (2014). Accumulation and anti-oxidant enzymes as biomarkers of heavy metal exposure in Clarias gariepinus and Oreochromis niloticus. Appl. Ecol. Environ. Sci., 2: 114–122.Search in Google Scholar

Balakrishnan R., Kumar C.S., Reddy K.K., Rani M.U., Srikanth M.K., Kavitha K. (2014). Antioxidant activity of coated probiotic Lactobacillus casei on chromium (VI) induced oxidative stress in rats. Proc. National Academy of Sciences, India Section B: Biol. Sci., 84: 305–310.Search in Google Scholar

Banwo K., Alonge Z., Sanni A.I. (2021). Binding capacities and antioxidant activities of Lactobacillus plantarum and Pichia kudriavzevii against cadmium and lead toxicities. Biol. Trace Elem. Res., 199: 779–791.Search in Google Scholar

Belinskaia D.A., Voronina P.A., Shmurak V.I., Vovk M.A., Batalova A.A., Jenkins R.O., Goncharov N.V. (2020). The universal soldier: enzymatic and non-enzymatic antioxidant functions of serum albumin. Antioxidants, 9: 966.Search in Google Scholar

Berti G., Fossati P., Tarenghi G., Musitelli C, d’Eril G.V. (1988). Enzymatic colorimetric method for the determination of inorganic phosphorus in serum and urine. J. Clin. Chem. Clin. Biochem., 26: 399–404.Search in Google Scholar

Bhakta J.N., Ohnishi K., Munekage Y., Iwasaki K., Wei M.Q. (2012). Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. J. Appl. Microbiol., 112: 1193–1206.Search in Google Scholar

Bhattacharya S. (2019). Probiotics against alleviation of lead toxicity: recent advances. Interdisciplin. Toxicol., 12: 89–92.Search in Google Scholar

Bhattacharya S. (2020). The role of probiotics in the amelioration of cadmium toxicity. Biol. Trace Elem. Res., 197: 440–444.Search in Google Scholar

Bi B., Liu X., Guo X., Lu S. (2018). Occurrence and risk assessment of heavy metals in water, sediment, and fish from Dongting Lake, China. Environ. Sci. Pollut. Res., 25: 34076–34090.Search in Google Scholar

Chromý V., Svoboda V., Štěpánová I. (1973). Spectrophotometric determination of magnesium in biological fluids with xylidyl blue II. Biochem. Med., 7: 208–217.Search in Google Scholar

Dabrowska-Bouta B., Struzynska L., Rafalowska U. (1996). Effect of acute and chronic lead exposure on the level of sulfhydryl groups in rat brain. Acta Neurobiol. Experim., 56: 233–236.Search in Google Scholar

Dai B., Hou Y., Hou Y., Qian L. (2019). Effects of multienzyme complex and probiotic supplementation on the growth performance, digestive enzyme activity and gut microorganisms composition of snakehead (Channa argus). Aquacult. Nutr., 25: 15–25.Search in Google Scholar

Dai S.Y., Jones B., Lee K.M., Li W., Post L., Herrman T.J. (2016). Heavy metal contamination of animal feed in Texas. J. Reg. Sci., 4: 21–32.Search in Google Scholar

Dai W., Du H., Fu L., Jin C., Xu Z., Liu H. (2009). Effects of dietary Pb on accumulation, histopathology, and digestive enzyme activities in the digestive system of tilapia (Oreochromis niloticus). Biol. Trace Elem. Res., 127: 124–131.Search in Google Scholar

Dawood M.A., Koshio S., Ishikawa M., Yokoyama S., El Basuini M.F., Hossain M.S. (2016). Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish Shellfish Immunol., 49: 275–285.Search in Google Scholar

El-Haroun E.R., Goda A.S., Kabir Chowdhury M.A. (2006). Effect of dietary probiotic Biogen® supplementation as a growth promoter on growth performance and feed utilization of Nile tilapia Oreochromis niloticus (L.). Aquacult. Res., 37: 1473–1480.Search in Google Scholar

El-Shafei H.M. (2017). Alterations in the leucocytes and serum biochemistry in grey mullet (Mugil cephalus L.) fingerlings exposed to sub lethal doses of lead for different exposure periods. J. Aquacult. Res. Develop., 8: 1–5.Search in Google Scholar

Fantin A.M.B., Trevisan P., Pederzoli A., Bergomi M. (1988). Effects of acute experimental pollution by lead on some haematological parameters in Carassius carassius (L.) var. auratus. It. J. Zool., 55: 251–255.Search in Google Scholar

Fırat Ö., Kargın F. (2010). Individual and combined effects of heavy metals on serum biochemistry of Nile tilapia Oreochromis niloticus. Archiv. Environ. Contamin. Toxicol., 58: 151–157.Search in Google Scholar

Fırat Ö., Cogun H.Y., Yüzereroğlu T.A., Gök G., Fırat Ö., Kargin F., Kötemen Y. (2011). A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiol. Biochem., 37: 657–666.Search in Google Scholar

Ghanei-Motlagh R., Baghshani H., Shahsavani D., Ghodrati Azadi H. (2017). Effect of dietary supplementation of garlic and vitamin E on lipid and protein oxidation in common carp meat during different storage times. Iran. J. Vet. Sci. Technol., 8: 40–47.Search in Google Scholar

Ghanei-Motlagh R., Mohammadian T., Gharibi D., Khosravi M., Mahmoudi E., Zarea M. (2020). Quorum quenching probiotics modulated digestive enzymes activity, growth performance, gut microflora, haemato-biochemical parameters and resistance against Vibrio harveyi in Asian seabass (Lates calcarifer). Aquaculture, 531: 735874.Search in Google Scholar

Ghanei-Motlagh R., Gharibi D., Mohammadian T., Khosravi M., Mahmoudi E., Zarea M., Menanteau-Ledouble S., El-Matbouli M. (2021). Feed supplementation with quorum quenching probiotics with anti-virulence potential improved innate immune responses, antioxidant capacity and disease resistance in Asian seabass (Lates calcarifer). Aquaculture, 535: 736345.Search in Google Scholar

Giri S.S., Yun S., Jun J.W., Kim H.J., Kim S.G., Kang J.W. (2018). Therapeutic effect of intestinal autochthonous Lactobacillus reuteri P16 against waterborne lead toxicity in Cyprinus carpio. Front. Immunol., 9: 1824.Search in Google Scholar

Grotto D., Maria L.S., Valentini J., Paniz C., Schmitt G., Garcia S.C. (2009). Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quimica Nova, 32: 169–174.Search in Google Scholar

Haddad J.J., Harb H.L. (2005). l-γ-Glutamyl-l-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro-and anti-inflammatory cytokines: a signaling transcriptional scenario for redox (y) immunologic sensor (s)? Mol. Immunol., 42: 987–1014.Search in Google Scholar

Hahor W., Thongprajukaew K, Suanyuk N. (2019). Effects of dietary supplementation of oligosaccharides on growth performance, gut health and immune response of hybrid catfish (Pangasianodon gigas × Pangasianodon hypophthalmus). Aquaculture, 507: 97–107.Search in Google Scholar

Haux C., Larsson Å. (1982). Influence of inorganic lead on the biochemical blood composition in the rainbow trout, Salmo gairdneri. Ecotoxicol. Environ. Safety, 6: 28–34.Search in Google Scholar

Hong F.S. (2003). Study of the effect of Pb2+ on alpha-amylase activity by spectroscopy (in Chinese). Guang Pu Xue Yu Guang Pu Fen Xi, 23: 583.Search in Google Scholar

Hooshyar Y., Abedian Kenari A., Paknejad H., Gandomi H. (2020). Effects of Lactobacillus rhamnosus ATCC 7469 on different parameters related to health status of rainbow trout (Oncorhynchus mykiss) and the protection against Yersinia ruckeri. Prob. Antimicrob. Prot., 12: 1370–1384.Search in Google Scholar

Hoseini S.M., Yousefi M., Hoseinifar S.H., Van Doan H. (2019). Antioxidant, enzymatic and hematological responses of common carp (Cyprinus carpio) fed with myrcene- or mentholsupplemented diets and exposed to ambient ammonia. Aquaculture, 506: 246–255.Search in Google Scholar

Hoseinifar S.H., Yousefi S., Van Doan H., Ashouri G., Gioacchini G., Maradonna F., Carnevali O. (2020). Oxidative stress and antioxidant defense in fish: the implications of probiotic, prebiotic, and synbiotics. Rev. Fish. Sci. Aquacult., 1–20.Search in Google Scholar

Janbakhsh S., Hosseini Shekarabi S.P, Shamsaie Mergan M. (2018). Nutritional value and heavy metal content of fishmeal from the Southwest Caspian Sea. Caspian J. Environ. Sci., 16: 307–317.Search in Google Scholar

Jang W.J., Lee J.M., Hasan M.T., Lee B.J., Lim S.G., Kong I.S. (2019). Effects of probiotic supplementation of a plant-based protein diet on intestinal microbial diversity, digestive enzyme activity, intestinal structure, and immunity in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol., 92: 719–727.Search in Google Scholar

Javed M., Ahmad M.I., Usmani N., Ahmad M. (2017). Multiple biomarker responses (serum biochemistry, oxidative stress, genotoxicity and histopathology) in Channa punctatus exposed to heavy metal loaded waste water. Sci. Rep., 7: 1–11.Search in Google Scholar

Kailasapathy K. (2002). Microencapsulation of probiotic bacteria: technology and potential applications. Curr. Iss. Intest. Microbiol., 3: 39–48.Search in Google Scholar

Kaya H., Akbulut M., Yılmaz S. (2015). Influence of sublethal lead concentrations on glucose, serum enzymes and ion levels in tilapia (Oreochromis mossambicus). Proc. 7th International Conference on Information and Communication Technologies in Agriculture, Food and Environment (HAICTA, 2015), pp. 858–866.Search in Google Scholar

Khan M.S., Javed M., Rehman M.T., Urooj M., Ahmad M.I. (2020). Heavy metal pollution and risk assessment by the battery of toxicity tests. Sci. Rep., 10: 1–10.Search in Google Scholar

Kim J.H., Kang J.C. (2017). Toxic effects on bioaccumulation and hematological parameters of juvenile rockfish Sebastes schlegelii exposed to dietary lead (Pb) and ascorbic acid. Chemosphere, 176: 131–140.Search in Google Scholar

Kirillova A.V., Danilushkina A.A., Irisov D.S., Bruslik N.L., Fakhrullin R.F., Zakharov Y.A. (2017). Assessment of resistance and bioremediation ability of Lactobacillus strains to lead and cadmium. Int. J. Microbiol., 2017. https://doi.org/10.1155/2017/9869145.10.1155/2017/9869145524145328133483Search in Google Scholar

Kong Y., Olejar K.J., On S.L., Chelikani V. (2020). The potential of Lactobacillus spp. for modulating oxidative stress in the gastrointestinal tract. Antioxidants, 9: 610.Search in Google Scholar

Kurhaluk N., Sliuta A., Kyriienko S., Winklewski P.J. (2017). Melatonin restores white blood cell count, diminishes glycated haemoglobin level and prevents liver, kidney and muscle oxidative stress in mice exposed to acute ethanol intoxication. Alcohol Alcoholism, 52: 521–528.Search in Google Scholar

Lee J.W., Choi H., Hwang U.K., Kang J.C., Kang Y.J., Kim K.I., Kim J.H. (2019). Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: a review. Environ. Toxicol. Pharmacol., 68: 101–108.Search in Google Scholar

Li B., Jin D., Yu S., Etareri Evivie S., Muhammad Z., Huo G., Liu F. (2017). In vitro and in vivo evaluation of Lactobacillus delbrueckii subsp. bulgaricus KLDS1. 0207 for the alleviative effect on lead toxicity. Nutrients, 9: 845.Search in Google Scholar

Madreseh S., Ghaisari H.R., Hosseinzadeh S. (2019). Effect of lyophilized, encapsulated Lactobacillus fermentum and lactulose feeding on growth performance, heavy metals, and Trace element residues in rainbow trout (Oncorhynchus mykiss) tissues. Prob. Antimicrob. Prot., 11: 1257–1263.Search in Google Scholar

Mager E.M. (2012). Lead. In: Homeostasis and toxicology of non-essential metals, C.M. Wood, A.P. Farrell, C.J. Brauner (eds). Academic Press, US, pp. 185–236.Search in Google Scholar

Martinez C.B.R., Nagae M.Y., Zaia C.T.B.V., Zaia D.A.M. (2004). Acute morphological and physiological effects of lead in the neotropical fish Prochilodus lineatus. Braz. J. Biol., 64: 797–807.Search in Google Scholar

Masindi V., Muedi K.L. (2018). Environmental contamination by heavy metals. In: Heavy metals, H. Saleh (ed.), Intechopen, London, pp. 115–132.10.5772/intechopen.76082Search in Google Scholar

Mirmazloomi S., Shahsavani D., Baghshani H. (2015). Studies on the protective effects of ascorbic acid and thiamine on lead-induced lipid and protein oxidation as well as enzymatic alterations in some tissues of Cyprinus carpio. Compar. Clin. Pathol., 24: 1231–1236.Search in Google Scholar

Mittal N., Kanwar S.S., Sanyal S.N. (2008). Effect of nonsteroidal anti-inflammatory drugs and the procarcinogen 1, 2-dimethylhydrazine on the antioxidant defense system. Int. J. Toxicol., 27: 169–174.Search in Google Scholar

Mohammadian T., Alishahi M., Tabandeh M.R., Ghorbanpoor M., Gharibi D., Tollabi M., Rohanizade S. (2016). Probiotic effects of Lactobacillus plantarum and L. delbrueckii ssp. bulguricus on some immune-related parameters in Barbus grypus. Aquacult. Int., 24: 225–242.Search in Google Scholar

Mohammadian T., Dezfuly Z.T., Motlagh R.G., Jangaran-Nejad A., Hosseini S.S., Khaj H., Alijani N. (2019 a). Effect of encapsulated Lactobacillus bulgaricus on innate immune system and hematological parameters in rainbow trout (Oncorhynchus mykiss), postadministration of Pb. Prob. Antimicrob. Prot., 12: 375–388.10.1007/s12602-019-09544-731025260Search in Google Scholar

Mohammadian T., Nasirpour M., Tabandeh M.R., Heidary A.A., Ghanei-Motlagh R., Hosseini S.S. (2019 b). Administrations of autochthonous probiotics altered juvenile rainbow trout Oncorhynchus mykiss health status, growth performance and resistance to Lactococcus garvieae, an experimental infection. Fish Shellfish Immunol., 86: 269–279.10.1016/j.fsi.2018.11.05230468893Search in Google Scholar

Mohammadian T., Ghanei-Motlagh R., Molayemraftar T., Mesbah M., Zarea M., Mohtashamipour H., Nejad A.J. (2021). Modulation of growth performance, gut microflora, non-specific immunity and gene expression of proinflammatory cytokines in shabout (Tor grypus) upon dietary prebiotic supplementation. Fish Shellfish Immunol., 112: 38–45.Search in Google Scholar

Monachese M., Burton J.P., Reid G. (2012). Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appl. Environ. Microbiol., 78: 6397–6404.Search in Google Scholar

Mrvčić J., Stanzer D., Šolić E., Stehlik-Tomas V. (2012). Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World J. Microbiol. Biotechnol., 28: 2771–2782.Search in Google Scholar

Mu G., Li H., Tuo Y., Gao Y., Zhang Y. (2019). Antioxidative effect of Lactobacillus plantarum Y44 on 2, 2′-azobis (2-methylpropionamidine) dihydrochloride (ABAP) – damaged Caco-2 cells. J. Dairy Sci., 102: 6863–6875.Search in Google Scholar

Muhammad Z., Ramzan R., Zhang S., Hu H., Hameed A., Bakry A.M. (2018). Comparative assessment of the bioremedial potentials of potato resistant starch-based microencapsulated and non-encapsulated Lactobacillus plantarum to alleviate the effects of chronic lead toxicity. Front. Microbiol., 9: 1306.Search in Google Scholar

Mustafa S.A. (2020). Histopathology and heavy metal bioaccumulation in some tissues of Luciobarbus xanthopterus collected from Tigris River of Baghdad, Iraq. Egyp. J. Aquat. Res., 46: 123–129.Search in Google Scholar

Naderi M., Keyvanshokooh S., Ghaedi A., Salati A.P. (2019). Interactive effects of dietary Nano selenium and vitamin E on growth, haematology, innate immune responses, antioxidant status and muscle composition of rainbow trout under high rearing density. Aquacult. Nutr., 25: 1156–1168.Search in Google Scholar

Noor-Ul H., Haokun L., Junyan J., Xiaoming Z., Dong H., Yunxia Y., Shouqi X. (2020). Dietary supplementation of Geotrichum candidum improves growth, gut microbiota, immune-related gene expression and disease resistance in gibel carp CAS III (Carassius auratus gibelio). Fish Shellfish Immunol., 99: 144–153.Search in Google Scholar

Pinpimai K., Rodkhum C., Chansue N., Katagiri T., Maita M., Pirarat N. (2015). The study on the candidate probiotic properties of encapsulated yeast, Saccharomyces cerevisiae JCM 7255, in Nile tilapia (Oreochromis niloticus). Res. Vet. Sci., 102: 103–111.Search in Google Scholar

Puzas J.E., Campbell J., O’Keefe R.J., Rosier R.N. (2004). Lead toxicity in the skeleton and its role in osteoporosis. In: Nutrition and bone health, M.F. Holick, B. Dawson-Hughes (eds). Humana Press, NJ, pp. 363–376.10.1007/978-1-59259-740-6_22Search in Google Scholar

Ringø E., Hoseinifar S.H., Ghosh K., Doan H.V., Beck B.R., Song S.K. (2018). Lactic acid bacteria in finfish – an update. Front. Microbiol., 9: 1818.Search in Google Scholar

Roche M., Rondeau P., Singh N.R., Tarnus E., Bourdon E. (2008). The antioxidant properties of serum albumin. FEBS Letters, 582: 1783–1787.Search in Google Scholar

Rogers J.T., Richards J.G., Wood C.M. (2003). Ionoregulatory disruption as the acute toxic mechanism for lead in the rainbow trout (Oncorhynchus mykiss). Aquatic Toxicol. 64: 215–234.Search in Google Scholar

Safari R., Adel M., Lazado C.C., Caipang C.M.A., Dadar M. (2016). Host-derived probiotics Enterococcus casseliflavus improves resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation. Fish Shellfish Immunol., 52: 198–205.Search in Google Scholar

Salinas I., Abelli L., Bertoni F., Picchietti S., Roque A., Furones D. (2008). Monospecies and multispecies probiotic formulations produce different systemic and local immunostimulatory effects in the gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol., 25: 114–123.Search in Google Scholar

Serrano X., Hernández A.J., Morales G., Larson M., Ruiz J., Orellana P., Díaz M., Moyano F.J., Márquez L. (2018). Effects of dietary melanoidins on digestive physiology, nutrient digestibility and plasmatic antioxidant capacity of the rainbow trout Oncorhynchus mykiss. Aquaculture, 495: 153–160.Search in Google Scholar

Song H., Yu W., Gao M., Liu X., Ma X. (2013). Microencapsulated probiotics using emulsification technique coupled with internal or external gelation process. Carbohydrate Polym., 96: 181–189.Search in Google Scholar

Srivastav A.K., Rai R., Suzuki N., Mishra D., Srivastav S.K. (2013). Effects of lead on the plasma electrolytes of a freshwater fish, Heteropneustes fossilis. Int. Aquatic Res., 5: 4.Search in Google Scholar

Suzer C., Çoban D., Kamaci H.O., Saka Ş., Firat K., Otgucuoğlu Ö., Küçüksari H. (2008). Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: effects on growth performance and digestive enzyme activities. Aquaculture, 280: 140–145.Search in Google Scholar

Tarkhani R., Imani A., Hoseinifar S.H., Ashayerizadeh O., Moghanlou K.S., Manaffar R., Van Doan H., Reverter M. (2020). Comparative study of host-associated and commercial probiotic effects on serum and mucosal immune parameters, intestinal microbiota, digestive enzymes activity and growth performance of roach (Rutilus rutilus caspicus) fingerlings. Fish Shellfish Immunol., 98: 661–669.Search in Google Scholar

Tewari H., Gill T.S., Pant J. (1987). Impact of chronic lead poisoning on the hematological and biochemical profiles of a fish, Barbus conchonius (Ham). Bull. Environ. Contamin. Toxicol., 38: 748–752.Search in Google Scholar

Tian F., Zhai Q., Zhao J., Liu X., Wang G., Zhang H., Zhang H., Chen W. (2012). Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice. Biol. Trace Elem. Res., 150: 264–271.Search in Google Scholar

Tipple T.E., Rogers L.K. (2012). Methods for the determination of plasma or tissue glutathione levels. Methods Mol. Biol., 889: 315–324.Search in Google Scholar

Vazirzadeh A., Roosta H., Masoumi H., Farhadi A., Jeffs A. (2020). Long-term effects of three probiotics, singular or combined, on serum innate immune parameters and expressions of cytokine genes in rainbow trout during grow-out. Fish Shellfish Immunol., 98: 748–757.Search in Google Scholar

Velíšek J., Svobodová Z. (2004). Anaesthesia of Rainbow Trout (Oncorhynchus mykiss) with 2-phenoxyethanol: Acute toxicity and biochemical blood profile. Acta Vet. Brno, 73: 379–384.Search in Google Scholar

Wang Y., Wu Y., Wang Y., Xu H., Mei X., Yu D., Wang Y., Li W. (2017). Antioxidant properties of probiotic bacteria. Nutrients, 9: 521.Search in Google Scholar

Yang G., Shen K., Yu R., Wu Q., Yan Q., Chen W., Ding L., Kumar V., Wen C., Peng M. (2020). Probiotic (Bacillus cereus) enhanced growth of Pengze crucian carp concurrent with modulating the antioxidant defense response and exerting beneficial impacts on inflammatory response via Nrf2 activation. Aquaculture, 529: 735691.Search in Google Scholar

Yang L., Gao Z., Cao Y., Xing R., Zhang X. (2005). Effect of PbII on the secondary structure and biological activity of trypsin. Chembiochem, 6: 1191–1195.Search in Google Scholar

Yousefi M., Hoseini S.M., Vatnikov Y.A., Kulikov E.V., Drukovsky S.G. (2019). Rosemary leaf powder improved growth performance, immune and antioxidant parameters, and crowding stress responses in common carp (Cyprinus carpio) fingerlings. Aquaculture, 505: 473–480.Search in Google Scholar

Yu L., Zhai Q., Zhu J., Zhang C., Li T., Liu X., Zhao J., Zhang H., Tian F., Chen W. (2017). Dietary Lactobacillus plantarum supplementation enhances growth performance and alleviates aluminum toxicity in tilapia. Ecotoxicol. Environ. Safety, 143: 307–314.Search in Google Scholar

Yu Z., Zheng Y.G., Du H.L., Li H.J., Wu L.F. (2020). Bioflocs protects copper–induced inflammatory response and oxidative stress in Rhynchocypris lagowski Dybowski through inhibiting NF-κB and Nrf2 signaling pathways. Fish Shellfish Immunol., 98: 466–476.Search in Google Scholar

Zhai Q., Narbad A., Chen W. (2015). Dietary strategies for the treatment of cadmium and lead toxicity. Nutrients, 7: 552–571.Search in Google Scholar

Zhai Q., Yu L., Li T., Zhu J., Zhang C., Zhao J., Zhang H., Chen W. (2016). Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure. Antonie Van Leeuwenhoek, 110: 501–513.Search in Google Scholar

Zhai Q., Wang H., Tian F., Zhao J., Zhang H., Chen W. (2017). Dietary Lactobacillus plantarum supplementation decreases tissue lead accumulation and alleviates lead toxicity in Nile tilapia (Oreochromis niloticus). Aquacult. Res., 48: 5094–5103.Search in Google Scholar

Zhao L., Zheng Y.G., Feng Y.H., Li M.Y., Wang G.Q., Ma Y.F. (2020). Toxic effects of waterborne lead (Pb) on bioaccumulation, serum biochemistry, oxidative stress and heat shock protein– related genes expression in Channa argus. Chemosphere, 261: 127714.Search in Google Scholar

Zoghi A., Khosravi-Darani K., Sohrabvandi S. (2014). Surface binding of toxins and heavy metals by probiotics. Mini Rev. Med. Chem., 14: 84–98.Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo