1. bookAHEAD OF PRINT
Détails du magazine
License
Format
Magazine
eISSN
2300-8733
Première parution
25 Nov 2011
Périodicité
4 fois par an
Langues
Anglais
access type Accès libre

The effect of supplementation with β-hydroxy-β-methylbutyric acid (HMB) to pregnant sows on the mucosal structure, immunolocalization of intestinal barrier proteins, VIP and leptin in the large intestine in their offspring

Publié en ligne: 20 Nov 2021
Volume & Edition: AHEAD OF PRINT
Pages: -
Reçu: 30 Aug 2021
Accepté: 29 Sep 2021
Détails du magazine
License
Format
Magazine
eISSN
2300-8733
Première parution
25 Nov 2011
Périodicité
4 fois par an
Langues
Anglais
Abstract

The large intestine epithelium plays an important role in water absorption and participates in fluid, acid-base and electrolyte balance, and the removal of waste products. The large intestine is rich in microorganism-presented enzyme activity. Apart from energy supply, the colon also participates in the synthesis of trophic factors and the modulation of the immune system and the systemic inflammatory response. The current study investigated the effects of dietary HMB administration to pregnant sows on the postnatal development of the colon in their offspring, at weaning. From the 70th to the 90th day of gestation, sows received either a basal diet (n = 12) or the basal diet supplemented with HMB (n = 12) at a dose of 0.2 g/kg of body weight/day. Maternal HMB treatment increased serum IgG and glucose concentrations and decreased serum urea concentration in the piglets. Basal histomorphometric analysis of offspring large intestines showed that prenatal HMB treatment led to a reduction in the thickness of the mucosa, submucosa and both types of myenterons, as well as reduced crypt thickness. The immunoreaction performed to mark T0 lymphocytes and total T lymphocytes in the colon wall showed that prenatal HMB treatment decreased the number of both types of lymphocytes. Greater expression for cadherin was found in the colon of piglets delivered by the HMB-treated sows. The expression of both tight junction proteins (occludin and claudin-3), as well as that of leptin, was stronger in the HMB-treated group. Vasoactive intestinal peptide (VIP) expression was stronger in the submucosal plexuses in the HMB maternal treated piglets, while no changes were observed in the myenteric plexuses. The results obtained indicate that the administration of HMB to pregnant sows significantly influenced the expression of leptin, VIP and some proteins of the intestinal barrier in their offspring, with less influence on large intestine basal morphology.

Keywords

Abot A., Cani P.D., Knauf C. (2018). Impact of intestinal peptides on the enteric nervous system: novel approaches to control glucose metabolism and food intake. Front. Endocrinol., 9: 328. Search in Google Scholar

Baptista I.L., Silva W.J., Artiol G.G., Guilherme J.P.L.F., Leal M.L., Aoki M.S., Miyabara E.H., Moriscot A.S. (2013). Correction: Leucine and HMB Differentially Modulate Proteasome System in Skeletal Muscle under Different Sarcopenic Conditions. PLoS One, 8: 10.1371. Search in Google Scholar

Barrett K.E., Barman S.M., Brooks H.L., Ganong W.F. (2019). Ganong’s review of medical physiology. Mcgraw-Hill Education, London. Search in Google Scholar

Bertram C., Hanson M. (2002). Prenatal programming of postnatal endocrine responses by glucocorticoids. Reproduction, 124: 459–467. Search in Google Scholar

Bik W. (2007). Vasoactive intestinal peptide-immunomodulatory factor and its role in respiratory diseases (in Polish). Post. Nauk Med., 10: 408–413. Search in Google Scholar

Blicharski T., Tomaszewska E., Dobrowolski P., Hułas-Stasiak M., Muszyński S. (2017). A metabolite of leucine (β-hydroxy-β-methylbutyrate) given to sows during pregnancy alters bone development of their newborn offspring by hormonal modulation. PLOS One, 12: e0179693. Search in Google Scholar

Cheng W.-Y. ., Chen L.-K. ., Peng L.-N. ., Wang M. (2020). Oral nutritional supplementation with HMB not only improved muscle mass, but also intramuscular fat deposition in older adults: A 12-week randomized controlled trial. Clin. Nut. ESPEN, 40: 466. Search in Google Scholar

Cieślak D., Nieradko-Iwanicka B. (2018). β-Hydroxy β-methylbutyrate (HMB) supplementation during pregnancy and perinatal period in animals studies and possible application in humans. J. Educ. Health Sport, 8: 11–18. Search in Google Scholar

Delgado M., Pozo D., Ganea D. (2004). The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol. Rev., 56: 249–290. Search in Google Scholar

Dibner J.J., Buttin P. (2002). Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J. Appl. Poultry Res., 11: 453–463. Search in Google Scholar

Dobrowolski P., Muszyński S., Donaldson J., Jakubczak A., Żmuda A., Taszkun I., Rycerz K., Mielnik-Błaszczak M., Kuc D., Tomaszewska E. (2021). The effects of prenatal supplementation with β-hydroxy-β-methylbutyrate and/or alpha-ketoglutaric acid on the development and maturation of mink intestines are dependent on the number of pregnancies and the sex of the offspring. Animals, 11: 1468. Search in Google Scholar

Duan Y., Li F., Song B., Zheng C., Zhong Y., Xu K., Kong X., Yin Y., Wang W., Shu G. (2019). β-hydroxy-β-methyl butyrate, but not α-ketoisocaproate and excess leucine, stimulates skeletal muscle protein metabolism in growing pigs fed low-protein diets. J. Funct. Foods, 52: 34–42. Search in Google Scholar

Duan Y., Song B., Zheng C., Zhong Y., Guo Q., Zheng J., Yin Y., Li J., Li F. (2021). Dietary Beta-hydroxy beta-methyl butyrate supplementation alleviates liver injury in lipopolysaccharide-challenged piglets. Oxid. Med. Cell. Longev., 2021: 1–9. Search in Google Scholar

El Karim I.A., Linden G.J., Orr D.F., Lundy F.T. (2008). Antimicrobial activity of neuropeptides against a range of micro-organisms from skin, oral, respiratory and gastrointestinal tract sites. J. Neuroimmunol., 2000: 11–16. Search in Google Scholar

Fahrenkrug J. (1993). Transmitter role of vasoactive intestinal peptide. Pharmacol. Toxicol., 72: 354–363. Search in Google Scholar

Florian V., Caroline F., Francis C., Camille S., Fabielle A. (2013). Leptin modulates enteric neurotransmission in the rat proximal colon: An in vitro study. Regul. Pept., 185: 73–78. Search in Google Scholar

Flummer C., Theil P.K. (2012). Effect of β-hydroxy β-methyl butyrate supplementation of sows in late gestation and lactation on sow production of colostrum and milk and piglet performance. J. Anim. Sci., 90 (suppl 4): 372–374. Search in Google Scholar

Francis D.H. (1999). Colibacillosis in pigs and its diagnosis. Swine Health Prod., 7: 241–244. Search in Google Scholar

Friedman J. (2014). 20 years of leptin: leptin at 20: an overview. J. Endocrinol., 223: T1–T8. Search in Google Scholar

Fung T.C., Olson C.A., Hsiao E.Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci., 20: 145–155. Search in Google Scholar

Gonzalez-Rey E., Delgado M. (2005). Role of vasoactive intestinal peptide in inflammation and autoimmunity. Curr. Opin. Investig. Drugs, 6: 1116–1123. Search in Google Scholar

Grela E.R., Skomiał J. (2015). Nutritional recommendations and nutritional value of feed for pigs, 2nd ed. Institute of Physiology and Animal Nutrition of Polish Academy of Science, Jabłonna, Poland, pp. 1–95. Search in Google Scholar

Groschwitz K.R., Hogan S.P. (2009). Intestinal barrier function: Molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol., 124: 3–20. Search in Google Scholar

Hales C.N., Barker D.J., Clark P.M., Cox L.J., Fall C., Osmond C., Winter P.D. (1991). Fetal and infant growth and impaired glucose tolerance at age 64. Br. Med. J., 303: 1019– 1022. Search in Google Scholar

Hao Y., Jackson J.R., Wang Y., Edens N., Pereira S.L., Alway S.E. (2011). β-Hydroxy-β-methylbutyrate reduces myonuclear apoptosis during recovery from hind limb suspension-induced muscle fiber atrophy in aged rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 301: R701–R715. Search in Google Scholar

Hollander D., Kaunitz J.D. (2019). The “Leaky Gut”: Tight junctions but loose associations? Digest. Dis. Sci., 65: 1277–1287. Search in Google Scholar

Holst J.J., Fahrenkrug J., Knuhtsen S., Jensen S.L., Poulsen S.S., Vagn Nielsen O. (1984). Vasoactive intestinal polypeptide (VIP) in the pig pancreas: role of VIPergic nerves in control of fluid and bicarbonate secretion. Regul. Pept., 8: 245–259. Search in Google Scholar

Konturek S. (1985). Physiology of the gastrointestinal tract, 2nd ed. PZWL, Warsaw, Poland, 515 pp. Search in Google Scholar

Lis I., Bogdański P., Karolkiewicz J. (2014). The effect of β-hydroxy-β-methylbutyrate (HMB) on muscle protein metabolism. Farm. Współ., 7: 32–40. Search in Google Scholar

Liu Y. (2015). Fatty acids, inflammation and intestinal health in pigs. J. Anim. Sci. Biotechnol., 6: 41. Search in Google Scholar

Luppi A. (2017). Swine enteric colibacillosis: diagnosis, therapy and antimicrobial resistance. Porc. Health Manag., 3: 16. Search in Google Scholar

Matthews S.G. (2001). Antenatal glucocorticoids and the developing brain: mechanisms of action. Semin. Neonatol., 6: 309–317. Search in Google Scholar

Milart P., Paluszkiewicz P., Dobrowolski P., Tomaszewska E., Smolinska K., Debinska I., Gawel K., Walczak K., Bednarski J., Turska M., Raban M., Kocki T., Turski W.A. (2019). Kynurenic acid as the neglected ingredient of commercial baby formulas. Sci. Rep., 9: 6108. Search in Google Scholar

Mou Q., Yang H.-S., Yin Y.-L., Huang P.-F. (2019). Amino acids influencing intestinal development and health of the piglets. Animals, 9: 302. Search in Google Scholar

Muszyński S., Dobrowolski P., Kasperek K., Knaga S., Kwiecień M., Donaldson J., Kutyła M., Kapica M., Tomaszewska E. (2020). Effects of yeast (Saccharomyces Cerevisiae) probiotics supplementation on bone quality characteristics in young Japanese Quail (Coturnix Japonica): the role of sex on the action of the gut-bone axis. Animals, 10: 440. Search in Google Scholar

Nissen S.L., Abumrad N.N. (1997). Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). J. Nutr. Biochem., 8: 300–311. Search in Google Scholar

Nissen S., Faidley T.D., Zimmerman D.R., Izard R., Fisher C.T. (1994). Colostral milk fat percentage and pig performance are enhanced by feeding the leucine metabolite β-hydroxy-β-methyl butyrate to sows. J. Anim. Sci., 72: 2331–2337. Search in Google Scholar

Nissen S., Sharp R.L., Panton L., Vukovich M., Trappe S., Fuller J.C. (2000). β-hydroxy-β-methylbutyrate (HMB) supplementation in humans is safe and may decrease cardiovascular risk factors. J. Nutr., 130: 1937–1945. Search in Google Scholar

Novotný J., Reichel P., Kovačocyová K., Cigánková V., Almášiová V., Šipoš D. (2016). Haemorrhagic bowel syndrome in fattenig pigs. Acta Vet., 66: 138–146. Search in Google Scholar

Ostaszewski P., Kozłowska E., Siwicki A., Krzyżanowski J., Fuller Jr.J.C., Nissen S. (1998). The immunomodulating activity of dietary ß-hydroxy-ß-methylbutyrate (HMB) in weanling pigs. J. Anim. Sci., 76 (Suppl.1): 136. Search in Google Scholar

Park H.K., Ahima R.S. (2014). Leptin signaling. F1000Prime Rep., 6: 73. Search in Google Scholar

Partanen K., Piva A., Bach Knudsen K.E., Lindberg J.E. (2001). Organic acids – their efficacy and modes of action in pigs. In: Gut environment of pigs. Nottingham University Press, UK, pp. 201–217. Search in Google Scholar

Pascale A., Marchesi N., Marelli C., Coppola A., Luzi L., Govoni S., Giustina A., Gazzaruso C. (2018). Microbiota and metabolic diseases. Endocrine, 61: 357–371. Search in Google Scholar

Pearson P.Y., O’Connor D.M., Schwartz M.Z. (2001). Novel effect of leptin on small intestine adaptation. J. Surf. Res., 97: 192–195. Search in Google Scholar

Puzio I., Muszyński S., Dobrowolski P., Kapica M., Pawłowska-Olszewska M., Donaldson J., Tomaszewska E. (2021). Alterations in small intestine and liver morphology, immunolocalization of leptin, ghrelin and nesfatin-1 as well as immunoexpression of tight junction proteins in intestinal mucosa after gastrectomy in rat model. J. Clin. Med., 10: 272. Search in Google Scholar

Rudyk H., Tomaszewska E., Arciszewski M.B., Muszyński S., Tomczyk-Warunek A., Dobrowolski P., Donaldson J., Brezvyn O., Kotsyumbas I. (2020). Histomorphometrical changes in intestine structure and innervation following experimental fumonisins intoxication in male Wistar rats. Pol. J. Vet. Sci., 23: 77–88. Search in Google Scholar

Said S.I. (1991). Vasoactive intestinal polypeptide biologic role in health and disease. Trends Endocrinol. Metab., 2: 107–112. Search in Google Scholar

Schneider C.A., Rasband W.S., Eliceiri K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 9: 671–675. Search in Google Scholar

So K., Ng P. (2005). Treatment and prevention of neonatal osteopenia. Curr. Paediatr., 15: 106–113. Search in Google Scholar

Suvarna S.K., Layton C., Bancroft J.D. (2013). Bancroft’s theory and practice of histological techniques, 7th ed. Churchill Livingstone, New York, USA. Search in Google Scholar

Świetlicka I., Muszyński S., Tomaszewska E., Dobrowolski P., Kwaśniewska A., Świetlicki M., Skic A., Gołacki K. (2016). Prenatally administered HMB modifies the enamel surface roughness in spiny mice offspring: An atomic force microscopy study. Arch. Oral Biol., 70: 24–31. Search in Google Scholar

Tatara M.R., Śliwa E., Krupski W. (2007). Prenatal programming of skeletal development in the offspring: Effects of maternal treatment with β-hydroxy-β-methylbutyrate (HMB) on femur properties in pigs at slaughter age. Bone, 40: 1615–1622. Search in Google Scholar

Tomaszewska E., Burmańczuk N., Dobrowolski P., Świątkiewicz M., Donaldson J., Burmańczuk A., Mielnik-Błaszczak M., Kuc D., Milewski S., Muszyński S. (2021). The protective role of alpha-ketoglutaric acid on the growth and bone development of experimentally induced perinatal growth-retarded piglets. Animals, 11: 137. Search in Google Scholar

Tomaszewska E., Dobrowolski P., Puzio I. (2012). Postnatal administration of 2-oxoglutaric acid improves the intestinal barrier affected by the prenatal action of dexamethasone in pigs. Nutrition, 28: 190–196. Search in Google Scholar

Tomaszewska E., Dobrowolski P., Puzio I., Donaldson J., Muszyński S. (2020). Acrylamide-induced prenatal programming of bone structure in mammal model. Ann. Ani. Sci., 20: 1257–1287. Search in Google Scholar

Tomaszewska E., Dobrowolski P., Puzio I., Prost Ł., Kurlak P., Sawczuk P., Badzian B., Stasiak M., Kostro K. (2014). Acrylamide-induced prenatal programming intestine structure in guinea pig. J. Physiol. Pharmacol., 65: 107–115. Search in Google Scholar

Tomaszewska E., Dobrowolski P., Świetlicka I., Muszyński S., Kostro K., Jakubczak A., Taszkun I., Żmuda A., Rycerz K., Blicharski T., Jaworska-Adamu J. (2017). Effects of maternal treatment with β-hydroxy-β-metylbutyrate and 2-oxoglutaric acid on femur development in offspring of minks of the standard dark brown type. J. Anim. Physiol. Anim. Nutr., 102: e299–e308. Search in Google Scholar

Tomaszewska E., Muszyński S., Dobrowolski P., Kwiecień M., Klebaniuk R., Szymańczyk S., Tomczyk A., Kowalik S., Milczarek A., Świetlicka I. (2018). The influence of dietary replacement of soybean meal with high-tannin faba beans on gut-bone axis and metabolic response in broiler chickens. Ann. Anim. Sci., 18: 801–824. Search in Google Scholar

Tomaszewska E., Muszyński S., Dobrowolski P., Wiącek D., Tomczyk-Warunek A., Świetlicka I., Pierzynowski S.G. (2019). Maternal HMB treatment affects bone and hyaline cartilage development in their weaned piglets via the leptin/osteoprotegerin system. J. Anim. Physiol. Anim. Nutr., 103: 626–643. Search in Google Scholar

Tomaszewska E., Świątkiewicz S., Arczewska-Włosek A., Wojtysiak D., Dobrowolski P., Domaradzki P., Świetlicka I., Donaldson J., Hułas-Stasiak M., Muszyński, S. (2020). Alpha-ketoglutarate: an effective feed supplement in improving bone metabolism and muscle quality of laying hens: a preliminary study. Animals, 10: 2420. Search in Google Scholar

Tomczyk-Warunek A., Blicharski T., Jarecki J., Dobrowolski P., Muszyński S., Tomaszewska E., Rovati L.C. (2021). The effect of maternal HMB supplementation on bone mechanical and geometrical properties, as well as histomorphometry and immunolocalization of VEGF, TIMP2, MMP13, BMP2 in the bone and cartilage tissue of the humerus of their newborn piglets. PLOS One, 16: e0240642. Search in Google Scholar

Vu J.P., Larauche M., Flores M., Luong L., Norris J., Oh S., Liang L.-J., Waschek J., Pisegna J.R., Germano P.M. (2015). Regulation of appetite, body composition, and metabolic hormones by vasoactive intestinal polypeptide (VIP). J. Mol. Neurosci., 56: 377–387. Search in Google Scholar

Wan H., Zhu J., Wu C., Zhou P., Shen Y., Lin Y., Xu S., Che L., Feng B., Li J., Fang Z., Wu D. (2017). Transfer of β-hydroxy-β-methylbutyrate from sows to their offspring and its impact on muscle fiber type transformation and performance in pigs. J. Anim. Sci. Biotechnol., 8: 2. Search in Google Scholar

Winzell M.S., Ahrén B. (2007). Role of VIP and PACAP in islet function. Peptides, 28: 1805–1813. Search in Google Scholar

Xiong X., Tan B., Song M., Ji P., Kim K., Yin Y., Liu Y. (2019). Nutritional intervention for the intestinal development and health of weaned pigs. Front. Vet. Sci., 6: 46. Search in Google Scholar

Yavas C., Yavas G., Acar H., Toy H., Yuce D., Akyurek S., Ata O. (2012). Amelioration of radiation-induced acute inflammation and mucosal atrophy by beta-hydroxy-beta-methylbutyrate, l-glutamıne, and l-argınıne: results of an experimental study. Support. Care Cancer, 21: 883–888. Search in Google Scholar

Zheng C., Song B., Duan Y., Zhong Y., Yan Z., Zhang S., Li F. (2020). Dietary β-hydroxy-β-methylbutyrate improves intestinal function in weaned piglets after lipopolysaccharide challenge. Nutrition, 78: 110839. Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo