[
Akhtar M., Guo S., Guo Y. F., Zahoor A., Shaukat A., Chen Y., Umar T., Deng G., Guo M. (2020). Upregulated-gene expression of Pro-inflammatory cytokines TNF-α, IL-1β and IL-6 via TLRs following NF-κB and MAPKs in bovine mastitis. Acta Tropica, 207: 105458.
]Search in Google Scholar
[
Alluwaimi A. M., Leutenegger C. M., Farver T. B., Rossitto P. V., Smith W. L., Cullor J. S. (2003). The cytokine markers in Staphylococcus aureus mastitis of bovine mammary gland. J Vet. Med., 50: 105-111.
]Search in Google Scholar
[
Bagnicka E., Kawecka-Grochocka E., Pawlina-Tyszko K., Zalewska M., Kapusta A., Kościuczuk E., Marczak S., Ząbek T. (2021). MicroRNA expression profile in bovine mammary gland parenchyma infected by coagulase-positive or coagulase-negative staphylococci. Vet. Res., 521: 1–20.
]Search in Google Scholar
[
Baker E. N., Baker H.M. (2005). Molecular structure, binding properties and dynamics of lactoferrin. Cell. Mol. Life Sci., 62: 2531–2539.
]Search in Google Scholar
[
Bannerman D.D. (2009). Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J. Anim. Sci., 87: 10–25.
]Search in Google Scholar
[
Bannerman D.D., Paape M. J., Lee J.W., Zhao X., Hope J.C., Rainard P. (2004). Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin. Diag. Lab. Immunol., 11: 463–472.
]Search in Google Scholar
[
Bionaz M., Loor J.J. (2007). Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle. Physiol. Genom., 29: 312–319.
]Search in Google Scholar
[
Cáceres J. F., Kornblihtt A.R. (2002). Alternative splicing: multiple control mechanisms and involvement in human disease. Trends in Genet., 18: 186–193.
]Search in Google Scholar
[
Chacko E., Ranganathan S. (2009). Genome-wide analysis of alternative splicing in cow: implications in bovine as a model for human diseases. BMC Genom., 10: 11.
]Search in Google Scholar
[
Chaneton L., Tirante L., Maito J., Chaves J., Bussmann L. E. (2008). Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland. J Dairy Sci., 91: 1865–1873.
]Search in Google Scholar
[
Ellison R. T. (1994). The effects of lactoferrin on gram-negative bacteria. Adv. Exp. Med. Biol., 357: 71–90.
]Search in Google Scholar
[
Ferens W. A., Goff W. L., Davis W. C., Fox L. K., Deobald C., Hamilton M.J., Bohach G.A. (1998). Induction of type-2 cytokines by a Staphylococcal enterotoxins superantigen. J. Nat. Tox., 7: 193–213.
]Search in Google Scholar
[
Fonseca I., Silva P. V., Lange C. C., Guimarães M. F., Morena Del Cambre M., Weller M. A., Silva Sousa K. R., Lopes P. S., Guimarães J. D., Guimarãe S. E. F. (2009). Expression profile of genes associated with mastitis in dairy cattle. Genet. Mol. Biol., 32: 776–781.
]Search in Google Scholar
[
Galante P. A., Sakabe N. J., Kirschbaum-Slager N., de Souza S. J. (2004). Detection and evaluation of intron retention events in the human transcriptome. RNA, 10: 757–765.
]Search in Google Scholar
[
Garcia-Blanco M. A., Baraniak A.P. Lasda, E. L. (2004). Alternative splicing in disease and therapy. Nat. Biotechnol., 22: 535–546.
]Search in Google Scholar
[
Gifford J. L., Hunter H. N., Vogel H. J. (2005). Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell. Mol. Life Sci., 62: 2588–2598.
]Search in Google Scholar
[
Hagiwara S., Kawai K., Anri A., Nagahata H. (2003). Lactoferrin concentrations in milk from normal and subclinical mastitic cows. J. Vet. Med. Sci., 65: 319–323.
]Search in Google Scholar
[
Huang J. M., Wang Z. Y., Ju Z. H., Wang C. F., Li Q. L., Sun T., Hou Q. L., Hang S. Q., Hou M. H., Zhong J. F. (2011). Two splice variants of the bovine lactoferrin gene identified in Staphylococcus aureus isolated from mastitis in dairy cattle. Genet. Mol. Res., 10: 3199–3203.
]Search in Google Scholar
[
Ju Z., Jiang Q., Liu G., Wang X., Luo G., Zhang Y., Zhang J., Zhong J., Huang J. (2018). Solexa sequencing and custom micro RNA chip reveal repertoire of microRNAs in mammary gland of bovine suffering from natural infectious mastitis. Anim. Genet., 49: 3–18.
]Search in Google Scholar
[
Kawai K., Hagiwara S., Anri A., Nagahata H. (1999). Lactoferrin concentration in milk of bovine clinical mastitis. Vet. Res. Commun., 23: 391–398.
]Search in Google Scholar
[
Kim J.H., Yoo B. C., Yang W.S., Kim E., Hong S., Cho, J.Y. (2016). The role of protein arginine methyltransferases in inflammatory responses. Mediat Inflamm. 4028353.10.1155/2016/4028353479314027041824
]Search in Google Scholar
[
Komine K. I., Komine Y., Kuroishi T., Kobayashi J., Obara Y., Kumagai K. (2005). Small molecule lactoferrin with an inflammatory effect but no apparent antibacterial activity in mastitic mammary gland secretion. J. Vet. Med., 67: 667–677.
]Search in Google Scholar
[
Korwin-Kossakowska A., Ropka-Molik K., Ząbek T., Szmatoła T., Brzozowska P., Gralak B., Kawecka-Grochocka E. Bagnicka E. (2020). Structural and functional analysis of the signaling lymphocytic activation molecule family 7 SLAMF7 gene in response to infection with coagulase-negative and coagulase-positive staphylococci. J Dairy Sci., 103: 8317–8329.
]Search in Google Scholar
[
Kościuczuk E. M., Lisowski P., Jarczak J., Krzyżewski J., Zwierzchowski L. Bagnicka E., (2014). Expressions patterns of β-defensin and cathelicidin genes in parenchyma of bovine mammary gland infected with coagulase-positive or coagulase-negative Staphylococci. BMC Vet. Res., 6: 246.
]Search in Google Scholar
[
Le Hir H., Charlet-Berguerand N., de Franciscis V., Thermes C., (2002). 5’-End RET splicing: absence of variants in normal tissues and intron retention in pheochromocytomas. Oncology, 63: 84–91.
]Search in Google Scholar
[
Li, N., Zhang J., Liao D., Yang L., Wang Y., Hou S. (2017). Association between C4, C4A, and C4B copy number variations and susceptibility to autoimmune diseases: a meta-analysis. Sci Rep., 7: 42628.
]Search in Google Scholar
[
Li Z., Zhai M., Wang H., Chen L., Wang L., Ru C., Song A., Liu X. (2014). Identification of splice variants, expression analysis and single nucleotide polymorphisms of the PRMT2 gene in dairy cattle. Gene, 539: 37–43.
]Search in Google Scholar
[
Merle N.S., Noe R., Halbwachs-Mecarelli L., Fremeaux-Bacchi V., Roumenina L.T. (2015). Complement system part II: role in immunity. Front Immunol, 6: 257.
]Search in Google Scholar
[
Nash D.L., Rogers G.W., Cooper J.B., Hargrove G.L., Keown J.F. (2003). Heritability of intramammary infections at first parturition and relationships with sire transmitting abilities for somatic cell score, udder type traits, productive life, and protein yield. J. Dairy Sci., 86: 2684–2695.
]Search in Google Scholar
[
Oviedo-Boyso J., Valdez-Alarcón J. J., Cajero-Juárez M., Ochoa-Zarzosa A., López-Meza J. E., Bravo-Patiño A., Baizabal-Aguirre V.M. (2007). Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. Infect, 54: 399–409.
]Search in Google Scholar
[
Pawlik A., Sender G., Sobczyńska M., Korwin-Kossakowska A., Lassa H., Oprządek J. (2014 a). Lactoferrin gene variants, their expression in the udder and mastitis susceptibility in dairy cattle. Anim. Prod. Sci., 55: 999–1004.10.1071/AN13389
]Search in Google Scholar
[
Pawlik A., Sender G., Sobczyńska M., Korwin-Kossakowska A., Oprządek J., Lukaszewicz M. (2014 b). Association between lactoferrin single nucleotide polymorphisms and milk production traits in Polish Holstein cattle. Arch. Tierz.- Arch. Anim. Breed., 57: 1–12.10.7482/0003-9438-57-027
]Search in Google Scholar
[
Raj A., Kulangara V., VareedT. P., Melepat D. P., Chattothayil L., Chullipparambil S. (2021). Variations in the levels of acute-phase proteins and lactoferrin in serum and milk during bovine subclinical mastitis. J. Dairy Res., 88: 321–325.
]Search in Google Scholar
[
Rambeaud M., Almeida R.A., Pighetti G.M., Oliver S.P. (2003). Dynamics of leukocytes and cytokines during experimentally induced Streptococcus uberis mastitis. Vet. Immunol. Immunopathol., 96: 193–205.
]Search in Google Scholar
[
Redwan E.M., Uversky V.N., El-Fakharany E.M., Al-Mehdar H. (2014). Potential lactoferrin activity against pathogenic viruses. Comp. Rendus Biol., 337: 581–595.
]Search in Google Scholar
[
Rio D.C. (1991). Regulation of Drosophila P element transposition. Trend. Genet., 7: 282–287.
]Search in Google Scholar
[
Shuster D.E., Kehrli M.E., Stevens M.G. (1993). Cytokine production during endotoxin-induced mastitis in lactating dairy cows. Am. J. Vet. Res., 54: 80–85.
]Search in Google Scholar
[
Stamm S., Ben-Ari S., Rafalska I., Tang Y., Zhang Z., Toiber D., Thanaraj T.A., Soreq H. (2005). Function of alternative splicing. Gene, 344: 1–20.
]Search in Google Scholar
[
Strzelecki J. (2009). Editor. NRIAP-INRA, Standard of ruminants’ feeding: Nutrient value of French and domestic fodders for ruminants. National Research Institute of Animal Production, Kraków, Poland, pp. 21–49.
]Search in Google Scholar
[
Swanson K.M., Stelwagen K., Dobson J., Henderson H.V., Davis S.R., Farr V.C., Singh K. (2009). Transcriptome Profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J. Dairy Sci., 92: 117–129.
]Search in Google Scholar
[
Wang E.T., Sandberg R., Luo S., Khrebtukova I., Zhang L., Mary C., Kingsmore S.F., Schroth G.P., Burge C.B. (2008). Alternative isoform regulation in human tissue transcriptomes. Nature, 456: 470–476.
]Search in Google Scholar
[
Wang X.G., Ju Z.H., Hou M.H., Jiang Q., Yang C.H., Zhang Y., Sun Y., Li R.L., Wang C.F., Zhong J.F., Huang J.M. (2016). Deciphering transcriptome and complex alternative splicing transcripts in mammary gland tissues from cows naturally infected with Staphylococcus aureus mastitis. Plos One, 11: e0167666.
]Search in Google Scholar
[
Ward P. P., Paz E., Conneely O.M. (2005). Multifunctional roles of lactoferrin: a critical overview. Cell. Mol. Life Sci., 62: 2540–2548.
]Search in Google Scholar
[
Wellnitz O., Kerr D.E. (2004). Cryopreserved bovine mammary cells to model epithelial response to infection. Vet. Immunol. Immunopathol., 101: 191–202.
]Search in Google Scholar
[
Wellnitz O., Berger U., Schaeren W., Bruckmaier R.M. (2012). Mastitis severity induced by two Streptococcus uberis strains is reflected by the mammary immune response in vitro. Schweizer Arch. Tierheilkunde, 154: 317.
]Search in Google Scholar
[
Yang L., Guo R., Ju Z., Wang X., Jiang Q., Liu Y., Zhao H., He K., Li J., Huang J. (2019). Production of an aberrant splice variant of CCL5 is not caused by genetic mutation in the mammary glands of mastitis infected Holstein cows. Mol. Med. Rep., 19: 4159–4166.
]Search in Google Scholar
[
Yang Y., Huang J.M., Ju Z.H., Li Q.L., Zhou L., Li R.L., Li J.B., Shi F.X., Zhong J.F., Wang C.F. (2012). Increased expression of a novel splice variant of the complement component 4 (C4A) gene in mastitis-infected dairy cattle. Genet. Mol. Res., 11: 2909–2916.
]Search in Google Scholar