[
Adel M., Dawood M.A.O., Gholamhosseini A., Sakhaie F., Banaee M. (2021 a). Effect of the extract of lemon verbena (Aloysia citrodora) on the growth performance, digestive enzyme activities, and immune-related genes in Siberian sturgeon (Acipenser baerii). Aquaculture, 541: 736797.10.1016/j.aquaculture.2021.736797
]Search in Google Scholar
[
Adel M., Omidi A.H., Dawood M.A.O., Karimi B., Shekarabi S.P.H. (2021 b). Dietary Gracilaria persica mediated the growth performance, fillet colouration, and immune response of Persian sturgeon (Acipenser persicus). Aquaculture, 530: 735950.10.1016/j.aquaculture.2020.735950750224232981978
]Search in Google Scholar
[
An B.N.T., Anh N.T.N. (2020). Co-culture of Nile tilapia (Oreochromis niloticus) and red seaweed (Gracilaria tenuistipitata) under different feeding rates: effects on water quality, fish growth and feed efficiency. J. Appl. Phycol., 32: 2031–2040.
]Search in Google Scholar
[
Aramli M.S., Kamangar B., Nazari R.M. (2015). Effects of dietary β-glucan on the growth and innate immune response of juvenile Persian sturgeon, Acipenser persicus. Fish Shellfish Immunol., 47: 606–610.
]Search in Google Scholar
[
Baharloei M., Heidari B., Zamani H., Hadavi M. (2020). Effects of Pro-Tex® on the expression of Hsp70 gene and immune response parameters in the Persian sturgeon fingerlings, Acipenser persicus, infected with Aeromonas hydrophila. J. Appl. Ichthyol., 36: 393–401.
]Search in Google Scholar
[
Bhat I.A., Rather M.A., Saha R., Ganie P.A., Sharma R. (2017). Identification and expression analysis of thyroid-stimulating hormone receptor (TSHR) in fish gonads following LHRH Treatment. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci., 87: 719–726.
]Search in Google Scholar
[
Blanton M.L., Specker J.L. (2007). The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction. Crit. Rev. Toxicol., 37:97–115.
]Search in Google Scholar
[
Bouwmeester M.M., Goedknegt M.A., Poulin R., Thieltges D.W. (2021). Collateral diseases: Aquaculture impacts on wildlife infections. J. Appl. Ecol., 58: 453–464.
]Search in Google Scholar
[
Dawood M.A.O. (2021) Nutritional immunity of fish intestines: important insights for sustainable aquaculture. Rev. Aquac.,13: 642–663.10.1111/raq.12492
]Search in Google Scholar
[
Dawood M.A.O., Koshio S. (2020). Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquac., 12: 987–1002.
]Search in Google Scholar
[
Dawood M.A.O., Koshio S., Ishikawa M., Yokoyama S. (2016). Effects of dietary inactivated Pediococcus pentosaceus on growth performance, feed utilization and blood characteristics of red sea bream, Pagrus major juvenile. Aquac. Nutr., 22: 923–932.
]Search in Google Scholar
[
Dawood M.A.O., El Basuini M.F., Zaineldin A.I., Yilmaz S., Hasan M.T., Ahmadifar E., El Asely A.M., Abdel-Latif H.M.R., Alagawany M., Abu-Elala N.M., Van Doan H., Sewilam H. (2021). Antiparasitic and antibacterial functionality of essential oils: an alternative approach for sustainable aquaculture. Pathogens, 10: 185.
]Search in Google Scholar
[
FAO (2020). The state of world fisheries and aquaculture 2020. Sustainability in action. Rome. Francavilla M., Franchi M., Monteleone M., Caroppo C. (2013). The red seaweed Gracilaria gracilis as a multi-products source. Mar Drugs., 11: 3754–3776.10.3390/md11103754382613424084791
]Search in Google Scholar
[
Galappaththi E.K., Ichien S.T., Hyman A.A., Aubrac C.J., Ford J.D. (2020). Climate change adaptation in aquaculture. Rev. Aquac., 12: 2160–2176.
]Search in Google Scholar
[
Hayatgheib N., Moreau E., Calvez S., Lepelletier D., Pouliquen H.J.A.I. (2020). A review of functional feeds and the control of Aeromonas infections in freshwater fish. Aquac. Int., 1–41.10.1007/s10499-020-00514-3
]Search in Google Scholar
[
Hindu S.V., Chandrasekaran N., Mukherjee A., Thomas J. (2019). A review on the impact of seaweed polysaccharide on the growth of probiotic bacteria and its application in aquaculture. Aquac. Int., 27: 227–238.
]Search in Google Scholar
[
Hoseinifar S.H., Yousefi S., Capillo G., Paknejad H., Khalili M., Tabarraei A., Van Doan H., Spanò N., Faggio C. (2018). Mucosal immune parameters, immune and antioxidant defense-related genes expression and growth performance of zebrafish (Danio rerio) fed on Gracilaria gracilis powder. Fish Shellfish Immunol., 83: 232–237.
]Search in Google Scholar
[
Hoseinifar S.H., Shakouri M., Doan H.V., Shafiei S., Yousefi M., Raeisi M., Yousefi S., Harikrishnan R., Reverter M. (2020). Dietary supplementation of lemon verbena (Aloysia citrodora) improved immunity, immune-related genes expression and antioxidant enzymes in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol., 99: 379–385.
]Search in Google Scholar
[
Jafari A., Keramat Amirkolaie A., Oraji H., Kousha M. (2020). Bio-sorption of ammonium ions by dried red marine algae (Gracilaria persica): Application of response surface methodology. Iran. J. Fish. Sci., 19: 1967–1980.
]Search in Google Scholar
[
Jeliani Z.Z., Yousefzadi M., Pour J.S., Toiserkani H. (2018). Growth, phytochemicals, and optimal timing of planting Gracilariopsis persica: an economic red seaweed. J. Appl. Phycol., 30: 525–533.
]Search in Google Scholar
[
Kari Z.A., Kabir M.A., Mat K., Rusli N.D., Razab M.K.A.A., Ariff N.S.N.A., Edinur H.A., Rahim M.Z.A., Pati S., Dawood M.A.O., Wei L.S. (2021). The possibility of replacing fish meal with fermented soy pulp on the growth performance, blood biochemistry, liver, and intestinal morphology of African catfish (Clarias gariepinus). Aquac. Rep., 21: 100815.
]Search in Google Scholar
[
Kari Z.A., Kabir M.A., Dawood M.A.O., Razab M.K.A.A., Ariff N.S.N.A., Sarkar T., Pati S., Edinur H.A., Mat K., Ismail T.A., Wei L.S. (2022). Effect of fish meal substitution with fermented soy pulp on growth performance, digestive enzyme, amino acid profile, and immune-related gene expression of African catfish (Clarias gariepinus). Aquaculture, 546: 737418.
]Search in Google Scholar
[
Kiadaliri M., Firouzbakhsh F., Deldar H. (2020). Effects of feeding with red algae (Laurencia caspica) hydroalcoholic extract on antioxidant defense, immune responses, and immune gene expression of kidney in rainbow trout (Oncorhynchus mykiss) infected with Aeromonas hydrophila. Aquaculture, 526: 735361.
]Search in Google Scholar
[
Kulshreshtha G., Rathgeber B., MacIsaac J., Boulianne M., Brigitte L., Stratton G., Thomas N.A., Critchley A.T., Hafting J., Prithiviraj B. (2017). Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, reduce Salmonella enteritidis in laying hens. Front. Microbiol., 8: 2991–3001.
]Search in Google Scholar
[
Lim K.C., Yusoff F.M., Shariff M., Kamarudin M.S. (2018). Astaxanthin as feed supplement in aquatic animals. Rev. Aquac., 10: 738–773.
]Search in Google Scholar
[
López-Pedrouso M., Lorenzo J.M., Cantalapiedra J., Zapata C., Franco J.M., Franco D. (2020). Chapter five – aquaculture and by-products: Challenges and opportunities in the use of alternative protein sources and bioactive compounds. In: Advances in food and nutrition research, J.M. Lorenzo, F.J. Barba (eds). Academic Press, 92: 127–185.
]Search in Google Scholar
[
Lulijwa R., Rupia E.J., Alfaro A.C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Rev. Aquac., 12: 640–663.
]Search in Google Scholar
[
Mohan K., Ravichandran S., Muralisankar T., Uthayakumar V., Chandirasekar R., Seedevi P., Abirami R.G., Rajan D.K. (2019). Application of marine-derived polysaccharides as immunostimulants in aquaculture: A review of current knowledge and further perspectives. Fish Shellfish Immunol., 86: 1177–1193.
]Search in Google Scholar
[
Mzula A., Wambura P.N., Mdegela R.H., Shirima G.M. (2019). Current state of modern biotechnological-based Aeromonas hydrophila vaccines for aquaculture: A systematic review. Biomed Res. Int., 1: 3768948.
]Search in Google Scholar
[
Peixoto M.J., Salas-Leitón E., Pereira L.F., Queiroz A., Magalhães F., Pereira R., Abreu H., Reis P.A., Gonçalves J.F.M., de Almeida Ozório R.O. (2016). Role of dietary seaweed supplementation on growth performance, digestive capacity and immune and stress responsiveness in European seabass (Dicentrarchus labrax). Aquac. Rep. 3: 189–197.
]Search in Google Scholar
[
Safavi S.V., Kenari A.A., Tabarsa M., Esmaeili M. (2019). Effect of sulfated polysaccharides extracted from marine macroalgae (Ulva intestinalis and Gracilariopsis persica) on growth performance, fatty acid profile, and immune response of rainbow trout (Oncorhynchus mykiss). J. Appl. Phycol., 31: 4021–4035.
]Search in Google Scholar
[
Sallam K.I. (2007). Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control., 18: 566–575.
]Search in Google Scholar
[
Sanjeewa K.KA., Kang N., Ahn G., Jee Y. Kim Y.T., Jeon Y.J. (2018). Bioactive potentials of sulfated polysaccharides isolated from brown seaweed Sargassum spp in related to human health applications: a review. Food Hydrocoll., 81: 200–208.
]Search in Google Scholar
[
Thépot V., Campbell A.H., Rimmer M.A., Paul N.A. (2021). Meta-analysis of the use of seaweeds and their extracts as immunostimulants for fish: a systematic review. Rev. Aquac., 13: 907–933.
]Search in Google Scholar
[
Walsh A.M., Sweeney T., O’Shea C.J., Doyle D.N., O’Doherty J.V. (2013). Effect of dietary laminarin and fucoidan on selected microbiota, intestinal morphology and immune status of the newly weaned pig. Br. J. Nutr., 110: 1630–1638.
]Search in Google Scholar
[
Wijnana A., Adhika P., Kasanah N. (2018). Bioactivity of red seaweed Gracilaria arcuata against Aeromonas hydrophila and Vibrio sp. J. Nat. Prod., 8: 147–152.
]Search in Google Scholar