1. bookVolume 22 (2022): Edition 3 (July 2022)
Détails du magazine
License
Format
Magazine
eISSN
2300-8733
Première parution
25 Nov 2011
Périodicité
4 fois par an
Langues
Anglais
access type Accès libre

Effect of dietary β-Mannanase addition on performance, pododermatitis, and intestinal morphology as well as digesta Clostridium perfringens in broiler chickens: a pilot study

Publié en ligne: 19 Jul 2022
Volume & Edition: Volume 22 (2022) - Edition 3 (July 2022)
Pages: 1027 - 1039
Reçu: 14 Dec 2021
Accepté: 18 Feb 2022
Détails du magazine
License
Format
Magazine
eISSN
2300-8733
Première parution
25 Nov 2011
Périodicité
4 fois par an
Langues
Anglais
Abstract

This preliminary study was conducted to evaluate the effects of β-mannanase in diets of broilers on performance, pododermatitis, intestinal morphology, and digesta Clostridium perfringens counts. A total of 264 broilers (Ross 308) were randomly allotted to four treatments. A wheat-soybean based diet (CO) was supplemented with either 0.15 g xylanase/kg (XY), 0.15 g xylanase/kg + 110 mL β-mannanase/ton (MA1) or 0.15 g xylanase/kg + 220 mL β-mannanase/ton (MA2). At the end of the experiment, only significant differences in body weight were noted between groups fed MA1 and MA2 diets (2501 g vs 2641 g, respectively). Birds fed MA1 had significantly the lowest pododermatitis scores (2.26) compared to other groups. Ileal villus height measurements revealed that birds fed CO and MA2 diets had significantly higher values (1614 and 1651 µm, respectively) than those fed the MA1 diet (1489 µm). The positive percent of Clostridium perfringens in intestinal digesta at d 36 was significantly the highest in the XY group. Overall, although not improving performance, supplementing the diet with β-mannanase (110 mL/ton) contributed positively to foot pad health.

Keywords

Abd El-Wahab A., Beineke A., Beyerbach M., Visscher C., Kamphues J. (2011). Effects of floor heating and litter quality on the development and severity of foot pad dermatitis in young turkeys. Avian Dis., 55: 429–434. Search in Google Scholar

Abd El-Wahab A., Visscher C., Beineke A., Beyerbach M., Kamphues J. (2013). Effects of high electrolyte contents in the diet and using floor heating on development and severity of foot pad dermatitis in young turkeys. J. Anim. Physiol. Anim. Nutr., 97: 39–47. Search in Google Scholar

Abd El-Wahab A., Lingens J.B., Chuppava B., Ahmed M.F., Osman A., Langeheine M., Brehm R., Taube V., Grone R.,Von Felde A. (2020). Impact of rye inclusion in diets for broilers on performance, litter quality, foot pad health, digesta viscosity, organ traits and intestinal morphology. Sustainability, 12: 7753. Search in Google Scholar

Adeola O., Cowieson A. (2011). Board-invited review: opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J. Anim. Sci., 89: 3189–3218. Search in Google Scholar

Adibmoradi M., Navidshad B., Seifdavati J., Royan M. (2006). Effect of dietary garlic meal on histological structure of small intestine in broiler chickens. J. Poultry Sci., 43: 378–383. Search in Google Scholar

Almirall M., Francesch M., Perez-Vendrell A.M., Brufau J., Esteve-Garcia E. (1995). The differences in intestinal viscosity produced by barley and β-glucanase alter digesta enzyme activities and ileal nutrient digestibilities more in broiler chicks than in cocks. J. Nutr., 125: 947–955. Search in Google Scholar

Animal Welfare Regulation Governing Experimental Animals of 1st August, 2013 (Federal Law Gazette [BGBl]. I pp. 3125, 3126), amended by Article 6 of the Regulation of 12th December, 2013, BGBl. I p. 4145. Search in Google Scholar

Arsenault R., Lee J., Latham R., Carter B., Kogut M. (2017). Changes in immune and metabolic gut response in broilers fed β-mannanase in β-mannan-containing diets. Poultry Sci., 96: 4307–4316. Search in Google Scholar

Attia Y.A., Al-Khalaifah H., El-Hamid A., Al-Harthi M., El-Shafey A. (2020 a). Effect of different levels of multienzymes on immune response, blood hematology and biochemistry, antioxidants status and organs histology of broiler chicks fed standard and low-density diets. Front. Vet. Sci., 6: 510.10.3389/fvets.2019.00510701516632195272 Search in Google Scholar

Attia Y.A., El-kelawy M., Al-Harthi M., El-Shafey A. (2020 b). Impact of multienzymes dose supplemented continuously or intermittently in drinking water on growth performance, nutrient digestibility, and blood constituents of broiler chickens. Animals, 10: 375.10.3390/ani10030375714335532111009 Search in Google Scholar

Attia Y.A., Bovera F., Al-Harthi M.A., El-Din A.E.-R.E.T., Said Selim W. (2021). Supplementation of microbial and fungal phytases to low protein and energy diets: Effects on productive performance, nutrient digestibility, and blood profiles of broilers. Agriculture, 11: 414. Search in Google Scholar

Austin S., Wiseman J., Chesson A. (1999). Influence of non-starch polysaccharides structure on the metabolisable energy of UK wheat fed to poultry. J. Cereal Sci., 29: 77–88. Search in Google Scholar

Bedford M., Apajalahti J. (2001). Implications of diet and enzyme supplementation on the microflora of the intestinal tract. In: Advances in nutritional technology 2001. Proc. 1st World Feed Conference, Utrecht, Netherlands, 7-8.11.2001. Search in Google Scholar

Bedford M., Morgan A. (1996). The use of enzymes in poultry diets. World. Poultry Sci. J., 52: 61–68. Search in Google Scholar

Bunte S., Keller B., Chuppava B., Kamphues J., Visscher C., Abd El-Wahab A. (2020). Influence of fermented diets on in vitro survival rate of some artificially inoculated pathogens-a preliminary study. Processes, 8: 1345. Search in Google Scholar

Cengız Ö., Hess J., Bilgili S. (2012). Feed enzyme supplementation does not ameliorate foot pad dermatitis in broiler chickens fed on a corn-soyabean diet. Brit. Poultry Sci., 53: 401–407. Search in Google Scholar

Cho J., Kim I. (2013). Effects of beta-mannanase supplementation in combination with low and high energy dense diets for growing and finishing broilers. Livest. Sci., 154: 137– 143. Search in Google Scholar

Choct M., Annison G. (1992). Anti-nutritive effect of wheat pentosans in broiler chickens: Roles of viscosity and gut microflora. Brit. Poultry Sci., 33: 821–834. Search in Google Scholar

Choct M., Dersjant-Li Y., Mcleish J., Peisker M. (2010). Soy oligosaccharides and soluble non-starch polysaccharides: a review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian Australas. J. Anim. Sci., 23: 1386–1398. Search in Google Scholar

Council Regulation (EC) No 1099/2009 of 24 September 2009 on the protection of animals at the time of killing. L. 303: 1–30. Search in Google Scholar

Dahiya J., Hoehler D., Wilkie D., Van Kessel A., Drew M. (2005). Dietary glycine concentration affects intestinal Clostridium perfringens and lactobacilli populations in broiler chickens. Poultry Sci., 84: 1875–1885. Search in Google Scholar

Dahiya J., Wilkie D., Van Kessel A., Drew M. (2006). Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim. Feed Sci. Technol., 129: 60–88. Search in Google Scholar

Daskiran M., Teeter R., Fodge D., Hsiao H. (2004). An evaluation of endo-β-D-mannanase (Hemicell) effects on broiler performance and energy use in diets varying in β-mannan content. Poultry Sci., 83: 662–668. Search in Google Scholar

De Brito M.S., De Oliveira C.F.S., Da Silva T.R.G., De Lima R.B., Morais S.N., Da Silva J.H.V. (2008). Polissacarídeos não amiláceos na nutrição de monogástricos – revisão. Acta Vet. Bras., 2: 111–117. Search in Google Scholar

Dhawan S., Kaur J. (2007). Microbial mannanases: an overview of production and applications. Crit. Rev. Biotechnol., 27: 197–216. Search in Google Scholar

Drew M., Syed N., Goldade B., Laarveld B., Van Kessel A. (2004). Effects of dietary protein source and level on intestinal populations of Clostridium perfringens in broiler chickens. Poultry Sci., 83: 414–420. Search in Google Scholar

Eichner G., Vieira S., Torres C., Coneglian J., Freitas D., Oyarzabal O. (2007). Litter moisture and footpad dermatitis as affected by diets formulated on an all-vegetable basis or having the inclusion of poultry by-product. J. Appl. Poultry Res., 16: 344–350. Search in Google Scholar

Engberg R., Hedemann M., Leser T., Jensen B. (2000). Effect of zinc bacitracin and salinomycin on intestinal microflora and performance of broilers. Poultry Sci., 79: 1311– 1319. Search in Google Scholar

Ferreira H. Jr, Hannas M., Albino L., Rostagno H., Neme R., Faria B., Xavier M. Jr, Rennó L. (2016). Effect of the addition of β-mannanase on the performance, metabolizable energy, amino acid digestibility coefficients, and immune functions of broilers fed different nutritional levels. Poultry Sci., 95: 1848–1857. Search in Google Scholar

Francesch M., Brufau J. (2004). Nutritional factors affecting excreta/litter moisture and quality. World. Poultry Sci. J., 60: 64–75. Search in Google Scholar

Ghayour-Najafabadi P., Khosravinia H., Gheisari A., Azarfar A., Khanahmadi M. (2018). Productive performance, nutrient digestibility and intestinal morphometry in broiler chickens fed corn or wheat-based diets supplemented with bacterial-or fungal-originated xylanase. Ital. J. Anim. Sci., 17: 165–174. Search in Google Scholar

Hafez M.H., Attia Y.A. (2020). Challenges to the poultry industry: Current perspectives and strategic future after the COVID-19 outbreak. Front. Vet. Sci., 7: 516. Search in Google Scholar

Hansen M.V., Elliott L.P. (1980). New presumptive identification test for Clostridium perfringens: reverse CAMP test. J. Clin. Microbiol., 12: 617–619. Search in Google Scholar

Hofacre C.L., Smith J.A., Mathis G.F. (2018). An optimist’s view on limiting necrotic enteritis and maintaining broiler gut health and performance in today’s marketing, food safety, and regulatory climate. Poultry Sci., 97: 1929–1933. Search in Google Scholar

Hsiao H.-Y., Anderson D., Dale N. (2006). Levels of β-mannan in soybean meal. Poultry Sci., 85: 1430–1432. Search in Google Scholar

Iji P., Saki A., Tivey D. (2001). Body and intestinal growth of broiler chicks on a commercial starter diet. Intestinal weight and mucosal development. Brit. Poultry Sci., 42: 505–513. Search in Google Scholar

Jackson M., Anderson D., Hsiao H., Mathis G., Fodge D. (2003). Beneficial effect of β-mannanase feed enzyme on performance of chicks challenged with Eimeria sp. and Clostridium perfringens. Avian Dis., 47: 759–763. Search in Google Scholar

Jia W., Slominski B.A., Bruce H.L., Nyachoti C.M., Jones R.O. (2009). Enzyme addition facilitates the post-disease compensatory growth of broiler chickens challenged with Clostridium perfringens. Can. J. Anim. Sci., 89: 369–381. Search in Google Scholar

Karimi K., Zhandi M. (2015). The effect of β-mannanase and β-glucanase on small intestine morphology in male broilers fed diets containing various levels of metabolizable energy. J. Appl. Anim. Res., 43: 324–329. Search in Google Scholar

Kim J.S., Hosseindoust A., Ju I.K., Yang X., Lee S.H., Noh H.S., Lee J.H., Chae B.J. (2018). Effects of dietary energy levels and β-mannanase supplementation in a high mannan-based diet during lactation on reproductive performance, apparent total tract digestibility and milk composition in multiparous sows. It. J. Anim. Sci., 17: 128–134. Search in Google Scholar

Knudsen K.E.B. (1997). Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed Sci. Technol., 67: 319–338. Search in Google Scholar

Knudsen K.E.B. (2014). Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poultry Sci., 93: 2380–2393. Search in Google Scholar

Kong C., Lee J., Adeola O. (2011). Supplementation of β-mannanase to starter and grower diets for broilers. Can. J. Anim. Sci., 91: 389–397. Search in Google Scholar

Langhout D., Schutte J., De Jong J., Sloetjes H., Verstegen W., Tamminga S. (2000). Effect of viscosity on digestion of nutrients in conventional and germ-free chicks. Brit. J. Nutr., 83: 533–540. Search in Google Scholar

Latham R., Williams M., Walters H., Carter B., Lee J. (2018). Efficacy of β-mannanase on broiler growth performance and energy utilization in the presence of increasing dietary galactomannan. Poultry Sci., 97: 549–556. Search in Google Scholar

Latorre J.D., Hernandez-Velasco X., Kuttappan V.A., Wolfenden R.E., Vicente J.L., Wolfenden A.D., Bielke L.R., Prado-Rebolledo O.F., Morales E., Hargis B.M. (2015). Selection of Bacillus spp. for cellulase and xylanase production as direct-fed microbials to reduce digesta viscosity and Clostridium perfringens proliferation using an in vitro digestive model in different poultry diets. Front. Vet. Sci., 2: 25. Search in Google Scholar

Lee J., Bailey C., Cartwright A. (2003). β-Mannanase ameliorates viscosity-associated depression of growth in broiler chickens fed guar germ and hull fractions. Poultry Sci., 82: 1925–1931. Search in Google Scholar

Lee J., Connor-Appleton S., Bailey C., Cartwright A. (2005). Effects of guar meal byproduct with and without beta-mannanase hemicell on broiler performance. Poultry Sci., 84: 1261–1267. Search in Google Scholar

Mayne R., Else R., Hocking P. (2007). High litter moisture alone is sufficient to cause footpad dermatitis in growing turkeys. Brit. Poultry Sci., 48: 538–545. Search in Google Scholar

Mcdevitt R., Brooker J., Acamovic T., Sparks N. (2006). Necrotic enteritis; a continuing challenge for the poultry industry. World. Poultry Sci. J., 62: 221–247. Search in Google Scholar

Montagne L., Pluske J., Hampson D. (2003). A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young nonruminant animals. Anim. Feed Sci. Technol., 108: 95–117. Search in Google Scholar

Moreira L. (2008). An overview of mannan structure and mannan-degrading enzyme systems. Appl. Microbiol. Biotechnol., 79: 165–178. Search in Google Scholar

Nagaraj M., Wilson C., Saenmahayak B., Hess J., Bilgili S. (2007). Efficacy of a litter amendment to reduce pododermatitis in broiler chickens. J. Appl. Poultry Res., 16: 255– 261. Search in Google Scholar

Naumann C., Bassler R. (2012). Methoden der landwirtschaftlichen Forschungs-und Untersuchungsanstalt, Biochemische Untersuchung von Futtermitteln. Methodenbuch III (einschließlich der achten Ergänzungen). VDLUFA, Darmstadt, Germany. Search in Google Scholar

Okamoto R. (2011). Epithelial regeneration in inflammatory bowel diseases. Inflamm. Regen., 31: 275–281. Search in Google Scholar

Ouhida I., Perez J., Piedrafita J., Gasa J. (2000). The effects of sepiolite in broiler chicken diets of high, medium and low viscosity. Productive performance and nutritive value. Anim. Feed Sci. Technol., 85: 183–194. Search in Google Scholar

Rehman Z., Aziz T., Bhatti S., Ahmad G., Kamran J., Umar S., Meng C., Ding C. (2016). Effect of β-mannanase on the performance and digestibility of broilers. Asian J. Anim. Vet. Adv., 11: 393–398. Search in Google Scholar

Saki A., Mazugi M., Kamyab A. (2005). Effect of mannanase on broiler performance, ileal and in-vitro protein digestibility, uric acid and litter moisture in broiler feeding. Int. J. Poult. Sci., 4: 21–26. Search in Google Scholar

Scapini L., De Cristo A., Schmidt J., Buzim R., Nogueira L., Palma S., Fernandes J. (2019). Effect of β-mannanase supplementation in conventional diets on the performance, immune competence and intestinal quality of broilers challenged with Eimeria sp. J. Appl. Poultry Res., 28: 1048–1057. Search in Google Scholar

Sharifi S., Golestani G., Yaghobfar A., Khadem A., Pashazanussi H. (2013). Effects of supplementing a multienzyme to broiler diets containing a high level of wheat or canola meal on intestinal morphology and performance of chicks. J. Appl. Poultry Res., 22: 671– 679. Search in Google Scholar

Shastak Y., Ader P., Feuerstein D., Ruehle R., Matuschek, M. (2015). ß-Mannan and mannanase in poultry nutrition. World. Poultry Sci. J., 71: 161–174. Search in Google Scholar

Shepherd E., Fairchild B. (2010). Footpad dermatitis in poultry. Poultry Sci., 89: 2043– 2051. Search in Google Scholar

Sun Q., Liu D., Guo S., Chen Y., Guo Y. (2015). Effects of dietary essential oil and enzyme supplementation on growth performance and gut health of broilers challenged by Clostridium perfringens. Anim. Feed Sci. Technol., 207: 234–244. Search in Google Scholar

Van Der Hoeven-Hangoor E., Van De Linde I., Paton N., Verstegen M., Hendriks W. (2013). Effect of different magnesium sources on digesta and excreta moisture content and production performance in broiler chickens. Poultry Sci., 92: 382–391. Search in Google Scholar

Van der Klis J.D., de Lange L. (2013). Water intake in poultry. Proc. 19th Europ. Poultry Nutr. Symp., Postdam, Germany, pp. 102–107. Search in Google Scholar

Yasar S., Forbes J. (2000). Enzyme supplementation of dry and wet wheat-based feeds for broiler chickens: performance and gut responses. Brit. J. Nutr., 84: 297–307. Search in Google Scholar

Youssef I., Beineke A., Rohn K., Kamphues J. (2011). Effects of litter quality (moisture, ammonia, uric acid) on development and severity of foot pad dermatitis in growing turkeys. Avian Dis., 55: 51–58. Search in Google Scholar

Zou X., Qiao X., Xu Z. (2006). Effect of β-mannanase (Hemicell) on growth performance and immunity of broilers. Poultry Sci., 85: 2176–2179. Search in Google Scholar

Zulkifli I., Al-Aqil A., Omar A., Sazili A., Rajion M. (2009). Crating and heat stress influence blood parameters and heat shock protein 70 expression in broiler chickens showing short or long tonic immobility reactions. Poultry Sci., 88: 471–476. Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo