Détails du magazine
Première parution
25 Nov 2011
4 fois par an
access type Accès libre

The effects of different stocking densities on nursery performance of Banana shrimp (Fenneropenaeus merguiensis) reared under biofloc condition

Publié en ligne: 16 May 2022
Volume & Edition: AHEAD OF PRINT
Pages: -
Reçu: 11 Jan 2022
Accepté: 02 Mar 2022
Détails du magazine
Première parution
25 Nov 2011
4 fois par an

The effects of Banana shrimp Fenneropenaeus merguiensis stocking density on water quality, growth performance, survival rate and body composition was assessed in a biofloc system with limited water exchange. The study was conducted for 32 days with an average larvae weight of 10 ± 0.85 mg in fiberglass tanks containing 120 L of water at four stocking densities. Five experimental treatments consisted of a control (density 1000 shrimps/ m3) with 50% daily water exchange and four biofloc treatments with limited water exchange (0.5% daily) at four stocking levels (1000 shrimps, T1; 2000 shrimps, T2, 3000 shrimps, T3 and 4000 shrimps, T4/ m3) were considered. According to the results, total ammonia nitrogen (0.99 mg /L) and nitrite levels showed higher amounts in the control compared with the other treatments (P<0.05). Growth performance and survival rate (95.55%) in the biofloc treatment with a density of 1000 shrimps/ m3 were higher than the other treatments (P<0.05). The proximate composition of shrimp body and biofloc produced in rearing tanks depended on the stocking density, so the shrimp body ash increased along with the enhancement of stocking density. The lowest amount of ash (31.53± 0.81%) and protein (26.38± 1.26) of bioflocs was observed in T1 treatment. The present study showed that stocking density affects the water quality, growth performance, survival rate and body composition of Banana shrimp larvae in a biofloc system. More improved indices of water quality, growth performance and survival rate were observed with the least stocking density of 1000 shrimps / m3 in the limited water exchange system.


Ali M.A.M., Khuraiba H.M., Elsayed N.E.G., Sharawy Z.Z. (2020). The effect of different stocking densities of marine shrimp larvae Litopeneaus vannamei on water quality using biofloc technology. Egypt. J. Nutr. Feeds, 23 (1): 183–195. Search in Google Scholar

Alves G.F.O., Fernandes A.F.A., Alvarenga E.R., Turra E.M., Sousa A.B., Teixeira, E.A. (2017). Effect of the transfer at different moments of juvenile Nile tilapia (Oreochromis niloticus) to the biofloc system in formation. Aquaculture, 479: 564–570. Search in Google Scholar

Anand P.S., Biju R.A.I.F., Balasubramanian P.C., Antony J., Saranya C., Christina L., Rajamanickam S., Panigrahi A., Ambasankar K., Vijayan K.K. (2021). Nursery rearing of Indian white shrimp, Penaeus indicus: Optimization of dietary protein levels and stocking densities under different management regimes. Aquaculture, 542: 736807. Search in Google Scholar

Anand P.S., Pillai S.M., Kumar S., Panigrahi A., Ravichandran P., Ponniah A. G., Ghoshal T.K. (2014). Growth, survival and length weight relationship of Fenneropenaeus merguiensis at two different stocking densities in low saline zero water exchange brackish water ponds. Indian J Mar Sci., 43: 1955–1966. Search in Google Scholar

Anderson J.L., Valderrama D., Jory D.E. (2019). GOAL 2019: global shrimp production review. Global Aquacult. Advoc (November), 1–5. Search in Google Scholar

APHA (2012). Standard Methods for the Examination of Water and Wastewater (22nd ed.). American Public Health Association, Washington, DC, USA. Search in Google Scholar

AOAC (2005). Official methods of analysis. Association of Official Analytical Chemists, INC., Arlington, Virginia, USA, p. 245. Search in Google Scholar

Araneda M., Pérez E.P., Gasca-Leyva E. (2008). White shrimp Penaeus vannamei culture in freshwater at three densities: condition state based on length and weight. Aquaculture, 283: 13–18. Search in Google Scholar

Arnold S.J., Sellars M.J., Crocos P.J., Coman G.J. (2006). Intensive production of juvenile tiger shrimp Penaeus monodon: An evaluation of stocking density and artificial substrates. Aquaculture, 261: 890–896. Search in Google Scholar

Arnold S.J., Coman F.E., Jackson C.J., Groves S.A. (2009). High-intensity, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: an evaluation of artificial substrates and stocking density, Aquaculture, 293: 42–48.10.1016/j.aquaculture.2009.03.049 Search in Google Scholar

Avnimelech Y. (2015). Biofloc Technology. A Practical Guidebook, 3rd edn. The World Aquaculture Society, Baton Rouge, LA. Search in Google Scholar

Avnimelech Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture, 264: 140–147. Search in Google Scholar

Avnimelech Y., Kochba M. (2009). Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing. Aquaculture, 287: 163–168. Search in Google Scholar

Azim M.E., Little D.C. (2008). The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283: 29–35. Search in Google Scholar

Balakrishnan G., Peyail S., Ramachandran K., Theivasigamani A., Savji K.A., Chokkaiah M., Nataraj P. (2011). Growth of cultured whiteleg Shrimp Litopenaeus vannamei (Boone 1931) in different stocking density. Adv. Appl. Sci. Res., 2 (3): 107–113. Search in Google Scholar

Correia E.S., Wilkenfeld J.S., Morris T.C., Wei L.Z., Prangnell D.I., Samocha T.M. (2014). Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquac. Eng., 59: 48–54. Search in Google Scholar

Crab R., Defoirdt T., Bossier P., Verstraete W. (2012). Biofloc technology in aquaculture: Beneficial effects and future challenges, Aquaculture, 356–357(4): 351–356.10.1016/j.aquaculture.2012.04.046 Search in Google Scholar

Cuzon G., Lawrence A., Gaxiola G., Rosas C., Guillaume J. (2004). Nutrition of Litopenaeus vannamei reared in tanks or in ponds. Aquaculture, 235: 513–551. Search in Google Scholar

Das S.K., Jana B.B. (2003). Pond fertilization regimen: State of the art. J. Appl. Aquac., 13 (1–2): 35–66. Search in Google Scholar

Das S.K., Mandal A. (2021a). Environmental amelioration in biofloc based rearing system of white leg shrimp (Litopenaeus vannamei) in West Bengal, India. Aquat. Living Resour., 34 (17): 1–12.10.1051/alr/2021016 Search in Google Scholar

Das S.K., Mandal A. (2021b). Supplementation of biofloc in carp (Cyprinus carpio var. Communis) culture as a potential tool of resource management in aquaculture. Aquat. Living Resour., 34 (20): 1–12.10.1051/alr/2021019 Search in Google Scholar

Dinda R., Mandal A., Das S.K. (2020). Neem (Azadirachta indica A. Juss) supplemented biofloc medium as alternative feed in common carp (Cyprinus carpio var. communis Linnaeus) culture. J. Appl. Aquac., 32(4): 361–379. Search in Google Scholar

Dorothy M.S., Vungarala H., Sudhagar A. Reddy A.K., Rani Asanaru Majeedkutty, B. (2021). Growth, body composition and antioxidant status of Litopenaeus vannamei juveniles reared at different stocking densities in the biofloc system using inland saline groundwater. Aquac. Res., 52(12): 6299–6307. Search in Google Scholar

Ebeling J.M., Timmons M.B., Bisogni J.J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic control of ammonia-nitrogen in aquaculture in aquaculture production systems. Aquaculture, 257: 346–358. Search in Google Scholar

El-Sayed A.M. (2021). Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade. Rev. Aquacult., 13(1): 676-705. Search in Google Scholar

Emerenciano M., Ballester E.L.C., Cavalli R.O., Wasielesky W. (2012). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac. Res., 43: 447–457. Search in Google Scholar

Emerenciano M.G.C., Rombenso A.N., Vieira F.d.N., Martins M.A., Coman G.J., Truong H.H., Noble T.H., Simon C.J. (2022). Intensification of Penaeid Shrimp Culture: An Applied Review of Advances in Production Systems, Nutrition and Breeding. Anim. 12: 236. Search in Google Scholar

Emerenciano M., Cuzon G., Arevalo M., Gaxiola G. (2014). Biofloc technology in intensive broodstock farming of the pink shrimp Farfantepenaeus duorarum: spawning performance, biochemical composition and fatty acid profile of eggs. Aquac. Res., 45: 1713–1726. Search in Google Scholar

Emerenciano M., Cuzon G., Arevalo M., Mascaro M., Gaxiola G. (2013). Effect of short-term fresh food supplementation on reproductive performance, biochemical composition and fatty acid profile of Litopenaeus vannamei (Boone) reared under biofloc conditions. Aquac. Int., 21: 987–1007. Search in Google Scholar

Emerenciano M.G.C., Martínez-C´ordova L.R., Martínez-Porchas M., Miranda-Baeza A. (2017). Biofloc technology (BFT): a tool for Water quality management in aquaculture. In: Tutu, Hlanganani (Ed.), Water Quality. Intech, pp. 91–109.10.5772/66416 Search in Google Scholar

Esparza-Leal H.M., Cardozo A.P., Wasielesky W. (2015). Performance of Litopenaeus vannamei post-larvae reared in indoor nursery tanks at high stocking density in clear-water versus biofloc system. Aquac. Eng., 68: 28–34. Search in Google Scholar

Esparza-Leal H.M., Ponce-Palafox J.T., Alvarez-Ruiz P., Lopez-´Alvarez E.S., Vazquez-Montoya N., Lopez-Espinoza M., Montoya-Mejía M., Gomez-Peraza R.L., Nava-Perez E. (2020). Effect of stocking density and water exchange on performance and stress tolerance to low and high salinity by Litopenaeus vannamei postlarvae reared with biofloc in intensive nursery phase. Aquac. Int., 28: 1473–1483. Search in Google Scholar

Furtado P.S., Campos B.R., Serra F.P., Klosterhoff M., Romano L.A., Wasielesky W. (2015). Effects of nitrate toxicity in the Pacific white shrimp, Litopenaeus vannamei, reared with biofloc technology (BFT). Aquac. Int., 23: 315–327. Search in Google Scholar

Gaona C.A., Poersch P.L., Krummenauer D., Foes G.K., Wasielesky W. (2011). The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. Int. J. Recirc. Aquac., 12: 54–73. Search in Google Scholar

Godoy L.C., Odebrecht C., Ballester E., Martins T.G., Wasielesky W. (2011). Effect of diatom supplementation during the nursery rearing of Litopenaeus vannamei (Boone, 1931) in a heterotrophic culture system. Aquac. Int., 20: 559–569. Search in Google Scholar

Hoang T., Leea S.Y., Keenan C.P., Marsden G.E. (2002). Effect of temperature on spawning of Penaeus merguiensis. J. Therm. Biol., 27: 433–437. Search in Google Scholar

Hostins B., Braga A., Lopes D.L., Wasielesky W., Poersch L.H. (2015). Effect of temperature on nursery and compensatory growth of pink shrimp Farfantepenaeus brasiliensis reared in a super-intensive biofloc system. Aquac. Eng., 66: 62–67. Search in Google Scholar

Huang J., Yang Q., Ma Z., Zhou F., Yang L., Deng J., Jiang, S. (2017). Effects of adding sucrose on Penaeus monodon (Fabricius, 1798) growth performance and water quality in a biofloc system. Aquac. Res., 48: 2316–2327. Search in Google Scholar

Hussain A.S., Mohammad D.A., Sallam W.S., Shoukry N.M., Davis D.A. (2021). Effects of culturing the Pacific white shrimp Penaeus vannamei in “biofloc” vs “synbiotic” systems on the growth and immune system. Aquaculture, 542: 736905. Search in Google Scholar

Jory D.E. (2019). Around the world of shrimp: notes from INFOFISH 2019. Global Aquacult. Advoc. (November), 1–6. Search in Google Scholar

Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021b). Biofloc system applied to Nile tilapia (Oreochromis niloticus) farming using different carbon sources: growth performance, carcass analysis, digestive and hepatic enzyme activity. Iran. J. Fish. Sci., 20(2); 490-513. Search in Google Scholar

Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021c). The effect of adding molasses in different times on performance of Nile tilapia (Oreochromis niloticus) raised in a lowsalinity biofloc system. Ann. Anim. Sci., 21(4): 1435–1454.10.2478/aoas-2021-0011 Search in Google Scholar

Khanjani M.H., Alizadeh M., Sharifinia M. (2021a). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquac. Int., 29(1): 307–321.10.1007/s10499-020-00627-9 Search in Google Scholar

Khanjani M.H., Ghaedi, G., Sharifinia, M. (2022a). Effects of diets containing β-glucan on survival, growth performance, hematological, immunity and biochemical parameters of rainbow trout (Oncorhynchus mykiss) fingerlings. Aquac. Res., 53(5): 1842–1850.10.1111/are.15712 Search in Google Scholar

Khanjani M.H., Sharifinia M. (2020). Biofloc technology as a promising tool to improve aquaculture production. Rev. Aquacult., 12: 1836–1850. Search in Google Scholar

Khanjani M.H., Sharifinia M. (2021). Production of Nile tilapia Oreochromis niloticus reared in a limited water exchange system: The effect of different light levels. Aquaculture, 542: 736912. Search in Google Scholar

Khanjani M.H., Sharifinia M. (2022). Biofloc technology with addition molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquac.Int., 30: 383–397. Search in Google Scholar

Khanjani M.H., Sharifinia M., Hajirezaee S. (2020). Effects of different salinity levels on water quality, growth performance and body composition of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultured in a zero water exchange heterotrophic system. Ann. Anim. Sci., 20: 1471–1486. Search in Google Scholar

Khanjani M.H., Sharifinia M., Hajirezaee S. (2022b). Recent progress towards the application of biofloc technology for tilapia farming. Aquaculture, 552: 738021.10.1016/j.aquaculture.2022.738021 Search in Google Scholar

Krummenauer D., Cavalli R.O., Poersch, L.H., Wasielesky W. (2011).Super intensive culture of white shrimp, Litopenaeus vannamei, in a biofloc technology system in southern Brazil at different stocking densities. J. World Aquac. Soc., 42: 726–733. Search in Google Scholar

Lara G., Krummenauer D., Abreu P.C., Poersch L.H., Wasielesky W. (2017). The use of different aerators on Litopenaeus vannamei biofloc culture system: effects on water quality, shrimp growth and biofloc composition. Aquac. Int., 25: 147–162. Search in Google Scholar

Legarda E.C., Barcelos S.S., Redig J.C., Ramírez N.C.B., Guimarães A.M., Santo C.M., Seiffert W.Q., Vieira F. (2018). Effects of stocking density and artificial substrates on yield and water quality in a biofloc shrimp nursery culture. Rev. Bras. Zootec., 47: e20170060. Search in Google Scholar

Li Y., Li J., Wang Q. (2006). The effects of dissolved oxygen concentration and stocking density on growth and non-specific immunity factors in Chinese shrimp, Fenneropenaeus chinensis. Aquaculture, 256: 608–616. Search in Google Scholar

Liu G., Zhu S., Liu D., Guo X., Ye Z. (2017). Effects of stocking density of the white shrimp Litopenaeus vannamei (Boone) on immunities, antioxidant status, and resistance against Vibrio harveyi in a biofloc system. Fish Shellfish Immunol., 67(1): 19–26. Search in Google Scholar

Loureiro C.K., Wasielesky W., Abreu P.C. (2012). The use of protozoan, rotifers and nematodes as live food for shrimp raised in BFT system. Atlantica, Rio Grande, 34(1): 5–12. Search in Google Scholar

Martınez-Cordova L.R., Emerenciano M., Miranda-Baeza A., Martınez-Porchas M. (2015). Microbial-based systems for aquaculture of fish and shrimp: An updated review. Rev. Aquacult., 7: 131–148. Search in Google Scholar

Minabi K., Sourinejad I., Alizadeh M., Ghatrami E.R., Khanjani M.H. (2020). Effects of different carbon to nitrogen ratios in the biofloc system on water quality, growth, and body composition of common carp (Cyprinus carpio L.) fingerlings. Aquac. Int., 28: 1883–1898. Search in Google Scholar

Mishra J.K., Samocha T.M., Patnaik S., Speed M., Gandy R.L., Ali A.M. (2008). Performance of an intensive nursery system for the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition. Aquac. Eng., 38, 2–15.10.1016/j.aquaeng.2007.10.003 Search in Google Scholar

Moreno-Arias A., López-Elías J.A., Martínez-Córdova L.R., Ramírez-Suárez J.C., Carvallo-Ruiz M.G., García-Sánchez G., Lugo-Sánchez M.E., Miranda-Baeza A. (2018). Effect of fishmeal replacement with a vegetable protein mixture on the amino acid and fatty acid profiles of diets, biofloc and shrimp cultured in BFT system. Aquaculture, 483: 53–6210.1016/j.aquaculture.2017.10.011 Search in Google Scholar

Moreno-Arias A., López-Elías J.A., Miranda-Baeza A., Rivas Negrini C., Castro C.S., Bittencourt-Guimaraes A.T., Frozza A., Ortiz-Kracizy R., Cupertino-Ballester E.L. (2017). Stocking density for freshwater prawn Macrobrachium rosenbergii (Decapoda, Palaemonidae) in biofloc system. Lat. Am. J. Aquat. Res., 45: 891–899. Search in Google Scholar

Moss K.K., Moss S.M. (2004). Effects of artificial substrate and stocking density on the nursery production of Pacific white shrimp Litopenaeus vannamei. J. World Aquac. Soc., 35: 536–542. Search in Google Scholar

Mugwanya M., Dawood M.A.O., Kimera F., Sewilam H. (2021). Biofloc Systems for Sustainable Production of Economically Important Aquatic Species: A Review. Sustainability, 13: 7255. Search in Google Scholar

Neto H.S., Santaella S.T., Nunes A.J.P. (2015). Bioavailability of crude protein and lipid from biofloc meals produced in an activated sludge system for white shrimp, Litopenaeus vannamei. Rev. Bras. Zootec., 44: 269–275. Search in Google Scholar

Olier B.S., Tubin J.S., de Mello G.L., Martınez-Porchas M., Emerenciano M.G. (2020). Does vertical substrate could influence the dietary protein level and zootechnical performance of the Pacific white shrimp Litopenaeus vannamei reared in a biofloc system? Aquac. Int., 28: 1227–1241. Search in Google Scholar

Otoshi C.A., Moss D.R., Moss S.M. (2011). Growth-enhancing effect of pond water on four size classes of Pacific white shrimp, Litopenaeus vannamei. J. World Aquac. Soc., 42: 417–422. Search in Google Scholar

Otoshi C.A., Scott M.S., Naguwa F.C., Moss S.M. (2007). Shrimp behavior may affect culture performance at super-intensive stocking densities. Global Aquacult. Advoc., 2:67–69. Search in Google Scholar

Pierri V., Valter-Severino D., Goulart-de-Oliveira K., do Espırito-Santo C.M., Nascimento-Vieira F., Quadros-Seiffert W.(2015). Cultivation of marine shrimp in biofloc technology (BFT) system under different water alkalinities. Braz. J. Biol., 75: 558–564. Search in Google Scholar

Poli M.A., Martins M.A., Pereira S.A., Jesus G.F.A., Martins M.L., Mouriño J.L.P., Vieira F.N. (2021). Increasing stocking densities affect hemato-immunological parameters of Nile tilapia reared in an integrated system with Pacific white shrimp using biofloc technology. Aquaculture, 536: 73649710.1016/j.aquaculture.2021.736497 Search in Google Scholar

Ponce-Palafox J.T., Pavia A.A., Lopez D.G.M., Arredondo-Figueroa J.L., Lango-Reynoso F., Casta˜neda-Chavez M.D.R., Esparza-Leal H., Ruiz-Luna A., Paez-Ozuna F., Castillo-Vargasmachuca S.G., Peraza-G´omez V. (2019). Response surface analysis of temperature-salinity interaction effects on water quality, growth and survival of shrimp Litopenaeus vannamei postlarvae raised in biofloc intensive nursery production. Aquaculture, 503: 312–321. Search in Google Scholar

Rajkumar, M., Pandey, P., Aravind, R., Vennila, A., Bharti, V., Purushothaman, C. (2016). Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei (Boone, 1931). Aquac. Res., 47(11): 3432–3444. Search in Google Scholar

Ray A.J., Leffler J.W., Browdy C.L. (2019). The effects of a conventional feed versus a fish-free feed and biofloc management on the nutritional and human sensory characteristics of shrimp (Litopenaeus vannamei). Aquac. Int., 27: 261–277. Search in Google Scholar

Rezende P.C., Schleder D.D., Seiffert W.Q., Andreatta E.R., Vieira F.D.N. (2019). Pre-nursery of shrimp post-larvae reared in biofloc system under different stocking densities. Bol. Inst. Pesca., 45(4): e533. Search in Google Scholar

Rodrigues D.E., De Souza R.L., Girao P.J.M., Braga I.F.M., de Souza-Correia E. (2018). Culture of Nile tilapia in a biofloc system with different sources of carbon. Rev. Cienc. Agron., 49: 458–466. Search in Google Scholar

Rodríguez-Olague D., Ponce-Palafox J.T., Castillo-Vargasmachuca S.G., Arambul-Munoz E., Santos R.G., Esparza-Leal H.M. (2021). Effect of nursery system and stocking density to produce juveniles of white leg shrimp Litopenaeus vannamei. Aquac. Rep., 20: 100709. Search in Google Scholar

Samocha T.M., Patnaik S., Speed M., Ali A.M., Burger J.M., Almeida R.V., Ayub Z., Harisanto M., Horowitz A., Brock D.L. (2007). Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquac. Eng., 36:184–191. Search in Google Scholar

Santacruz Reyes R.A., Chien Y.H. (2012). The potential of yucca schidigera extract to reduce the ammonia pollution from shrimp farming. Bioresour. Technol., 113: 311–314. Search in Google Scholar

Sarker M., Das S.K., Mondal B. (2019). Comparative efficiency of biofloc and feed based culture of Common carp (Cyprinus carpio L.). Indian J. Anim. Hlth., 58(2): 203–212. Search in Google Scholar

Satanwat P., Tran T.P., Hirakata Y., Watari T., Hatamoto M., Yamaguchi T., Pungrasmia W., Powtongsookf S. (2020). Use of an internal fibrous biofilter for intermittent nitrification and denitrification treatments in a zero-discharge shrimp culture tank. Aquac. Eng., 88: 102041. Search in Google Scholar

Shakir C., Lipton A.P., Manilal A., Sugathanand S., Selvin J. (2014). Effect of stocking density on the survival rate and growth performance in Penaeus monodon. J. Basic. Appl., 10: 231-238. Search in Google Scholar

Shrivastava V., Chadha N.K., Koya M.d., Lakra W.S., Sawant P.B., Remya S. (2017). Effect of Stocking Density on Growth and Survival of Fenneropenaeus merguiensis (de Man, 1888) Post Larvae. Int. J. Curr. Microbiol., 6(9): 1779–1789. Search in Google Scholar

Sivanandavel P., Soundarapandian P. (2010). Effect of stocking density on growth and survival of cage reared Indian white shrimp Penaeus indicus (H.Milne edwards) at vellar estuary. Asian J. Agric. Sci., 2: 1–4. Search in Google Scholar

Sookying D., D’Silva F.S., Allen Davis D., Hanson T.R. (2011). Effects of stocking density on the performance of Pacific white shrimp Litopenaeus vannamei cultured under pond and outdoor tank conditions using a high soybean meal diet. Aquaculture, 319: 232–239. Search in Google Scholar

Tao C.T., Hai T.N., Terahara T., Hoa N.V. (2021). Influence of stocking density on survival and growth of larval and postlarval white leg shrimp (Litopenaeus vannamei Boone, 1931) applied biofloc technology. AACL Bioflux, 14(3): 1801–1810. Search in Google Scholar

Tao C.T., Khanh L.V., Hai T.N., Viet L.Q., An C.M, Toan P.V., Nghi D.H., Viet H.V. (2019). Rearing larvae of the black tiger shrimp (Penaeus monodon) by biofloc technology at different stocking density]. Science Journal-Can Tho University 55(4B):64–71. Search in Google Scholar

Wang X., Ma M., Dong S., Cao M. (2004). Effects of salinity and dietary carbohydrate levels on growth and energy budget of juvenile L.vannamei. J. Shellfish Res., 23: 231–236. Search in Google Scholar

Wasielesky W., Froes C., Foes G., Krummenauer D., Lara G., Poersch L. (2013). Nursery of Litopenaeus vannamei reared in a biofloc system: The effect of stocking densities and compensatory growth. J. Shellfish Res., 32: 799–806. Search in Google Scholar

Xu W.J., Pan L.Q. (2012). Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, 356: 147–152. Search in Google Scholar

Xu W.J., Pan L.Q. (2014). Evaluation of dietary protein level on selected parameters of immune and antioxidant systems, and growth performance of juvenile Litopenaeus vannamei reared in zero-water exchange biofloc-based culture tanks. Aquaculture, 426–427: 181–188. Search in Google Scholar

Yeganeh V., Sharifinia M., Mobaraki S., Dashtiannasab A., Aeinjamshid K., Borazjani J.M., Maghsoudloo T. (2020). Survey of survival rate and histological alterations of gills and hepatopancreas of the Litopenaeus vannamei juveniles caused by exposure of Margalefidinium / Cochlodinium polykrikoides isolated from the Persian Gulf. Harmful Algae, 97, 101856.10.1016/j.hal.2020.10185632732050 Search in Google Scholar

Zhang K., Pan L., Chen W., Wang C. (2017). Effect of using sodium bicarbonate to adjust the pH to different levels on water quality, the growth and the immune response of shrimp Litopenaeus vannamei reared in zero-water exchange biofloc-based culture tanks. Aquac. Res., 48: 1194–1208. Search in Google Scholar

Zhu Z.M, Lin X.T, Pan J.X., Xu Z.N. (2016). Effect of cyclical feeding on compensatory growth, nitrogen and phosphorus budgets in juvenile Litopenaeus vannamei. Aquac. Res., 47: 283–289. Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo