Terrain exploration robots can be of great usefulness in critical navigation circumstances. However, the challenge is how to guarantee a control for covering a full terrain area. That way, the application of a chaotic oscillator to control the wheels of an autonomous mobile robot, is introduced herein. Basically, we describe the realization of a random number generator (RNG) based on a double-scroll chaotic oscillator, which is used to guide the robot to cover a full terrain area. The resolution of the terrain exploration area is determined by both the number of bits provided by the RNG and the characteristics of step motors. Finally, the experimental results highlight the covered area by painting the trajectories that the robot explores.
Keywords
- chaotic oscillator
- operational amplifier
- random number generator
- autonomous robot
- step motor
- microcontroller
Probabilistic three-phase power flow in a distribution system applying the pseudo-inverse and cumulant method Spectral and energy efficiency trade-off in massive MIMO systems using multi-objective bat algorithm Observability, controllability and stability of a nonlinear RLC circuit in form of a Duffing oscillator by means of theoretical mechanical approach Influence of temperature on detectable minimum rotation rate in i-FOGs using Er-doped SFSs Smart DTC algorithm with automatic torque ripple adjustment Decentralized controlled charging and vehicle-to-grid solution for voltage regulation in low voltage distribution systems A novel principal component-based virtual sensor approach for efficient classification of gases/odors Multi-UAV integrated HetNet for maximum coverage in disaster management Investigation of field free region formed by dual Halbach array for focused magnetic hyperthermia Study of subjective and objective quality assessment of infrared compressed images