1. bookVolume 32 (2022): Edition 2 (June 2022)
    Towards Self-Healing Systems through Diagnostics, Fault-Tolerance and Design (Special section, pp. 171-269), Marcin Witczak and Ralf Stetter (Eds.)
Détails du magazine
License
Format
Magazine
eISSN
2083-8492
Première parution
05 Apr 2007
Périodicité
4 fois par an
Langues
Anglais
access type Accès libre

Parameter Identifiability for Nonlinear LPV Models

Publié en ligne: 04 Jul 2022
Volume & Edition: Volume 32 (2022) - Edition 2 (June 2022)<br/>Towards Self-Healing Systems through Diagnostics, Fault-Tolerance and Design (Special section, pp. 171-269), Marcin Witczak and Ralf Stetter (Eds.)
Pages: 255 - 269
Reçu: 13 May 2021
Accepté: 02 Feb 2022
Détails du magazine
License
Format
Magazine
eISSN
2083-8492
Première parution
05 Apr 2007
Périodicité
4 fois par an
Langues
Anglais
Abstract

Linear parameter varying (LPV) models are being increasingly used as a bridge between linear and nonlinear models. From a mathematical point of view, a large class of nonlinear models can be rewritten in LPV or quasi-LPV forms easing their analysis. From a practical point of view, that kind of model can be used for introducing varying model parameters representing, for example, nonconstant characteristics of a component or an equipment degradation. This approach is frequently employed in several model-based system maintenance methods. The identifiability of these parameters is then a key issue for estimating their values based on which a decision can be made. However, the problem of identifiability of these models is still at a nascent stage. In this paper, we propose an approach to verify the identifiability of unknown parameters for LPV or quasi-LPV state-space models. It makes use of a parity-space like formulation to eliminate the states of the model. The resulting input-output-parameter equation is analyzed to verify the identifiability of the original model or a subset of unknown parameters. This approach provides a framework for both continuous-time and discrete-time models and is illustrated through various examples.

Keywords

Abbas, H.S., Tóth, R., Petreczky, M., Meskin, N. and Mohammadpour, J. (2014). Embedding of nonlinear systems in a linear parameter-varying representation, IFAC Proceedings Volumes 47(3): 6907–6913.10.3182/20140824-6-ZA-1003.02506 Search in Google Scholar

Alkhoury, Z., Petreczky, M. and Mercère, G. (2017). Identifiability of affine linear parameter-varying models, Automatica 80: 62–74.10.1016/j.automatica.2017.01.029 Search in Google Scholar

Anaya, J.Z. and Henrion, D. (2009). An improved Toeplitz algorithm for polynomial matrix null-space computation, Applied Mathematics and Computation 207(1): 256–272.10.1016/j.amc.2008.10.037 Search in Google Scholar

Anguelova, M. (2007). Observability and Identifiability of Nonlinear Systems with Applications in Biology, PhD thesis, Chalmers University of Technology, Gothenburg. Search in Google Scholar

Anstett, F. (2006). Les systèmes dynamiques chaotiques pour le chiffrement: Synthèse et cryptanalyse, PhD thesis, Université Henri Poincaré-Nancy I, Nancy. Search in Google Scholar

Anstett, F., Bloch, G., Millérioux, G. and Denis-Vidal, L. (2008). Identifiability of discrete-time nonlinear systems: The local state isomorphism approach, Automatica 44(11): 2884–2889.10.1016/j.automatica.2008.03.019 Search in Google Scholar

Anstett, F., Millérioux, G. and Bloch, G. (2006). Chaotic cryptosystems: Cryptanalysis and identifiability, IEEE Transactions on Circuits and Systems I: Regular Papers 53(12): 2673–2680.10.1109/TCSI.2006.885979 Search in Google Scholar

Audoly, S., Bellu, G., D’Angiò, L., Saccomani, M.P. and Cobelli, C. (2001). Global identifiability of nonlinear models of biological systems, IEEE Transactions on Biomedical Engineering 48(1): 55–65.10.1109/10.900248 Search in Google Scholar

Balsa-Canto, E., Alonso, A.A. and Banga, J.R. (2010). An iterative identification procedure for dynamic modeling of biochemical networks, BMC Systems Biology 4: 11.10.1186/1752-0509-4-11 Search in Google Scholar

Beelen, H. and Donkers, T. (2017). Joint state and parameter estimation for discrete-time polytopic linear parameter-varying systems, IFAC-PapersOnLine 50(1): 9778–9783.10.1016/j.ifacol.2017.08.880 Search in Google Scholar

Bellman, R. and Aström, K. J. (1970). On structural identifiability, Mathematical Biosciences 7(3): 329–339.10.1016/0025-5564(70)90132-X Search in Google Scholar

Bellu, G., Saccomani, M.P., Audoly, S. and D’Angiò, L. (2007). Daisy: A new software tool to test global identifiability of biological and physiological systems, Computer Methods and Programs in Biomedicine 88(1): 52–61.10.1016/j.cmpb.2007.07.002288853717707944 Search in Google Scholar

Buchberger, B. (2006). Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, Journal of Symbolic Computation 41(3–4): 475–511.10.1016/j.jsc.2005.09.007 Search in Google Scholar

Chis, O.-T., Banga, J.R. and Balsa-Canto, E. (2011). Structural identifiability of systems biology models: A critical comparison of methods, PLOS ONE 6(11): e27755.10.1371/journal.pone.0027755 Search in Google Scholar

Chow, E. and Willsky, A. (1984). Analytical redundancy and the design of robust failure detection systems, IEEE Transactions on Automatic Control 29(7): 603–614.10.1109/TAC.1984.1103593 Search in Google Scholar

Coll, C. and Sánchez, E. (2019). Parameter identification and estimation for stage-structured population models, International Journal of Applied Mathematics and Computer Science 29(2): 327–336, DOI: 10.2478/amcs-2019-0024. Ouvrir le DOISearch in Google Scholar

Dankers, A., Tóth, R., Heuberger, P. S., Bombois, X. and Van den Hof, P.M. (2011). Informative data and identifiability in LPV-ARX prediction-error identification, 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011, Orlando, USA, pp. 799–804. Search in Google Scholar

Denis-Vidal, L. and Joly-Blanchard, G. (1996). Identifiability of some nonlinear kinetics, 3rd Workshop on Modelling of Chemical Reaction Systems, Heidelberg, Germany, pp. 1–8. Search in Google Scholar

Denis-Vidal, L., Joly-Blanchard, G. and Noiret, C. (1999). Some results and applications about identifiability of non-linear systems, European Control Conference, ECC 1999, Karl-sruhe, Germany, pp. 1232–1237. Search in Google Scholar

Glover, K. and Willems, J. (1974). Parametrizations of linear dynamical systems: Canonical forms and identifiability, IEEE Transactions on Automatic Control 19(6): 640–646.10.1109/TAC.1974.1100711 Search in Google Scholar

Joly-Blanchard, G. and Denis-Vidal, L. (1998). Some remarks about an identifiability result of nonlinear systems, Auto-matica 34(9): 1151–1152.10.1016/S0005-1098(98)00055-7 Search in Google Scholar

Joubert, D. (2020). Structural Identifiability of Large Systems Biology Models, PhD thesis, Wageningen University, Wageningen. Search in Google Scholar

Khare, S.R., Pillai, H.K. and Belur, M.N. (2010). Algorithm to compute minimal nullspace basis of a polynomial matrix, 19th International Symposium on Mathematical Theory of Networks and Systems, MTNS 2010, Budapest, Hungary, pp. 219–224. Search in Google Scholar

Kwiatkowski, A., Boll, M.-T. and Werner, H. (2006). Automated generation and assessment of affine LPV models, 45th IEEE Conference on Decision and Control, CDC 2006, San Diego, USA, pp. 6690–6695. Search in Google Scholar

Lee, L.H. and Poolla, K. (1997). Identifiability issues for parameter-varying and multidimensional linear systems, ASME 1997 Design Engineering Technical Conferences, Sacramento, USA.10.1115/DETC97/VIB-4240 Search in Google Scholar

Ljung, L. and Glad, T. (1994). On global identifiability for arbitrary model parametrizations, Automatica 30(2): 265–276.10.1016/0005-1098(94)90029-9 Search in Google Scholar

Nômm, S. and Moog, C. (2004). Identifiability of discrete-time nonlinear systems, IFAC Proceedings Volumes 37(13): 333–338.10.1016/S1474-6670(17)31245-4 Search in Google Scholar

Němcová, J. (2010). Structural identifiability of polynomial and rational systems, Mathematical Biosciences 223(2): 83–96.10.1016/j.mbs.2009.11.00219913563 Search in Google Scholar

Nijmeijer, H. and Van der Schaft, A. (1990). Nonlinear Dynamical Control Systems, Springer, New York.10.1007/978-1-4757-2101-0 Search in Google Scholar

Ohtake, H., Tanaka, K. and Wang, H.O. (2003). Fuzzy modeling via sector nonlinearity concept, Integrated Computer-Aided Engineering 10(4): 333–341.10.3233/ICA-2003-10404 Search in Google Scholar

Ollivier, F. (1990). Le problème de l’identifiabilité structurelle globale: Approche théorique, méthodes effectives et bornes de complexité, PhD thesis, Ecole Polytechnique, Palaiseau. Search in Google Scholar

Peeters, R.L. and Hanzon, B. (2005). Identifiability of homogeneous systems using the state isomorphism approach, Automatica 41(3): 513–529.10.1016/j.automatica.2004.11.019 Search in Google Scholar

Petreczky, M. and Mercère, G. (2012). Affine LPV systems: Realization theory, input-output equations and relationship with linear switched systems, 51st Annual Conference on Decision and Control, CDC 2012, Maui, USA, pp. 4511–4516. Search in Google Scholar

Pohjanpalo, H. (1978). System identifiability based on the power series expansion of the solution, Mathematical Biosciences 41(1–2): 21–33.10.1016/0025-5564(78)90063-9 Search in Google Scholar

Saccomani, M.P. (2011). An effective automatic procedure for testing parameter identifiability of HIV/AIDS models, Bulletin of Mathematical Biology 73(8): 1734–1753.10.1007/s11538-010-9588-2 Search in Google Scholar

Saccomani, M.P., Audoly, S., Bellu, G., Cobelli, C. (1997). Global identifiability of nonlinear model parameters, IFAC Proceedings Volumes 30(11): 233–238.10.1016/S1474-6670(17)42852-7 Search in Google Scholar

Srinivasarengan, K., Ragot, J., Maquin, D. and Aubrun, C. (2016). Takagi–Sugeno model based nonlinear parameter estimation in air handling units, 4th IFAC International Conference on Intelligent Control and Automation Sciences, ICONS 2016, Reims, France, pp. 188–193. Search in Google Scholar

Tunali, E. T. and Tarn, T.-J. (1987). New results for identifiability of nonlinear systems, IEEE Transactions on Automatic Control 32(2): 146–154.10.1109/TAC.1987.1104544 Search in Google Scholar

Vajda, S. and Rabitz, H. (1989). State isomorphism approach to global identifiability of nonlinear systems, IEEE Transactions on Automatic Control 34(2): 220–223.10.1109/9.21105 Search in Google Scholar

Verdière, N., Denis-Vidal, L., Joly-Blanchard, G. and Domurado, D. (2005). Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophage mannose receptor, International Journal of Applied Mathematics and Computer Science 15(4): 517–526. Search in Google Scholar

Villaverde, A.F. and Banga, J.R. (2017). Structural properties of dynamic systems biology models: Identifiability, reachability, and initial conditions, Processes 5(2): 29.10.3390/pr5020029 Search in Google Scholar

Villaverde, A.F., Barreiro, A. and Papachristodoulou, A. (2016). Structural identifiability of dynamic systems biology models, PLOS Computational Biology 12(10): e1005153.10.1371/journal.pcbi.1005153508525027792726 Search in Google Scholar

Walter, E. and Lecourtier, Y. (1982). Global approaches to identifiability testing for linear and nonlinear state space models, Mathematics and Computers in Simulation 24(6): 472–482.10.1016/0378-4754(82)90645-0 Search in Google Scholar

Xia, X. and Moog, C.H. (2003). Identifiability of nonlinear systems with application to HIV/AIDS models, IEEE Transactions on Automatic Control 48(2): 330–336.10.1109/TAC.2002.808494 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo