1. bookVolume 23 (2019): Edizione 2 (June 2019)
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-5999
Prima pubblicazione
12 Mar 2016
Frequenza di pubblicazione
1 volta all'anno
Lingue
Inglese
access type Accesso libero

Impact of Print Speed on Strength of Samples Printed in FDM Technology

Pubblicato online: 09 Sep 2019
Volume & Edizione: Volume 23 (2019) - Edizione 2 (June 2019)
Pagine: 33 - 38
Ricevuto: 01 Apr 2019
Accettato: 01 Jun 2019
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-5999
Prima pubblicazione
12 Mar 2016
Frequenza di pubblicazione
1 volta all'anno
Lingue
Inglese
Abstract

This paper presents research on the impact of printing speed on the strength of a manufactured object and is the next stage of the author's research on the impact of technological parameters of 3D printing on the strength of printed models. The tested universal specimens were printed using the FDM (Fused Deposition Modeling) method from PLA (polylactic acid, polylactide). The paper presents the maximum breaking force of the samples and the time of printing samples depending on the printing speed, which varied from 20 mm·s−1 to 100 mm·s−1. The research indicates that the strength of samples decreases with increasing speed. In the range of 50-80 mm·s−1, the strength of the specimens remined at a similar level, however, above 80 mm·s−1, it decreased significantly.

Keywords

Anithaa, R., Arunachalamb, S., Radhakrishnana, P. (2001). Critical parameters influencing the quality of prototypes in fused deposition modelling, Journal of Materials Processing Technology, 118, 385-388.10.1016/S0924-0136(01)00980-3Search in Google Scholar

Lee, B. H., Abdullah, J., Khan, Z. A. (2005). Optimization of rapid prototyping parameters for production of flexible ABS object. Journal of Materials Processing Technology, 169, 54-61.10.1016/j.jmatprotec.2005.02.259Search in Google Scholar

Rabiej, M. (2012). Statystyka z programem Statistica. Helion. ISBN 978-83-246-4110-9.Search in Google Scholar

Miazio, Ł. (2015). Badanie wytrzymałości na rozciąganie próbek wydrukowanych w technologii FDM z różną gęstością wypełnienia. Mechanik, 7, 533-538.Search in Google Scholar

Miazio, Ł. (2016). Badanie wytrzymałości na zginanie próbek wydrukowanych w technologii FDM z różną gęstością wypełnienia. Mechanik, 7, 758-759.10.17814/mechanik.2016.7.159Search in Google Scholar

Miazio, Ł. (2017). Badanie wytrzymałości na rozciąganie próbek wydrukowanych w technologii FDM z różną gęstością wypełnienia – wypełnienie heksagonalne i koncentryczne. Przegląd Mechaniczny, 6, 51-53.10.15199/148.2017.6.11Search in Google Scholar

Miazio, Ł. (2018). Badanie wytrzymałości na zginanie próbek wydrukowanych w technologii FDM z różną gęstością wypełnienia – wypełnienie heksagonalne, koncentryczne i trójkątne. Mechanik, 7, 546-548.10.17814/mechanik.2018.7.79Search in Google Scholar

PN-EN ISO 527:1998. Tworzywa sztuczne. Oznaczanie właściwości mechanicznych przy statycznym rozciąganiu.Search in Google Scholar

The StL Format: Standard Data Format for Fabbers, (2019). Available online: http://www.fabbers.com/tech/STL_Format. (accessed on 19/06/2019).Search in Google Scholar

Ultimaker Cura manual, (2019). Available online: https://ultimaker.com/en/products/ultimaker-cura-software. (accessed on 19/06/2019).Search in Google Scholar

Wimpenny D.I., Pulak M., Pandey L., Kumar J. (2017). Advances in 3D Printing & Additive Manufacturing Technologies. Springer, 9-28.10.1007/978-981-10-0812-2Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo