1. bookVolume 22 (2022): Edizione 3 (July 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
2300-8733
Prima pubblicazione
25 Nov 2011
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

Potential of graded doses of neem (Azadirachta indica) seed oil on ruminal fermentation characteristics, degradability, and methane formation in vitro

Pubblicato online: 19 Jul 2022
Volume & Edizione: Volume 22 (2022) - Edizione 3 (July 2022)
Pagine: 993 - 999
Ricevuto: 29 Apr 2021
Accettato: 03 Sep 2021
Dettagli della rivista
License
Formato
Rivista
eISSN
2300-8733
Prima pubblicazione
25 Nov 2011
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Abstract

Neem (Azadirachta indica) belongs to Meliaceae family, represented mainly by trees, and widely cultivated and adapted in many tropical regions. The objective of this study was to evaluate the effect of increasing doses of neem seed oil (NSO) on ruminal methane (CH4) formation, diet degradability, and fermentation characteristics after 24 h of in vitro incubation. Treatments were randomly designed to four doses of NSO supplemented to the basal diet (0, 20, 40, or 60 ml/kg DM). Increasing NSO dose resulted in a quadratic decrease (P < 0.05) in net gas (expressed as ml/g DM and ml/g TDOM) and CH4 (expressed as ml/g TDNDF) production, while CH4 (expressed as ml/g TDOM), acetate and propionate proportions decreased linearly confirming a dose-related effect. A quadratic increase in TDOM and linear increase (P = 0.023) in DNDF, NH3-N concentrations, and total protozoal counts were observed. However, a linear increase (P = 0.009) was found in the ruminal butyrate proportion and partitioning factor as dietary NSO supplementation increased. In conclusion, dietary NSO supplementation mediated some desirable fermentation patterns, reducing ruminal NH3-N concentration and CH4 production with some adverse effects on fiber degradability. However, practical research under long-term conditions is required for further investigation.

Keywords

Bayat A.R., Tapio I., Vilkki J., Shingfield K.J., Leskinen H. (2018). Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield. J. Dairy Sci., 101: 1136–1151. Search in Google Scholar

Besbes S., Blecker C., Deroanne C., Lognay G., Drira N.E., Attia H. (2005). Heating effects on some quality characteristics of date seed oil. Food Chem., 91: 469–476. Search in Google Scholar

Blümmel M., Steingaβ H., Becker K. (1997). The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. Br. J. Nutr., 77: 911–921. Search in Google Scholar

Broucek J. (2018). Options to methane production abatement in ruminants: a review. J. Anim. Plant Sci., 28: 348–364. Search in Google Scholar

Bueno I.C., Cabral Filho S.L., Gobbo S.P., Louvandini H., Vitti D.M., Abdalla A.L. (2005). Influence of inoculum source in a gas production method. Anim. Feed Sci. Technol., 30: 95–105. Search in Google Scholar

Dehority A.B. (1993). Laboratory Manual for Classification and Morphology of Rumen Ciliate Protozoa. Laboratory Manual for Classification and Morphology of Rumen Ciliate Protozoa. CRC Press, Boca Raton, FL, USA. Search in Google Scholar

Demirtas A., Ozturk H., Sudagidan M., Keyvan E., Yavuz O., Gulay O.Y., Musa S.A.A. (2019). Effects of commercial aldehydes from green leaf volatiles (green odour) on rumen microbial population and fermentation profile in an artificial rumen (Rusitec). Anaerobe, 55: 83–92. Search in Google Scholar

Dey A., Paul S.S., Lailer P.C., Dahiya, S.S. (2021). Reducing enteric methane production from buffalo (Bubalus bubalis) by garlic oil supplementation in in vitro rumen fermentation system. SN Appl. Sci., 3: 1–7. Search in Google Scholar

Djibril D., Mamadou F., Gérard V., Geuye M.D.C., Oumar S., Luc R. (2015). Physical characteristics, chemical composition and distribution of constituents of the neem seeds (Azadirachta indica A. Juss) collected in Senegal. Res. J. Chem. Sci., 606X. Search in Google Scholar

Ebeid H.M., Mengwei L., Kholif A.E., Hassan F.U., Lijuan P., Xin L., Chengjian Y. (2020). Moringa oleifera oil modulates rumen microflora to mediate in vitro fermentation kinetics and methanogenesis in total mix rations. Curr. Microbiol., 77: 1271–1282. 5. Search in Google Scholar

El-Nile, A., Elazab M., El-Zaiat H., El-Azrak K., Elkomy A., Sallam S., Soltan Y. (2021). In vitro and in Vivo assessment of dietary supplementation of both natural or nano-zeolite in goat diets: effects on ruminal fermentation and nutrients digestibility. Animals, 11: 2215. Search in Google Scholar

El-Zaiat H.M., Abdalla A.L. (2019). Potentials of patchouli (Pogostemon cablin) essential oil on ruminal methanogenesis, feed degradability, and enzyme activities in vitro. Environ. Sci. Pollut. Res., 26: 30220–30228. Search in Google Scholar

El-Zaiat H.M., Araujo R.C., Soltan Y.A., Morsy A.S., Louvandini H., Pires A.V., Patino H.O., Correa P.S., Abdalla A.L. (2014). Encapsulated nitrate and cashew nut shell liquid on blood and rumen constituents, methane emission, and growth performance of lambs. J. Anim. Sci., 92: 2214–2224. Search in Google Scholar

El-Zaiat H.M., Kholif A.E., Mohamed D.A., Matloup O.H., Anele U.Y., Sallam S.M. (2019 a). Enhancing lactational performance of Holstein dairy cows under commercial production: malic acid as an option. J. Sci. Food Agric., 99: 885–892.10.1002/jsfa.925930009384 Search in Google Scholar

El-Zaiat H.M., Ré D.D., Patino H.O., Sallam S.M. (2019b). Assessment of using dried vinasse rice to replace soybean meal in lambs diets: In vitro, lambs performance and economic evaluation. Small Rumin. Res., 173: 1–8.10.1016/j.smallrumres.2019.01.003 Search in Google Scholar

El-Zaiat H.M., Kholif A.E., Moharam M.S., Attia M.F., Abdalla A.L., Sallam S.M. (2020). The ability of tanniniferous legumes to reduce methane production and enhance feed utilization in Barki rams: in vitro and in vivo evaluation. Small Rumin. Res., 193: 106259. Search in Google Scholar

El-Zaiat H.M., Alqaisi O., Sallam S.M., Al-Marzooqi W. (2021). Feed intake, nutrients digestibility, ruminal fermentation and nitrogen utilization in Omani sheep fed increasing doses of neem (Azadirachta indica) seed oil. Anim. Biotechnol., https://doi.org/10.1080/10495398.2021.191742210.1080/10495398.2021.191742233941033 Search in Google Scholar

Eugène M., Massé D., Chiquette J., Benchaar C. (2008). Meta-analysis on the effects of lipid supplementation on methane production in lactating dairy cows. Can. J. Anim. Sci., 88: 331–337. Search in Google Scholar

García-González R., López S., Fernández M., González J.S. (2008). Dose-response effects of Rheum officinale root and Frangula alnus bark on ruminal methane production in vitro. Anim. Feed Sci. Technol., 145: 319–334. Search in Google Scholar

Girish K., Shankara B.S. (2008). Neem – a green treasure. Electron. J. Biol., 4: 102–111. Search in Google Scholar

Gomaa A.S., Kholif A.E., Kholif A.M., Salama R., El-Alamy H.A., Olafadehan O.A. (2018). Sunflower oil and Nannochloropsis oculata microalgae as sources of unsaturated fatty acids for mitigation of methane production and enhancing diets’ nutritive value. J. Agric. Food Chem., 66: 1751–1759. Search in Google Scholar

Haque M.N. (2018). Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol., 60: 15. Search in Google Scholar

Hook S.E., Wright A.D., McBride B.W. (2010). Methanogens: methane producers of the rumen and mitigation strategies. Archaea. Archaea, 2: 945785. Search in Google Scholar

Hristov A.N., Oh J., Firkins J.L., Dijkstra J., Kebreab E., Waghorn G., Makkar H.P.S., Adesogan A.T., Yang W., Lee C., Gerber P.J., Henderson B., Tricarico J.M. (2013 a). Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci., 91: 5045–5069.10.2527/jas.2013-658324045497 Search in Google Scholar

Hristov A.N., Oh J., Lee C., Meinen R., Montes F., Ott T., Firkins J., Rotz A., Dell C., Adesogan A., Yang W., Tricarico J., Kebreab E., Waghorn G., Dijkstra J., Oosting S. (2013 b). Mitigation of greenhouse gas emissions in livestock production – a review of technical options for non-CO2 emissions. FAO Animal Production and Health Paper, 177: 231. Search in Google Scholar

Johnson K.A., Johnson D.E. (1995). Methane emissions from cattle. J. Anim. Sci., 73: 2483–2492. Search in Google Scholar

Khanam Z., Al-Yousef H.M., Singh O., Bhat I.U. (2017). Neem oil. Green Pesticides Handbook, CRC Press, New York, 570.10.1201/9781315153131-20 Search in Google Scholar

Konitzer K., Voigt S. (1963). Direct determination of ammonium in blood and tissue extracts by means of the phenol by chlorite reaction. Clin. Chim. Acta; Int. J. Clin. Chem., 8: 5–11. Search in Google Scholar

Kozloski G.V. (2009). Bioquímica dos ruminantes, 2nd ed. UFSM, Santa Maria. Search in Google Scholar

Lima P.R., Apdini T., Freire A.S., Santana A.S., Moura L.M., Nascimento J.C., Rodrigues R.T., Dijkstra J., Neto A.G., Queiroz M.Á., Menezes D.R. (2019). Dietary supplementation with tannin and soybean oil on intake, digestibility, feeding behavior, ruminal protozoa and methane emission in sheep. Anim. Feed Sci. Technol., 249: 10–17. Search in Google Scholar

Lokanadhan S., Muthukrishnan P., Jeyaraman S. (2012). Neem products and their agricultural applications. J. Biopestic., 5: 72–76. Search in Google Scholar

Machmüller A., Ossowski D.A., Wanner M., Kreuzer M. (1998). Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (Rusitec). Anim. Feed Sci. Technol., 71: 117–130. Search in Google Scholar

Maia F.J., Branco A.F., Mouro G.F., Coneglian S.M., Santos G.T., Minella T.F., Guimarães K.C. (2006). Inclusão de fontes de óleo na dieta de cabras em lactação: produção, composição e perfil dos ácidos graxos do leite. R. Bras. Zootec., 35: 1504–1513. Search in Google Scholar

Mao H.L., Wang J.K., Zhou Y.Y., Liu J.X. (2010). Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livest. Sci., 129: 56–62. Search in Google Scholar

Mbiriri D.T., Cho S., Mamvura C.I., Choi N.J. (2015). Assessment of rumen microbial adaptation to garlic oil, carvacrol and thymol using the consecutive batch culture system. J. Vet. Sci. Anim. Husb., 4: 1–7. Search in Google Scholar

Morrison W.R., Smith L.M. (1964). Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res., 5: 600–608. Search in Google Scholar

Morsy A.S., Soltan Y.A., El-Zaiat H.M., Alencar S.M., Abdalla A.L. (2021). Bee propolis extract as a phytogenic feed additive to enhance diet digestibility, rumen microbial biosynthesis, mitigating methane formation and health status of late pregnant ewes. Anim. Feed Sci. Technol., 114834. 10.1016/j.anifeedsci.2021.114834 Search in Google Scholar

Mould F.L., Kliem K.E., Morgan R. (2005 a). Alternative methodologies-stretching the in vitro box. Anim. Feed Sci. Technol., 123: 501–515.10.1016/j.anifeedsci.2005.04.023 Search in Google Scholar

Mould F.L., Kliem K.E., Morgan R., Mauricio R.M. (2005 b). In vitro microbial inoculum: A review of its function and properties. Anim. Feed Sci. Technol., 123: 31–50.10.1016/j.anifeedsci.2005.04.028 Search in Google Scholar

Nur Atikah I.N., Alimon A.R., Yaakub H., Abdullah N., Jahromi M.F., Ivan M., Samsudin A.A. (2018). Profiling of rumen fermentation, microbial population and digestibility in goats fed with dietary oils containing different fatty acids. BMC Vet. Res., 14: 1–9. Search in Google Scholar

Patra A.K. (2013). The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: A meta-analysis. Livest. Sci., 155: 244–254. Search in Google Scholar

Patra A.K., Yu K. (2015). Effects of adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations. Front. Microbiol., 119: 127–138. Search in Google Scholar

Patra A.K., Kamra D.N., Agarwal N. (2006). Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim. Feed Sci. Technol., 128: 276–291. Search in Google Scholar

Patra A.K, Park T., Kim M., Yu Z. (2017). Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol., 1: 1–8. Search in Google Scholar

Piluzza G., Sulas L., Bullitta S. (2014). Tannins in forage plants and their role in animal husbandry and environmental sustainability: a review. Grass Forage Sci., 69: 32–48. Search in Google Scholar

Roy A., Mandal G.P., Patra A.K. (2017). Effects of different vegetable oils on rumen fermentation and conjugated linoleic acid concentration in vitro. Vet. World, 10: 11. Search in Google Scholar

Salama H., El-Zaiat H.M., Sallam S.M., Soltan Y.A. (2020). Agronomic and qualitative characterization of multi-cut berseem clover (Trifolium alexandrinum L.) cultivars. J. Sci. Food Agri., https://doi.org/10.1002/jsfa.10424.10.1002/jsfa.1042432297331 Search in Google Scholar

Toprak N.N. (2015). Do fats reduce methane emission by ruminants? – A review. Anim. Sci. Pap. Rep., 33: 305–321. Search in Google Scholar

Van Soest P.J., Robertson J.B., Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583–3597. Search in Google Scholar

Vargas J.E., Andrés S., López-Ferreras L., Snelling T.J., Yáñez-Ruíz D.R., García-Estrada C., López S. (2020). Dietary supplemental plant oils reduce methanogenesis from anaerobic microbial fermentation in the rumen. Sci. Rep., 10: 1–9. Search in Google Scholar

Wu D., Xu L., Tang S., Guan L., He Z., Guan Y., Tan Z., Han X., Zhou C., Kang J., Wang M. (2016). Influence of oleic acid on rumen fermentation and fatty acid formation in vitro. PLoS One, 11(6), p.e0156835. Search in Google Scholar

Yang W.Z., Laurain J., Ametaj B.N. (2009). Neem oil modulates rumen fermentation properties in a continuous cultures system. Anim. Feed Sci. Technol., 149: 78–88. Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo