1. bookVolume 22 (2022): Edizione 3 (July 2022)
Dettagli della rivista
Prima pubblicazione
25 Nov 2011
Frequenza di pubblicazione
4 volte all'anno
access type Accesso libero

Increased incidence and antimicrobial resistance among Vibrio parahaemolyticus in shellfishes from major fish markets in Cochin, South India: Seafood risk assessment

Pubblicato online: 19 Jul 2022
Volume & Edizione: Volume 22 (2022) - Edizione 3 (July 2022)
Pagine: 1105 - 1114
Ricevuto: 13 Apr 2021
Accettato: 22 Sep 2021
Dettagli della rivista
Prima pubblicazione
25 Nov 2011
Frequenza di pubblicazione
4 volte all'anno

India remains as a top supplier of value-added seafoods to the global markets. Cochin is one of the leading fishing ports in India contributing to country’s major seafood export. As part of risk assessment, we analyzed the prevalence of multi-drug resistant Vibrio parahaemolyticus; seafood borne gastroenteritis-causing pathogen, in shellfishes collected from major fish markets in Cochin. This bacterial species was initially isolated on thiosulfate-citrate-bile salts-sucrose agar and HiCrome™ Vibrio agar, further confirmed by detection of V. parahaemolyticus species-specific toxR gene and by 16S r RNA sequencing. A total of 113 confirmed V. parahaemolyticus were recovered. Almost all the strains exhibited resistance towards three or more antibiotics (multiple-drug resistant) and harbored virulence related exoenzymes especially hemolysin (Kanagawa phenomenon); which is indeed a matter of concern. The multiple antibiotic resistance (MAR) index of the isolates ranged from 0.21 to 0.57. Furthermore, our results also indicate a substantial increase in the incidence of the pathogen in seafood from the area compared to previous years. This may pose a risk to the local and international consumers of the seafood. Practicing complete hygiene and adequate cooking is strongly recommended. Regular monitoring of aquaculture areas and fish markets is urged to reduce dissemination of pathogenic V. parahaemolyticus in seafood and to prevent fatal cases of human infection induced by this species in the country.


Ahmed H.A., El Bayomi R.M., Hussein M.A., Khedr M.H.E., Abo Remela E.M., El-Ashram A.M.M. (2018). Molecular characterization, antibiotic resistance pattern and biofilm formation of Vibrio parahaemolyticus and V. cholerae isolated from crustaceans and humans. Int. J. Food. Microbiol., 274: 31–37. Search in Google Scholar

Ananda Raja R., Sridhar R., Balachandran C., Palanisammi A., Ramesh S., Nagarajan K. (2017 a). Pathogenicity profile of Vibrio parahaemolyticus in farmed Pacific white shrimp, Penaeus vannamei. Fish Shell. Immunol., 67: 368–381.10.1016/j.fsi.2017.06.020 Search in Google Scholar

Ananda Raja R., Sridhar R., Balachandran C., Palanisammi A., Ramesh S., Nagarajan K. (2017 b). Prevalence of Vibrio spp. with special reference to Vibrio parahaemolyticus in farmed penaeid shrimp Penaeus vannamei (Boone, 1931) from selected districts of Tamil Nadu, India. Indian J. Fish., 64: 122–128.10.21077/ijf.2017.64.3.69011-18 Search in Google Scholar

Ananda Raja R., Panigrahi A., De D., Kumar S. (2017 c). Investigations on white spot disease outbreak in Penaeus monodon (Fabricius, 1798) in association with Vibrio mimicus infection in the Sunderbans, West Bengal, India. Indian J. Fish., 64: 56.10.21077/ijf.2017.64.1.54833-09 Search in Google Scholar

Atlas R.M., Snyder J.W. (2013). Handbook of media for clinical and public health microbiology (1st ed.). CRC Press. https://doi.org/10.1201/b1597310.1201/b15973 Search in Google Scholar

Bauer A.W., Kirby W.M.M., Sheris J.C., Turck M. (1966). Antibiotics susceptibility testing by standardized single disk method. Am. J. Clin. Pathol., 45: 493–496. Search in Google Scholar

CDC (2013). Vibrio vulnificus: General information. In: National Center for Emerging and Zoonotic Infectious Diseases. DoF, Waterborne, and Environmental Disease, Editor. Search in Google Scholar

CLSI (2015). Performance standards for antimicrobial disk susceptibility tests; Approved standard-eleventh edition M02-A12. Wayne, PA: Clinical and Laboratory Standards Institute, CLSI. Search in Google Scholar

Costa R.A., Conde Amorim L.M.M., Araújo R.L., Fernandes Vieira R.H.S. (2013). Multiple enzymatic profiles of Vibrio parahaemolyticus strains isolated from oysters. Rev. Argent. Microbiol., 45: 267–270. Search in Google Scholar

Dash R.R. (2020). Livelihood assessment of the fishermen community of Jagatsinghpur district of Odisha, India. IJCRT, 8: 2320–2882. Search in Google Scholar

Devi R., Surendran P.K., Chakraborty K. (2009). Antibiotic resistance and plasmid profiling of Vibrio parahaemolyticus isolated from shrimp farms along the coast of India. World. J. Microbiol. Biotechnol., 25: 2005–2012. Search in Google Scholar

Elmahdi S., DaSilva L.V., Parveen S. (2016). Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review. Food. Microbiol., 57: 128–134. Search in Google Scholar

Henson S., Saqib M., Rajasenan D. (2004). The impact of sanitary measures on exports of fishery products from India: The case of Kerala. Agriculture and Rural Development Department, World Bank. Search in Google Scholar

Honda S., Goto I., Minematsu I., Ikeda N., Asano N., Ishibashi M., Kinoshita Y., Nishibuchi M., Honda,T., Miwatani T. (1987 a). Vibrio parahaemolyticus infectious disease caused by Kanagawa phenomenon-negative O3: K6 originated from Maldives. Japanese J. Infect. Dis., 61: 1070–1078.10.11150/kansenshogakuzasshi1970.61.1070 Search in Google Scholar

Honda S., Goto I., Minematsu I., Ikeda N., Asano N., Ishibashi M., Kinoshita Y., Nishibuchi M., Honda T., Miwatani T. (1987 b). Gastroenteritis due to Kanagawa negative Vibrio parahaemolyticus. Lancet, 329: 331–332.10.1016/S0140-6736(87)92062-9 Search in Google Scholar

Humphries R.M., Linscott A.J. (2015). Practical guidance for clinical microbiology laboratories: Diagnosis of bacterial gastroenteritis. Clin. Microbiol. Rev., 28: 3–31. Search in Google Scholar

Ina-Salwany M.Y., Al-Saari N., Mohamad A. (2019). Vibriosis in fish: a review on disease development and prevention. J. Aquat. Anim. Health., 31: 3–22. Search in Google Scholar

Kalatzis P.G., Castillo D., Katharios P., Middelboe M. (2018). Bacteriophage interactions with marine pathogenic vibrios: Implications for phage therapy. Antibiotics, 7: 15. Search in Google Scholar

Krumperman P.H. (1983). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of food. Appl. Environ. Microbiol., 46: 165–170. Search in Google Scholar

Kulkarni P. (2005) The marine seafood export supply chain in India: Current state and influence of import requirements. International Institute for Sustainable Development. December, 2005. Search in Google Scholar

Laxminarayan R., Chaudhury R.R. (2016). Antibiotic resistance in India: Drivers and opportunities for action. PLoS Med., 13: e1001974. Search in Google Scholar

Letchumanan V., Chan K.G., Lee L.H. (2014). Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front. Microbiol., 5: 705. Search in Google Scholar

Letchumanan V., Yin W.F., Lee L.H., Chan K.G. (2015). Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia. Front. Microbiol., 6: 33. Search in Google Scholar

Letchumanan V., Chan K., Pusparajah P., Saokaew S., Duangjai A., Goh Bey-H. (2016). Insights into bacteriophage application in controlling Vibrio species. Front. Microbiol., 7: 1114. Search in Google Scholar

Malcolm T.T.H., Cheah Y.K., Radzi C.W.J.W.M., Kasim F.A (2015). Detection and quantification of pathogenic Vibrio parahaemolyticus in shellfish by using multiplex PCR and loop-mediated isothermal amplification assay. Food Cont., 47: 664–671. Search in Google Scholar

Miranda C.D., Godoy F.A., Lee M.R. (2018). Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Front. Microbiol., 9: 1284. Search in Google Scholar

Nair G.B., Ramamurthy T., Bhattacharya S.K., Dutta B., Takeda Y., Sack D.A. (2007). Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin. Microbiol. Rev., 20: 39–48. Search in Google Scholar

Narayanan S.V., Joseph T.C., Peeralil S., Mothadaka M.P., Lalitha K.V. (2020). Prevalence, virulence characterization, AMR pattern and genetic relatedness of Vibrio parahaemolyticus isolates from retail seafood of Kerala, India. Front. Microbiol., 11: 592. Search in Google Scholar

Park K., Mok J.S., Kwon J.Y., Ryu AR., Kim S.H., Lee H.J. (2018). Food-borne outbreaks, distributions, virulence, and antibiotic resistance profiles of Vibrio parahaemolyticus in Korea from 2003 to 2016: a review. Fish. Aquatic. Sci., 21: 3. Search in Google Scholar

Pazhani G.P., Bhowmik S.K., Ghosh S., Guin S., Dutta S., Rajendran K., Saha D.R., Nandy R.K., Bhattacharya M.K., Mukhopadhyay A.K., Ramamurthy T. (2014). Trends in the epidemiology of pandemic and non-pandemic strains of Vibrio parahaemolyticus isolated from diarrheal patients in Kolkata, India. PLOS Negelct. Trop. D., 8: 2815. Search in Google Scholar

Reyhanath P.V., Kutty R. (2014). Incidence of multidrug resistant Vibrio parahaemolyticus isolated from Ponnani, South India. Iran. J. Microbiol., 6: 60–67. Search in Google Scholar

Rico A., Satapornvanit K., Haque M.M. (2012). Use of chemicals and biological products in Asian aquaculture and their potential environmental risks: a critical review. Rev. Aqua., 4: 75–93. Search in Google Scholar

Silva I.P., Carneiro C.S., Saraiva M.A.F., Oliveira T.A.S., Sousa O.V., Evangelista Barreto N.S. (2018). Antimicrobial resistance and potential virulence of Vibrio parahaemolyticus isolated from water and bivalve mollusks from Bahia, Brazil. Mar. Pollut. Bull., 131: 757–762. Search in Google Scholar

Silvester R., Alexander D., Ammanamveetil M.H.A. (2015). Prevalence, antibiotic resistance, virulence and plasmid profiles of Vibrio parahaemolyticus from a tropical estuary and adjoining traditional prawn farm along the southwest coast of India. Ann. Microbiol., 65: 2141–2149. Search in Google Scholar

Silvester R., Madhavan A., Antony A., Alexander D., Francis., Hatha M. (2017). Genotyping and distribution of virulence factors in V. parahaemolyticus from seafood and environmental sources, South-west coast of India. Reg. Stud. Mar. Sci., 12: 64–72. Search in Google Scholar

Sneha K.G., Anas A., Jayalakshmy K.V., Jasmin C., Vipin Das P.V., Pai S.S., Pappu S., Nair M., Muraleedharan K.R., Sudheesh K., Nair S. (2016). Distribution of multiple antibiotic resistant Vibrio spp. across Palk Bay. Reg. Stud. Mar. Sci., 3: 242–250. Search in Google Scholar

Statistical Year Book India (2017). Ministry of Statistics and Program Implementation Government of India. Search in Google Scholar

Su S.C., Lee C.Y. (1997) Characterization of haemolysis of the Vibrio parahaemolyticus. Chin. J. Microbiol. Immunol., 30: 32–42. Search in Google Scholar

Su C., Chen L. (2020). Virulence, resistance, and genetic diversity of Vibrio parahaemolyticus recovered from commonly consumed aquatic products in Shanghai, China. Mar. Poll. Bullet., 160: 111554. Search in Google Scholar

Sudha S., Mridula C., Silvester R., Hatha A.A. (2014). Prevalence and antibiotic resistance of pathogenic vibrios in shellfishes from Cochin market. Indian. J. Geo. Mar. Sci., 43: 815–824. Search in Google Scholar

Tan L.T., Lee L., Goh B. (2020). Critical review of fermentation and extraction of anti-Vibrio compounds from Streptomyces. Prog. Microbes. Mol. Biol., 3: a0000051. Search in Google Scholar

Tran T.H.T., Yanagawa H., Nguyen K.T., Hara-Kudo Y., Taniguchi T., Hayashidani H. (2018). Prevalence of Vibrio parahaemolyticus in seafood and water environment in the Mekong Delta, Vietnam. J. Veter. Med. Sci., 80: 1737–1742. Search in Google Scholar

Van Boeckel T.P., Gandra S., Ashok A., Caudron Q., Grenfell B.T., Levin S.A., Laxminarayan R. (2014). Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales. Lancet. Infect. Dis., 14: 742–750. Search in Google Scholar

Vaseeharan B., Ramasamy P., Murugan T., Chen J.C. (2005). In vitro susceptibility of antibiotics against Vibrio spp. and Aeromonas spp. isolated from Penaeus monodon hatcheries and ponds. Int. J. Antimicrob. Agents., 26: 285–291. Search in Google Scholar

Vergis E.N., Shankar N., Chow J.W., Hayden M.K., Snydman D.R., Zervos M.J., Linden P.K., Wagener M.M., Muder R.R. (2002). Association between the presence of enterococcal virulence factors gelatinase, hemolysin, and enterococcal surface protein and mortality among patients with bacteremia due to Enterococcus faecalis. Clin. Infect. Dis., 35: 570–575. Search in Google Scholar

Xie T., Wu Q., Zhang J., Xu., Cheng J. (2016). Comparison of Vibrio parahaemolyticus isolates from aquatic products and clinical by antibiotic susceptibility, virulence, and molecular characterisation. Food. Cont., 71: 315–32. Search in Google Scholar

Yano Y., Hamano K., Satomi M., Tsutsui I., Ban M., Aue-umneoy D. (2014). Prevalence and antimicrobial susceptibility of Vibrio species related to food safety isolated from shrimp cultured at inland ponds in Thailand. Food. Cont., 38: 30–45. Search in Google Scholar

Yu Q., Niu M., Yu M., Liu Y., Wang D., Shi X. (2016). Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shellfish in Shanghai. Food. Cont., 60: 263–268. Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo