1. bookVolume 27 (2020): Edizione 3 (September 2020)
Dettagli della rivista
License
Formato
Rivista
eISSN
2084-4549
Prima pubblicazione
08 Nov 2011
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

Metal Removal from Complex Copper Containing Effluents by Waste Biomass of Saccharomyces cerevisiae

Pubblicato online: 14 Oct 2020
Volume & Edizione: Volume 27 (2020) - Edizione 3 (September 2020)
Pagine: 415 - 435
Dettagli della rivista
License
Formato
Rivista
eISSN
2084-4549
Prima pubblicazione
08 Nov 2011
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Abstract

Saccharomyces cerevisiae, waste biomass originated from beer fermentation industry, was used to remove metal ions from four copper-containing synthetic effluents: Cu-Fe, Cu-Fe-Ni, Cu-Fe-Zn, and Cu-Fe-Ni-Zn. The characterization of the biomass surface was investigated by Scanning Electron Microscopy and Fourier-transform Infrared Spectroscopy. The adsorption behavior of Saccharomyces cerevisiae for copper, iron, nickel and zinc ions in aqueous solution was studied as a function of pH, initial copper concentration, equilibrium time, and temperature. Langmiur, Freundlich, Temkin and Dubinin-Radushkevich equilibrium models have been assessed to describe the experimental sorption equilibrium profile, while pseudo-first order, pseudo-second order, Elovich and the intra-particle diffusion models were applied to describe experimental kinetics data. Maximum sorption capacities have been calculated by means of Langmuir equilibrium model and mean free sorption energies through the Dubinin-Radushkevich model. Thermodynamic analysis results showed that the adsorption of copper, iron and zinc was spontaneous and endothermic in nature, while of nickel exothermic. Saccharomyces cerevisiae can be successfully applied for complex wastewater treatment.

Keywords

[1] do Nascimento JM, de Oliveir JD, Rizzo ACL, Leite SGF. Biosorption Cu(II) by the yeast Saccharomyces cerevisiae. Biotechnol Rep. 2019;21:e00315. DOI: 10.1016/j.btre.2019.e00315.10.1016/j.btre.2019.e00315637890730815368Search in Google Scholar

[2] Demiral H, Güngor C. Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. J Clean Prod. 2016;124:103-13. DOI: 10.1016/j.jclepro.2016.02.084.10.1016/j.jclepro.2016.02.084Search in Google Scholar

[3] Yargıç AS, Yarbay Sahin RZ, Ozbay N, Onal E. Assessment of toxic copper(II) biosorption from aqueous solution by chemically-treated tomato waste. J Clean Prod. 2015;88:152-9. DOI: 10.1016/j.jclepro.2014.05.087.10.1016/j.jclepro.2014.05.087Search in Google Scholar

[4] Moreira VR, Lebron YAR, Freire SJ, Santos LVS, Palladino F, Jaco RS. Biosorption of copper ions from aqueous solution using Chlorella pyrenoidosa: Optimization, equilibrium and kinetics studies. Microchem J. 2019;145:119-29. DOI: 10.1016/j.microc.2018.10.027.10.1016/j.microc.2018.10.027Search in Google Scholar

[5] Peng Q, Liu Y, Zeng G, Xu W, Yang C, Zhang J. Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. J Hazard Mater. 2010;177:676-82. DOI: 10.1016/j.jhazmat.2009.12.084.10.1016/j.jhazmat.2009.12.08420060211Search in Google Scholar

[6] Zinicovscaia I, Yushin N, Abdusamadzoda D, Grozdov D, Shvetsova M. Efficient removal of metals from synthetic and real galvanic zinc-containing effluents by brewer’s yeast Saccharomyces cerevisiae. Materials. 2020;13:3624. DOI: 10.3390/ma13163624.10.3390/ma13163624747584232824380Search in Google Scholar

[7] Zinicovscaia I, Grozdov D, Yushin N, Abdusamadzoda D, Gundorina S, Rodlovskaya E, et al. Metal removal from chromium containing synthetic effluents by Saccharomyces cerevisiae. Desalin Water Treat. 2020;178:254-70. DOI: 10.5004/dwt.2020.24987.10.5004/dwt.2020.24987Search in Google Scholar

[8] De Rossi A, Rigon MR, Zaparoli M, Braido RD, Colla LM, Dotto GL, et al. Chromium(VI) biosorption by Saccharomyces cerevisiae subjected to chemical and thermal treatments. Environ Sci Pollut Res Int. 2018;25:19179-86. DOI: 10.1007/s11356-018-2377-4.10.1007/s11356-018-2377-429808404Search in Google Scholar

[9] Wang J, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnol Adv. 2006;24:427-51. DOI: 10.1016/j.biotechadv.2006.03.001.10.1016/j.biotechadv.2006.03.00116737792Search in Google Scholar

[10] Raffar NIA, Rahman NNAA, Alrozi R, Senusi F, Chang SH. Potential immobilized Saccharomyces cerevisiae as heavy metal removal. AIP Conf Proc. 2015;1660:070093. DOI: 10.1063/1.4915810.10.1063/1.4915810Search in Google Scholar

[11] Machado MD, Janssens S, Soares HMVM, Soares EV. Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. J Appl Microbiol. 2009;106:1792-804. DOI: 10.1111/j.1365-2672.2009.04170.x.10.1111/j.1365-2672.2009.04170.xSearch in Google Scholar

[12] Avery SV, Tobin JM. Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Appl Environ Microbiol. 1992;58(12):3883-9.10.1128/aem.58.12.3883-3889.1992Search in Google Scholar

[13] Brady D, Duncan JR. Binding of heavy metals by the cell walls of Saccharomyces cerevisiae. Enzyme Microb. Technol. 1994;16:633-8. DOI: 10.1016/0141-0229(94)90131-7.10.1016/0141-0229(94)90131-7Search in Google Scholar

[14] Machado MD, Soares HMVM, Soares EV. Removal of chromium, copper, and nickel from an electroplating effluent using a flocculent brewer’s yeast strain of Saccharomyces cerevisiae. Water Air Soil Pollut. 2010;212:199-204. DOI: 10.1007/s11270-010-0332-1.10.1007/s11270-010-0332-1Search in Google Scholar

[15] Frontasyeva MV. Neutron activation analysis for the life sciences. Phys Part Nucl. 2011;42:332-78. DOI: 10.1134/S1063779611020043.10.1134/S1063779611020043Search in Google Scholar

[16] Hlihor RM, Diaconu M, Fertu D, Chelaru C, Sandu I, Tavares T. Bioremediation of Cr(VI) polluted wastewaters by sorption on heat inactivated Saccharomyces cerevisiae biomass. Int J Environ Res. 2013;7(3):581-94. DOI: 10.22059/ijer.2013.638.Search in Google Scholar

[17] Oves M, Saghir Khan M, Zaidi A. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci. 2013;20:121-9. DOI: 10.1016/j.sjbs.2012.11.006.10.1016/j.sjbs.2012.11.006Search in Google Scholar

[18] Al-Homaidan AA, Al-Houri HJ, Al-Hazzani AA, Elgaaly G, Moubayed NMS. Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi J Biol Sci. 2015;22:795-800. DOI: 10.1016/j.sjbs.2015.06.010.10.1016/j.sjbs.2015.06.010Search in Google Scholar

[19] Rajfur M, Kłos A, Kříž J. Translocation of cations during sorption of copper in the system solution - algae (Spirogyra sp.). Ecol Chem Eng S. 2014;21(3):425-33. DOI: 10.2478/eces-2014-0031.10.2478/eces-2014-0031Search in Google Scholar

[20] Yildiz S. Kinetic and isotherm analysis of Cu(II) adsorption onto almond shell (Prunus dulcis). Ecol Chem Eng S. 2017;24(1):87-106. DOI: 10.1515/eces-2017-0007.10.1515/eces-2017-0007Search in Google Scholar

[21] Padmavathy V, Vasudevan P, Dhingra SC. Biosorption of nickel(II) ions on Baker’s yeast. Process Biochem. 2003;38:1389-95. DOI: 10.1016/S0032-9592(02)00168-1.10.1016/S0032-9592(02)00168-1Search in Google Scholar

[22] Basak G, Preethy Chandran LV, Das N. Removal of Zn(II) from electroplating effluent using yeast biofilm formed on gravels: batch and column studies. J Environ Health Sci Eng. 2014;12:8. DOI: 10.1186/2052-336X-12-8.10.1186/2052-336X-12-8Search in Google Scholar

[23] Gerlach M, Trautwein AX, Zecca L, Youdim MBH, Riederer P. Moessbauer spectroscopic studies of purified neuromelanin isolated from the substantia nigra. J Neurochem. 1995;65:923-6. DOI: 10.1046/j.1471-4159.1995.65020923.x.10.1046/j.1471-4159.1995.65020923.xSearch in Google Scholar

[24] Sag Y, Kutsal T. Fully competitive biosorption of chromium(VI) and iron(III) ions from binary metal mixtures by R. arrhizus: Use of the competitive Langmuir model. Proc Biochem. 1996;31:573-85. DOI: 10.1016/S0032-9592(96)00003-9.10.1016/S0032-9592(96)00003-9Search in Google Scholar

[25] Aksu Z, Gulen H. Binary biosorption of iron(III) and iron(III)-cyanide complex ions on Rhizopus arrhizus: modelling of synergistic interaction. Process Biochem. 2002;38:161-73. DOI: 10.1016/S0032-9592(02)00062-6.10.1016/S0032-9592(02)00062-6Search in Google Scholar

[26] Sag Y, Kutsal T. The simultaneous biosorption of Cr(VI), Fe(III) and Cu(II) on Rhizopus arrhizus. Proc Biochem. 1998;33:571-9. DOI: 10.1016/S0032-9592(98)00020-X.10.1016/S0032-9592(98)00020-XSearch in Google Scholar

[27] Han R, Li H, Li Y, Zhang J, Xiao H, Shi J. Biosorption of copper and lead ions by waste beer yeast. J Hazard Mater. 2006;137:1569-76. DOI: 10.1016/j.jhazmat.2006.04.045.10.1016/j.jhazmat.2006.04.04516737773Search in Google Scholar

[28] Albadarin AB, Al-Muhtase AH, Al-laqtah NA, Walker GM, Allen SJ, Ahmad MNM. Biosorption of toxic chromium from aqueous phase by lignin: mechanism, effect of other metal ions and salts. Chem Eng J. 2011;169:20-30. DOI: 10.1016/j.cej.2011.02.044.10.1016/j.cej.2011.02.044Search in Google Scholar

[29] Ahmad MA, Ahmad Puad NA, Bello OS. Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Res Ind. 2014;6:18-35. DOI: 10.1016/j.wri.2014.06.002.10.1016/j.wri.2014.06.002Search in Google Scholar

[30] Kula I, Ugurlu M, Karaoglu H, Celik A. Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresource Technol. 2008;99:492-501. DOI: 10.1016/j.biortech.2007.01.015.10.1016/j.biortech.2007.01.01517350829Search in Google Scholar

[31] Riahi K, Chaabane S, Thayer BB. A kinetic modeling study of phosphate adsorption onto Phoenix dactylifera L. date palm fibers in batch mode. J Saudi Chem Soc. 2017;2:143-52. DOI: 10.1016/j.jscs.2013.11.007.10.1016/j.jscs.2013.11.007Search in Google Scholar

[32] Wu FC, Tseng RL, Juang RS. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J. 2009;150:366-73. DOI: 10.1016/j.cej.2009.01.014.10.1016/j.cej.2009.01.014Search in Google Scholar

[33] Saini AS, Melo JS. Biosorption of uranium by melanin: Kinetic, equilibrium and thermodynamic studies. Bioresource Technol. 2013;149:155-62. DOI: 10.1016/j.biortech.2013.09.034.10.1016/j.biortech.2013.09.03424099972Search in Google Scholar

[34] Zinicovscaia I, Yushin N, Shvetsova M, Frontasyeva M. Zinc removal from model solution and wastewater by Arthrospira (Spirulina) platensis biomass. Int J Phytoremediation. 2018;20:901-8. DOI: 10.1080/15226514.2018.1448358.10.1080/15226514.2018.144835829873533Search in Google Scholar

[35] Xu L, Zheng X, Cui H, Zhu Z, Liang J, Zhou J. Equilibrium, kinetic, and thermodynamic studies on the adsorption of cadmium from aqueous solution by modified biomass ash. Bioinorg Chem Appl. 2017;3695604. DOI: 10.1155/2017/3695604.10.1155/2017/3695604535040828348509Search in Google Scholar

[36] Pahlavanzadeh H, Keshtkar AR, Safdari J, Abadi Z. Biosorption of nickel(II) from aqueous solution by brown algae: equilibrium, dynamic and thermodynamic studies. J Hazard Mater. 2010;304-10. DOI: 10.1016/j.jhazmat.2009.10.004.10.1016/j.jhazmat.2009.10.00419880249Search in Google Scholar

[37] Chojnacka K, Chojnacki A, Górecka H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere. 2005;75-84. DOI: 10.1016/j.chemosphere.2004.10.005.10.1016/j.chemosphere.2004.10.00515698647Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo