1. bookVolume 30 (2018): Edizione 2 (December 2018)
Dettagli della rivista
License
Formato
Rivista
eISSN
2083-5965
Prima pubblicazione
01 Jan 1989
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
access type Accesso libero

Induction and identification of colchicine induced polyploidy in Gladiolus grandiflorus ‘White Prosperity’

Pubblicato online: 14 Dec 2018
Volume & Edizione: Volume 30 (2018) - Edizione 2 (December 2018)
Pagine: 307 - 319
Ricevuto: 11 Nov 2017
Accettato: 31 May 2018
Dettagli della rivista
License
Formato
Rivista
eISSN
2083-5965
Prima pubblicazione
01 Jan 1989
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
Abstract

Gladiolus is one of the most important lucrative cut flower crops that is commercially cultivated worldwide due to its various spike forms, size, and shape and color combinations. In order to further increase the commercial and horticultural value by improving the ornamental traits of gladiolus ‘White Prosperity’, polyploidy was induced by soaking gladiolus corms in different colchicine concentrations (0.1%, 0.2% and 0.3%) for 24 h. Different colchicine concentrations had a little effect on sprouting and survival percentage but it significantly delayed the emergence of sprouts. About one third decreases in plant height along with reduction in number of leaves per plant, leaf area, length and width, chlorophyll content, diameter and number of cormlets per corm was observed in treated plants. Colchicine at 0.1% concentration improved the ornamental value of gladiolus by increasing vase life whereas colchicine at 0.3% was effective in increasing floret diameter. However, the colchicine treated plants exhibited delayed and reduced percentage of flowering corms. Pollen and stomatal study was done for the identification of polyploidy and it showed that both pollen and stomata size were increased while stomatal density and pollen fertility was significantly reduced in polyploid plants. Induction of polyploidy (mixoploids + octoploids) was achieved in all concentrations, however 0.2% and 0.3% concentrations of colchicine were effective for producing large number of polyploid plants. But at 0.1% concentration of colchicine, majority of plants did not show any change in their original ploidy level (tetraploid). These putative polyploids may be helpful for further improvement in ornamental and horticultural value of gladiolus.

Keywords

Alam H., Razaq M., Salahuddin., 2015. Induced polyploidy as a tool for increasing tea (Camellia sinensis L.) production. J. Northeast Agric. Univ. 22(3), 43-47.10.1016/S1006-8104(16)30005-8Search in Google Scholar

Anbarasan K., Rajendran R., Sivalingam D., Chidambaram A.C., 2014. Studies on the effect of EMS and colchicine in M1 generation of sesame (Sesamum indicum L.) var. TMV3. Int. Lett. Nat. Sci. 11(2), 209-214.10.18052/www.scipress.com/ILNS.16.209Search in Google Scholar

Anitha K., Jawaharlal M., Joel J., Surendranath R., 2017. Induction of polyploids and isolation of ploidy variants through stomatal parameters in bougainvillea (Bougainvillea spp.). Int. J. Agric. Sci. Res. 7(1), 451-458.Search in Google Scholar

Ari E., Djapo H., Mutlu N., Gurbuz E., Karaguzel O., 2015. Creation of variation through gamma irradiation and polyploidization in Vitex agnus-castus L. Sci. Hortic. 195, 74-81.10.1016/j.scienta.2015.08.039Search in Google Scholar

Arnon D.L., 1949. A copper enzyme is isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiol. 24, 1-15.10.1104/pp.24.1.143790516654194Search in Google Scholar

Boonbongkarn S., Taychasinpitak T., Wongchaochant S., Kikuchi S., 2013. Effect of colchicine tablets on morphology of Torenia fournieri. ITJEMAST 4(4), 299-309.Search in Google Scholar

Breuer C., Stacey N.J., West C.E., Zhao Y., Chory J., Tsukaya H., etal., 2007. BIN4, a novel component of the plant DNA topoisomerase VI complex is required for endoreduplication in Arabidopsis. Plant Cell 19, 3655-3668.10.1105/tpc.107.054833217487418055605Search in Google Scholar

Cohen H., Fait A., Tel-Zur N., 2013. Morphological, cytological and metabolic consequences of autopolyploidization in Hylocereus (Cactaceae) species. BMC Plant Biol. 13(1), 1-14.10.1186/1471-2229-13-173383176024188386Search in Google Scholar

Dar T.H., Raina S.N., Goel S., 2017. Cytogenetic and molecular evidences revealing genomic changes after autopolyploidization: a case study of synthetic autotetraploid Phlox drummondii hook. Physiol. Mol. Biol. Plants 23(3), 641-650.10.1007/s12298-017-0445-8556770628878502Search in Google Scholar

Datta S.K., 2009. A report on 36 years of practical work on crop improvement through induced mutagenesis. In: Induced Plant Mutations in the Genomics Era. Q.Y. Shu (Ed.), FAO, 253-256.Search in Google Scholar

Grouh M.S.H., Meftahizade H., Lotfi N., Rahimi V., Baniasadi B., 2011. Doubling the chromosome number of Salvia hians using colchicine: Evaluation of morphological traits of recovered plants. J. Med. Plant. Res. 5(19), 4892-4898.Search in Google Scholar

Haouala R., Ouerghemmi S., Tarchoune A., Boughanmi N., 2009. Improvement of Trigonella maritima Delilee X. Poir. germination by polyploidization. Pak. J. Bot. 41(6), 3001-3008.Search in Google Scholar

Harbard J.L., Griffin A.R., Foster S., Brooker C., Kha L.D., Koutoulis A., 2012. Production of colchicine-induced autotetraploids as a basis for sterility breeding in Acacia mangium Willd. Forestry 85(3), 427-436.10.1093/forestry/cps041Search in Google Scholar

He M., Gao W., Gao Y., Liu Y., Yang X., Jiao H., etal., 2016. Polyploidy induced by colchicine in Dendranthema indicum var. Aromaticum, a scented chrysanthemum. Eur. J. Hortic. Sci. 81(4), 219-226.10.17660/eJHS.2016/81.4.5Search in Google Scholar

Hosseini H., Chehrazi M., Sorestani M.M., Ahmadi D., 2013. Polyploidy and comparison of diploid and autotetraploid seedling of Madagascar periwinkle (Catharanthus roseus cv. Alba). Int. Res. J. Basic Appl. Sci. 4(2), 402-406.Search in Google Scholar

Jadrná P., Plavcová O., Kobza F., 2010. Morphological changes in colchicine treated Pelargonium × hortorum LH Bailey greenhouse plants. HortScience 37(1), 27-33.10.17221/41/2009-HORTSCISearch in Google Scholar

Ketmaro S., Taychasinpitak T., Mongkolchaiyaphruek A., Wongchaochant S., 2012. Effect of colchicine on increasing pollen viability in a curcuma hybrid (Curcuma sparganifolia × C. parviflora). Kasetsart J. (Nat. Sci.) 46, 363-370.Search in Google Scholar

Khezri M., Rostami S., Alizadeh A., Hadavi F., 2006. The effect of integrated chemical solutions on longevity, quality and petals cellular changes of hybrid gladiolus (Gladiolus grandiflorus). 27th International Horticultural Congress and Exhibition, Seoul, Korea, 494-495.Search in Google Scholar

Kokate C., 2011. Textbook of Pharmaceutical Biotechnology. Elsevier, India.Search in Google Scholar

Kole C., 2011. Wild crop relatives: Genomic and breeding resources: Plantation and ornamental crops. Springer-Verlag Berlin Heidelberg, Germany.10.1007/978-3-642-21102-7Search in Google Scholar

Kumar G., Dwivedi K., 2014. Induced polyploidization in Brassica campestris L. (Brassicaceae). Cytol. Genet. 48(2), 103-110.10.3103/S0095452714020066Search in Google Scholar

Larson R.A. (Ed.), 2012. Introduction to Floriculture. Elsevier.Search in Google Scholar

Lehrer J.M., Brand M.H., Lubell J.D., 2008. Induction of tetraploidy in meristematically active seeds of Japanese barberry (Berberis thunbergii var. atropurpurea) through exposure to colchicine and oryzalin. Sci. Hortic. 119(1), 67-71.10.1016/j.scienta.2008.07.003Search in Google Scholar

Li Z., Ruter J.M., 2017. Development and Evaluation of diploid and polyploid Hibiscus moscheutos. HortScience 52(5), 676-681.10.21273/HORTSCI11630-16Search in Google Scholar

Lim T.K., 2012. Edible Medicinal and Non-Medicinal Plants. Springer, NY, 145-146.10.1007/978-94-007-5628-1_26Search in Google Scholar

Liu S., 2012. Bioprocess Engineering: Kinetics, Biosystems, Sustainability, and Reactor Design. Elsevier, NY, 699-700.Search in Google Scholar

Makeen K., Babu G.S., Lavanya G.R., Grard A., 2007. Studies of chlorophyll content by different methods in black gram (Vigna mungo L.). Int. J. Agric. Res. 2, 651-654.10.3923/ijar.2007.651.654Search in Google Scholar

Milan P.R., 2008. Chromosome behavior and fertility in induced polyploids of grain amaranths. Caryologia 61(3), 199-205.10.1080/00087114.2008.10589630Search in Google Scholar

Mohammadi P.P., Moieni A., Ebrahimi A., Javidfar F., 2012. Doubled haploid plants following colchicine treatment of microspore-derived embryos of oilseed rape (Brassica napus L.). Plant Cell Tiss. Org. Cult. 108(2), 251-256.10.1007/s11240-011-0036-2Search in Google Scholar

Niu L., Tao Y.B., Chen M.S., Fu Q., Dong Y., He H., etal., 2016. Identification and characterization of tetraploid and octoploid Jatropha curcas induced by colchicine. Caryologia 69(1), 58-66.10.1080/00087114.2015.1110308Search in Google Scholar

Oates K.M., Ranney T.G., Touchell D.H., 2012. Influence of induced polyploidy on fertility and morphology of Rudbeckia species and hybrids. HortScience 47(9), 1217-1221.10.21273/HORTSCI.47.9.1217Search in Google Scholar

Ohri D., 2013. Cytogenetics of domestication and improvement of garden Gladiolus and Bougainvillea. Nucleus (India) 56(3), 149-153.10.1007/s13237-013-0091-7Search in Google Scholar

Omidbaigi R., Yavari S., Hassani M.E., Yavari S., 2010. Induction of autotetraploidy in dragonhead (Dracocephalum moldavica L.) by colchicine treatment. J Fruit Ornam. Plant Res. 18(1), 23-35.Search in Google Scholar

Osborn T.C., Chris P.J., Birchler J.A., Auger D.L., Jeffery C.Z., Lee H.S., etal., 2003. Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 19(3), 141-147.10.1016/S0168-9525(03)00015-5Search in Google Scholar

Pereira R.C., Ferreira M.T.M., Davide L.C., Pasqual M., Mittelmann A., Techio V.H., 2014. Chromosome duplication in Lolium multiflorum Lam. Crop Breed. Appl. Biot. 14(4), 251-255.10.1590/1984-70332014v14n4n39Search in Google Scholar

Pirkoohi M.H., Keyvanloo M., Hassanpur M., 2011. Colchicine induced polyploidy in mint by seed treatment. Int. J. Agric. Crop. Sci. 3-4, 102-104.Search in Google Scholar

Ramesh H.L., Murthy V.N.Y., 2014. Induction of colchiploids in mulberry (Morus) variety Kajali in C1 generation. Int. J. Adv. Res. 2(4), 468-473.10.9734/AJEA/2014/5517Search in Google Scholar

Rashid K., Rasul G., 2010. Rainfall variability and maize production over the Potohar plateau of Pakistan. Pak. J. Meteorol. 8(15), 63-74.Search in Google Scholar

Rauf S., Khan I.A., Khan F.A., 2006. Colchicineinduced tetraploidy and changes in allele frequencies in colchicine-treated populations of diploids assessed with RAPD markers in Gossypium arboreum L. Turk. J. Biol. 30, 93-100.Search in Google Scholar

Rejeb I.B., Pastor V., Mauch-Mani B., 2014. Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants (Basel) 3(4), 458-475.10.3390/plants3040458484428527135514Search in Google Scholar

Sattler M.C., Carvalho C.R., Clarindo W.R., 2016. The polyploidy and its key role in plant breeding. Planta 243(2), 281-296.10.1007/s00425-015-2450-x26715561Search in Google Scholar

Shaukat S., Shah S., Shoukat S., 2013. Performance of gladiolus (Gladiolus grandiflora L.) cultivars under the climatic conditions of Bagh Azad Jammu and Kashmir Pakistan. J. Cent. Eur. Agric. 14(2), 646-658.10.5513/JCEA01/14.2.1244Search in Google Scholar

Sourour A., Ameni B., Mejda C., 2014. Efficient production of tetraploid barley (Hordeum vulgare L.) by colchicine treatment of diploid barley. J. Exp. Biol. 2(1S), 113-119.Search in Google Scholar

Steel R.G.D., Torrie J.H., Boston M.A., 1997. Principals of Statistics. McGraw Hill Book Co. Inc, USA.Search in Google Scholar

Tavan M., Mirjalili M.H., Karimzadeh G., 2015. In vitro polyploidy induction: changes in morphological, anatomical and phytochemical characteristics of Thymus persicus (Lamiaceae). Plant Cell Tiss. Org. Cult. 122(3), 573-583.10.1007/s11240-015-0789-0Search in Google Scholar

Thao N.T.P., Ureshino K., Miyajima I., Ozaki Y., Okubo H., 2003. Induction of tetraploids in ornamental Alocasia through colchicine and oryzalin treatments. Plant Cell Tiss. Org. Cult. 72(1), 19-25.10.1023/A:1021292928295Search in Google Scholar

Tiwari A.K., Mishra S.K., 2012. Effect of colchicine on mitotic polyploidization and morphological characteristics of Phlox drummondii. Afr. J. Biotechnol. 11(39): 9336-9342.10.5897/AJB11.2196Search in Google Scholar

Tulay E., Unal M., 2010. Production of colchicine induced tetraploids in Vicia villosa roth. Caryologia 63(3), 292-303.10.1080/00087114.2010.10589739Search in Google Scholar

Vasanthakumar K., Bezu T., Bekele A., 2015. Response of varieties and planting dates on growth and flowering of gladiolus (Gladiolus grandiflorus Andrews) under the ecological conditions of Haramaya University, eastern Ethiopia. J. Hortic. For. 7(5), 112-117.10.5897/JHF2015.0392Search in Google Scholar

Vichiato M.R.M., Vichiato M., Pasqual M., Rodrigues F.A., Castro D.M.D., 2014. Morphological effects of induced polyploidy in Dendrobium nobile Lindl. (Orchidaceae). Crop. Breed. Appl. Biotechnol. 14(3), 154-159.10.1590/1984-70332014v14n3a23Search in Google Scholar

Xu L., Najeeb U., Naeem M.S., Daud M.K., Cao J.S., Gong H.J., etal., 2010. Induction of tetraploidy in Juncus effusus by colchicine. Biol. Plantarum 54(4), 659-663.10.1007/s10535-010-0117-9Search in Google Scholar

Zhang Y., Zhang J., Song T., Li J., Tian J., Jin K., etal., 2014. Low medium pH value enhances anthocyanin accumulation in Malus crabapple leaves. PloS One 9(6), e97904.10.1371/journal.pone.0097904405161224914811Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo