1. bookVolume 49 (2022): Edizione 1 (January 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
1338-7014
Prima pubblicazione
16 Apr 2017
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
access type Accesso libero

Ecogenesis and primary soil formation on the East European Plain. A review

Pubblicato online: 30 Dec 2021
Volume & Edizione: Volume 49 (2022) - Edizione 1 (January 2022)
Pagine: 51 - 60
Ricevuto: 20 Apr 2021
Accettato: 26 Oct 2021
Dettagli della rivista
License
Formato
Rivista
eISSN
1338-7014
Prima pubblicazione
16 Apr 2017
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
Abstract

Numerous published studies have shown that soil formation, including primary pedogenesis, is closely connected functionally, energetically and operationally with ecogenesis as a key biogenic exploration mechanism of the Earth’s surface by living organisms. The ontogenetic stage of soil evolution, especially in the initial phases, is determined by geogenic conditions and the intensity and trends of biogenic-accumulative processes in the developing ecosystem. Primary soils are considered critical in the rapid development of the initial ancient biosphere, supporting multiple environmental possibilities for ecosystems in that stage of their formation. Currently, similar models of correlated soil formation and ecogenesis are actualised when new substrates appear suitable for biogenic-abiogenic interactions, which occur in both natural and anthropogenic landscapes. Biotic factors during primary pedogenesis have accumulative and transformative effects on the edaphic component complex. At this stage, the initial pedon is a key functional stage in the evolution of terrestrial ecosystems (biogeocenosis). When restoration of natural ecosystems occurs during the independent growth of exposed substrates, the natural regeneration mechanisms normally occur. These processes are based on the biogenic development of the substrate through the accumulation and transformation of organic matter.

Keywords

Abakumov, E., Trubetskoj, O., Demin, D., Celi, L., Cerli, C., Trubetskaya, O., 2010. Humic acid characteristics in podzol soil chronosequence. Chemistry and Ecology, 26 (S2): 59–66. https://doi.org/10.1080/02757540.2010.497758t Search in Google Scholar

Aleksandrovskiy, A.L., 2002. Razvitiye pochv Vostochnoy Yevropy v golotsene. Avtoreferat dissertacii na soiskanie uchenoj stepeni doktora geograficheskikh nauk [The development of Eastern European soils in the Holocene. Dr. Sci. Geogr. thesis abstract]. Moscow: Institute of Georgaphy. 48 p. Search in Google Scholar

Androkhanov, V., Kulyapina, E., Kurachev, V., 2004. Soils of technogenic landscapes: genesis and evolution. Novosibirsk: Publishing house of the SB RAS. 149 p. Search in Google Scholar

Archegova, I., 2007. Thermal regime of tundra soils under reclamation and restoration of natural vegetation. Eurasian Soil Science, 40 (8): 854–859. https://doi.org/10.1134/S106422930708007810.1134/S1064229307080078 Search in Google Scholar

Archegova, I.B., 1992. About humus in connection with an unconventional understanding of the soil. Pochvovedenie, 1: 58–64. Search in Google Scholar

Archegova, I.B., 2009. Soil formation during the regenerative succession of forest ecosystems in the North. Sibirskiĭ Ekologicheskiĭ Zhurnal, 1: 91–98. Search in Google Scholar

Chertov, O.G., 1983. Mathematical model of the ecosystem of a single plant. Zhurnal Obshcheĭ Biologii, 44: 406–414. Search in Google Scholar

Clements, F.E., 1916. Plant succession: An analysis of the development of vegetation. Carnegie Institution of Washington Publication, No. 242. Washington: Carnegie Institution of Washington. 512 p. https://doi.org/10.5962/bhl.title.5623410.5962/bhl.title.56234 Search in Google Scholar

Dokuchaev, V.V., 1949. Izbrannyye trudy [Selected essays]. Moskow: Selkhozgiz. 647 p. Search in Google Scholar

Egli, M., Fitze, P., Mirabella, A., 2001. Weathering and evolution of soils formed on granitic, glacial deposits: Results from chronosequences of Swiss alpine environments. Catena, 45 (1): 19–47. https://doi.org/10.1016/S0341-8162(01)00138-210.1016/S0341-8162(01)00138-2 Search in Google Scholar

Egorov, A. A., Koptseva, E. M., Sumina, O. I., Fatianova, E. V., Kirillov, P. S., Ivanov, S. A., Trofimuk, L. P., 2019. Long-term biodiversity monitoring of the spontaneous successions for the assessment of the artificial restoration progress on the quarries in Russian Arctic. Earth and Environmental Science, 263: 1–8. https://doi.org/10.1088/1755-1315/263/1/01200210.1088/1755-1315/263/1/012002 Search in Google Scholar

Emmer, I. M., 1995. Humus form and soil development during a primary succession of monoculture Pinus sylvestris forests on poor sandy substrates. PhD thesis. Amsterdam: University of Amsterdam. 135 p. Search in Google Scholar

Ewald, E.O., 1972. O vzaimootnoshenii issledovaniĭ v oblasti genezisa i ekologii pochv (na primere izucheniya organicheskogo veshchestva [About relationship in investigation in field of genesis and ecology of soils (on example of soil organic matter)]. Soviet Soil Science, 2: 22–28. Search in Google Scholar

FAO, 2019. Soil erosion: the greatest challenge to sustainable soil management. Rome. 100 p. Search in Google Scholar

Frouz, J. (eds), 2013. Soil biota and ecosystem development in post mining sites. Boca Raton: CRC Press. 316 р. https://doi.org/10.1201/b1550210.1201/b15502 Search in Google Scholar

Furyev, V., 1996. Rol’ pozharov v protsesse lesoobrazovaniya [The role of fires in the process of forest formation]. Novosibirsk: Nauka. 248 p. Search in Google Scholar

Gadzhiev, I.M., Kurachev, V.M., Androkhanov, V.A., 2001. Strategiya i perspektivy resheniya problem rekul’tivatsii narushennykh zemel [Strategy and prospects for solving the problems of disturbed land restoration]. Novosibirsk: TsERIS. 37 p. Search in Google Scholar

Ganjegunte, G., Wick, A., Stahl, P., Vance, G., 2009. Accumulation and composition of total organic carbon in reclaimed coal mine lands. Land Degradation & Development, 20 (2): 156–175. https://doi.org/10.1002/ldr.88910.1002/ldr.889 Search in Google Scholar

Gennadiev, A.N., 1990. Pochvy i vremya: modeli razvitiya [Soils and time: formation models]. Moscow: Izd–vo Moskovskogo universiteta. 232 p. Search in Google Scholar

Gorbunova, A.O., Sumina, O.I., 2021. Dinamika mikorizoobrazovaniya u nekotorykh vidov rasteniy v khode vosstanovitel’noy suktsessii na peschanykh kar’yerakh (Leningradskaya oblast’) [Dynamics of mycorrhizal formation in some plant species during recovery succession in sand quarries (Leningrad region)]. Botanicheskiĭ Zhurnal, 1 (106): 22–42. Search in Google Scholar

Goryachkin, S.V., Mergelov, N.S., Targulian, V.O., 2019. Extreme pedology: elements of theory and methodological approaches. Eurasian Soil Science, 52 (1): 1–13. https://doi.org/10.1134/S106422931901004610.1134/S1064229319010046 Search in Google Scholar

Ivanov, I.V.A., Alexandrovskiy A.L., 1987. Metody izucheniya evolyutsii pochv [Methods for studying the evolution of soils]. Pochvovedenie, 1: 112–119. Search in Google Scholar

Kapelkina, L., Sumina, O., Lavrinenko, I., Lavrineneko, O., Tikhmenev, E., Mironova, S., 2014. Samozarastaniye narushennykh zemel’ Severa [Natural revegetation on disturbed lands of the North]. St. Petersburg: VVM Press. 204 p. Search in Google Scholar

Khitrov, N., 2008. An approach for a retrospective assessment of soil changes. Eurasian Soil Science, 41 (8): 793–804. https://doi.org/10.1134/S106422930808001210.1134/S1064229308080012 Search in Google Scholar

Komarov, A.S., 2009. Models of plant succession and soil dynamics at climate changes. Computer Research and Modeling, 1 (4): 405–413. https://doi.org/10.20537/2076-7633-2009-1-4-405-41310.20537/2076-7633-2009-1-4-405-413 Search in Google Scholar

Kostychev P.A., 1937. Pochvy chernozomnoy oblasti Rossii: ikh proiskhozhdeniye, sostav i svoystva [Soils of the chernozem region of Russia: their origin, composition and properties]. Moskow: Selkhozgiz. 240 p. Search in Google Scholar

Koptseva, E.M., 2012. Vegetation cover of sand dunes at the mouth of the Voronya River (Murmansk coast of the Barents Sea). Izvestiya Samarskogo Nauchnogo Tsentra RAN, 14 (1(5)): 1276–1280. Search in Google Scholar

Kovda, V.A., 1973. Osnovy ucheniya o pochvakh. Obshchaya teoriya pochvoobrazovatel’nogo protsessa [Fundamentals of the doctrine of soils. General theory of the soil-forming process]. Moskva: Nauka. 447 p. Search in Google Scholar

Levchenko, V. F., Skorobogatov, Y.I., 2014. Succession changes and ecosystem evolution (some questions of evolutionary ecology). Russkiĭ Ornitologicheskiĭ Zhurnal, 1068: 3533–3550. Search in Google Scholar

Makhonina, G. I., 2004. Nachal’nyye protsessy pochvoobrazovaniya v tekhnogennykh ekosistemakh Urala. Avtoreferat dissertacii na soiskanie uchenoj stepeni doktora biologicheskikh nauk [Initial processes of soil formation in technogenic ecosystems of the Urals. Dr. Sci. Biol. thesis abstract]. Tomsk: Ural State University, Ekaterinburg. 38 p. Search in Google Scholar

Matchavariani, L., 2019. soil-forming factors. The Soils of Georgia. Springer: Berlin/Heidelberg, Germany. https://doi.org/10.1007/978-3-030-18509-1_310.1007/978-3-030-18509-1_3 Search in Google Scholar

Mehdiyev, H.G., 2021. Mineralogical and microbiological diagnostics of primary soil formation in the conditions of gray-earth soils of the semidesert zone of the middle part of the Nakhichevan Autonomous Republic. Problemy Nauki, 5(64): 29–-37. Search in Google Scholar

Mokma, D.L., Yli–Halla, M., Lindqvist, K., 2004. Podzol formation in sandy soils of Finland. Geoderma, 120 (3–4): 259–272. https://doi.org/10.1016/j.geoderma.2003.09.00810.1016/j.geoderma.2003.09.008 Search in Google Scholar

Nyberg, G., Bargués Tobella, A., Kinyangi, J., Ilstedt, U., 2012. Soil property changes over a 120-yr chronosequence from forest to agriculture in western Kenya. Hydrology and Earth System Sciences, 16 (7): 2085–2094. https://doi.org/10.5194/hess-16-2085-201210.5194/hess-16-2085-2012 Search in Google Scholar

Ponomareva, V., Plotnikova, T., 1980. Gumus i pochvoobrazovaniye [Humus and soil formation]. Leningrad: Nauka. 222 p. Search in Google Scholar

Popov, A.I., 2012. The soil – plant trophosystem is the basis for the functioning of the ecosystem. Ekosistemy, ikh Optimizatsiya i Okhrana, 7: 251–260. Search in Google Scholar

Rabotnov, T., 1978. Fitotsenologiya [Phytocoenology]. Moskva: Izd-vo MGU. 384 p. Search in Google Scholar

Razumovskiy, S. M., 1981. Zakonomernosti dinamiki biotsenozov [Patterns of the dynamics of biocenoses]. Moskow: Nauka. 231 p. Search in Google Scholar

Razumovskiy, S.M., 1999. Izbrannyye trudy [Selected works]. Moscow: KMK. 560 p. Search in Google Scholar

Reyntam, L.Y., 2001. Humus state in primary soils under the forest on the quarry dumps of the shale industry. Pochvovedenie, 10: 1207–1216. Search in Google Scholar

Robichaud, P.R., Ashmun, L.E., Sims, B.D., 2010. Post-fire treatment effectiveness for hillslope stabilization. General Technical Report RMRS-GTR-240. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 62 p. https://doi.org/10.2737/RMRS-GTR-24010.2737/RMRS-GTR-240 Search in Google Scholar

Rode, A.A., 1984. Genezis pochv i sovremennyye protsessy pochvoobrazovaniya [Soil genesis and modern factors of soil formation]. Moskva: Nauka. 254 p. Search in Google Scholar

Rozanov B.G., 2004. Morfologiya pochv [Soil morphology]. Moscow: Akademicheskiĭ Proyekt. 432 p. Search in Google Scholar

Rusanov, A.M., 2012. The current stage of the evolution of agro-landscapes of steppe and forest-steppe zones (on the example of the Orenburg region). Vestnik OGU, 6: 128–132. Search in Google Scholar

Severtsov, A.C., 1990. Intraspecific diversity as a cause of evolutionary stability. Zhurnal Obshcheĭ Biologii, 51 (5): 579–589. Search in Google Scholar

Shishov, L.L., Tonkonogov, V.D., Lebedeva, I.I., Gerasimova, M.I., 2004. Klassifikatsiya i diagnostika pochv Rossii [Classification and diagnostics of soils in Russia]. Smolensk: Oykumena. 341 p. Search in Google Scholar

Shrestha, R.K., Lal, R., 2010. Carbon and nitrogen pools in reclaimed land under forest and pasture ecosystems in Ohio, USA. Geoderma, 157 (3–4): 196–205. https://doi.org/10.1016/j.geoderma.2010.04.01310.1016/j.geoderma.2010.04.013 Search in Google Scholar

Smagin, A.V., 2010. Biogeofizicheskiye mekhanizmy samoorganizatsii dolinnykh lesnykh ekosistem na pochvakh legkogo granulometricheskogo sostava [Biogeophysical mechanisms of self-organization of valley forest ecosystems on soils of light granulometric composition]. Ekologicheskiĭ Vestnik Severnogo Kavkaza, 6 (4): 17–29. Search in Google Scholar

Sokolov, I.A., 1997. Pochvoobrazovaniye i ekzogenez [Soil formation and exogenesis]. Moscow: Pochv. in-t im. V.V. Dokuchayeva. 239 p. Search in Google Scholar

Sumina, O. I., Koptseva, E. M., 2019. Seed distribution drivers at an early stage of vegetation development in a sand quarry. Tomsk State University. Journal of Biology, 46: 48–63. https://doi.org/10.17223/19988591/46/310.17223/19988591/46/3 Search in Google Scholar

Tang, J., Bolstad, P.V., Martin, J. G., 2009. Soil carbon fluxes and stocks in a Great Lakes forest chronosequence. Global Change Biology, 15 (1): 145–155. https://doi.org/10.1111/j.1365-2486.2008.01741.x10.1111/j.1365-2486.2008.01741.x Search in Google Scholar

Targulian, V., Goryachkin, S. (eds), 2008. Pamyat’ pochv: Pochva kak pamyat’ biosferno-geosferno-antroposfernykh vzaimodeĭstviĭ [Soil memory: soil as a memory of biosphere-geosphere-anthroposphere interaction]. Moscow: Inst. Geogr., Russian Acad. Sci. 692 p. Search in Google Scholar

Targulian, V.O., 1985. Planetarnyye ekzogennyye protsessy i pochvoobrazovaniye [Planetary exogenous processes and soil formation]. Izvestiya Akademii Nauk SSSR. Seriya Biologicheskaya, 6: 51–59. Search in Google Scholar

Tolchelnikov, Y.S., 1985. O sushchnosti ponyatiya “Pochva” [About the essence of the concept of “Soil”]. Vestnik Moskovskogo Universiteta, 17 (3): 52–58. Search in Google Scholar

Trofimov, S.S., Titlyanova, A.A., Klevenskaya, I.A., 1979. Sistemnyy podkhod k izucheniyu protsessov pochvoobrazovaniya v tekhnogennykh landshaftakh [A systematic approach to the study of soil formation processes in technogenic landscapes]. In Trofimov, S.S. (ed.). Pochvoobrazovaniye v tekhnogennykh landshaftakh. Novosibirsk: Nauka, p. 3–19. Search in Google Scholar

Tsibart, A. S., Gennadiev, A.N., 2009. The trend of changes in forest soils of the Amur region under the influence of the pyrogenic factor. Vestnik Moskovskogo Universiteta. Seriya 5. Geografiya, 3: 66–74. Search in Google Scholar

Wanner, M., Dunger, W., 2002. Primary immigration and succession of soil organisms on reclaimed opencast coal mining areas in eastern Germany. European Journal of Soil Biology, 38 (2): 137–143. https://doi.org/10.1016/S1164-5563(02)01135-410.1016/S1164-5563(02)01135-4 Search in Google Scholar

Zakharov, S.A., 1945. Evolyutsiya pochvoobrazovaniya v svyazi s istoriyeĭ zemnoĭ kory [Evolution of soil formation in connection with the history of the Earth’s crust]. Pochvovedeniye, 1: 54. Search in Google Scholar

Zavarzina, A. G., Zavarzin, A.A., 2013. Gumus v rannikh nazemnykh ekosistemakh [Humus in early terrestrial ecosystems]. Priroda, 9: 49–58. Search in Google Scholar

Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports, No. 106. Rome: FAO. 192 p. Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo