1. bookVolume 73 (2022): Edizione 2 (April 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
1339-309X
Prima pubblicazione
07 Jun 2011
Frequenza di pubblicazione
6 volte all'anno
Lingue
Inglese
access type Accesso libero

Investigation of field free region formed by dual Halbach array for focused magnetic hyperthermia

Pubblicato online: 14 May 2022
Volume & Edizione: Volume 73 (2022) - Edizione 2 (April 2022)
Pagine: 152 - 157
Ricevuto: 01 Jan 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
1339-309X
Prima pubblicazione
07 Jun 2011
Frequenza di pubblicazione
6 volte all'anno
Lingue
Inglese
Abstract

One of the challenges with magnetic fluid hyperthermia (MFH) is the limited control of magnetic nanoparticle (MNP) oscillations. To overcome this problem new approaches such as localization of MNP oscillations are being explored. In this study, we investigated the manipulation of field free region form by dual Halbach array displacements. We used finite element method simulation to examine gradient patterns in the workspace. Then, we created an experiment platform and took point probe measurements. As a result of the research, it was found that the field free region form can be manipulated by parametric distance changes of dual Halbach array. According to the findings, the field free region can expand and its shape can change from a point-like form to an ellipse-like surface by varying the distance between the arrays. The mapping of dual Halbach array generated gradient patterns for focused MFH was investigated for the first time in this study.

Keywords

[1] K. El-Boubbou, “Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery”, Nanomedicine, vol. 13, no. 8, pp. 929-952, doi: 10.2217/nnm-2017-0320 2018.10.2217/nnm-2017-0320 Search in Google Scholar

[2] M. Domenech, I. Marrero-Berrios, M. Torres-Lugo, and C. Rinaldi, “Lysosomal Membrane Permeabilization by Targeted Magnetic Nanoparticles in Alternating Magnetic Fields”, ACS Nano, vol. 7, no. 6, pp. 5091-5101, doi: 10.1021/nn4007048 2013.10.1021/nn4007048 Search in Google Scholar

[3] C. S. S. R. Kumar, and F. Mohammad, “Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery”, Adv. Drug Deliv. Rev, vol. 63, no. 9, pp. 789-808, doi: 10.1016/j.addr.2011.03.008 2011.10.1016/j.addr.2011.03.008 Search in Google Scholar

[4] W. Tao, and et al, “Two-Dimensional Antimonene-Based Photonic Nanomedicine for Cancer Theranostics”, Adv. Mater, vol. 30, no. 38, p. 1802061, doi: 10.1002/adma.201802061 2018.10.1002/adma.201802061 Search in Google Scholar

[5] A. Attaluri, and et al, “Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer”, Int. J. Hyperth, vol. 31, no. 4, pp. 359-374, doi: 10.3109/02656736.2015.1005178 2015.10.3109/02656736.2015.1005178 Search in Google Scholar

[6] D. Chang, and et al, “Biologically Targeted Magnetic Hyper-thermia: Potential and Limitations”, Front. Pharmacol, vol. 9, doi: 10.3389/fphar.2018.00831 2018.10.3389/fphar.2018.00831 Search in Google Scholar

[7] W. F. Brown, “Thermal Fluctuations of a Single-Domain Particle”, Phys. Rev, vol. 130, no. 5, pp. 1677-1686, doi: 10.1103/PhysRev.130.1677 1963.10.1103/PhysRev.130.1677 Search in Google Scholar

[8] R. E. Rosensweig, “Heating magnetic fluid with alternating magnetic field”, J. Magn. Magn. Mater, vol. 252, pp. 370-374, doi: 10.1016/S0304-8853(02)00706-0 2002.10.1016/S0304-8853(02)00706-0 Search in Google Scholar

[9] B. Tigli, “Numerical Analysis Of The Distribution Of Nanoparticles In The Treatment Of Hyperthermia Of Tumors”,, Gazi Üniversitesi, 2019. Search in Google Scholar

[10] R. Dhavalikar, and C. Rinaldi, “Theoretical predictions for spatially-focused heating of magnetic nanoparticles guided by magnetic particle imaging field gradients”, J. Magn. Magn. Mater, vol. 419, pp. 267-273, doi: 10.1016/j.jmmm.2016.06.038 2016.10.1016/j.jmmm.2016.06.038560425828943706 Search in Google Scholar

[11] P. Cantillon-Murphy, L. L. Wald, E. Adalsteinsson, and M. Zahn, “Heating in the MRI environment due to superparamagnetic fluid suspensions in a rotating magnetic field”, J. Magn. Magn. Mater, vol. 322, no. 6, pp. 727-733, doi: 10.1016/j.jmmm.2009.10.050 2010.10.1016/j.jmmm.2009.10.050281134220161608 Search in Google Scholar

[12] J. L. Ristic-Djurovic, and et al, “Design and Optimization of Electromagnets for Biomedical Experiments With Static Magnetic and ELF Electromagnetic Fields”, IEEE Trans. Ind. Electron, vol. 65, no. 6, pp. 4991-5000, doi: 10.1109/TIE.2017.2772158 2018.10.1109/TIE.2017.2772158 Search in Google Scholar

[13] S. Huang, Z. H. Ren, S. Obruchkov, J. Gong, R. Dykstra, and W. Yu, “Portable Low-Cost MRI System Based on Permanent Magnets/Magnet Arrays”, Investig. Magn. Reson. Imaging, vol. 23, no. 3, p. 179, doi: 10.13104/imri.2019.23.3.179 2019.10.13104/imri.2019.23.3.179 Search in Google Scholar

[14] Z. Li, and et al, “Constituting abrupt magnetic flux density change for power density improvement in electromagnetic energy harvesting”, Int. J. Mech. Sci, vol. 198, p. 106363, doi: 10.1016/j.ijmecsci.2021.106363 2021.10.1016/j.ijmecsci.2021.106363 Search in Google Scholar

[15] T. O. Tasci, I. Vargel, A. Arat, E. Guzel, P. Korkusuz, and E. Atalar, “Focused RF hyperthermia using magnetic fluids”, Med. Phys, vol. 36, no. 5, pp. 1906-1912, doi: 10.1118/1.3106343 2009.10.1118/1.3106343273671119544810 Search in Google Scholar

[16] Y. Lu, and et al, “Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image- guided treatment”, Int. J. Hyperth, vol. 37, no. 3, pp. 141-154, doi: 10.1080/02656736.2020.1853252 2020.10.1080/02656736.2020.185325233426994 Search in Google Scholar

[17] M. Ma, Y. Zhang, X. Shen, J. Xie, Y. Li, and N. Gu, “Targeted inductive heating of nanomagnets by a combination of alternating current (AC) and static magnetic fields”, Nano Res, vol. 8, no. 2, pp. 600610, doi: 10.1007/s12274-015-0729-7 2015.10.1007/s12274-015-0729-7 Search in Google Scholar

[18] D. L. Trumper, M. E. Williams, and T. H. Nguyen, “Magnet arrays for synchronous machines,¿—”, Conference Record of the IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting, pp. 9-18, doi: 10.1109/IAS..298897 1993. Search in Google Scholar

[19] L. M. Bauer, S. F. Situ, M. A. Griswold, and A. C. S. Samia, “High-performance iron oxide nanoparticles for magnetic particle imaging guided hyperthermia (hMPI)”, Nanoscale, vol. 8, no. 24, pp. 12162-12169, doi: 10.1039/C6NR01877G 2016.10.1039/C6NR01877G27210742 Search in Google Scholar

[20] Q. Zhao, and et al, “Magnetic Nanoparticle-Based Hyperthermia for Head dnd Neck Cancer in Mouse Models”, Theranostics, vol. 2, no. 1, pp. 113-121, doi: 10.7150/thno. 3854 2012. Search in Google Scholar

[21] V. Vilas-Boas, F. Carvalho, and B. Espia, “Magnetic Hyper-thermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies”, Molecules, vol. 25, no. 12, p. 2874, doi: 10.3390/molecules25122874 2020.10.3390/molecules25122874736221932580417 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo