[
[1] A pure-Rust implementation of group operations on Ristretto and curve25519. https://github.com/dalek-cryptography/curve25519-dalek.
]Search in Google Scholar
[
[2] libiop: a C++ library for IOP-based zkSNARKs. https://github.com/scipr-lab/libiop.
]Search in Google Scholar
[
[3] libsnark: a C++ library for zkSNARK proofs. https://github.com/scipr-lab/libsnark.
]Search in Google Scholar
[
[4] Marlin. https://github.com/arkworks-rs/marlin.
]Search in Google Scholar
[
[5] Spartan: High-speed zkSNARKs without trusted setup. https://github.com/microsoft/spartan.
]Search in Google Scholar
[
[6] Virgo ZK reference implementation. https://github.com/sunblaze-ucb/virgo.
]Search in Google Scholar
[
[7] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero: Lightweight sublinear arguments without a trusted setup. CCS 2017: 2087–2104.10.1145/3133956.3134104
]Search in Google Scholar
[
[8] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive oracle proofs of proximity. ICALP 2018: 14:1–14:17.
]Search in Google Scholar
[
[9] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and post-quantum secure computational integrity. IACR Cryptology ePrint Archive, 2018: 46.
]Search in Google Scholar
[
[10] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity gaps for Reed-Solomon codes. FOCS 2020: 900–909.10.1109/FOCS46700.2020.00088
]Search in Google Scholar
[
[11] Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner. Zero knowledge protocols from succinct constraint detection. TCC 2017: 172–206.10.1007/978-3-319-70503-3_6
]Search in Google Scholar
[
[12] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. Quasi-linear size zero knowledge from linear-algebraic PCPs. TCC 2016-A: 33–64.10.1007/978-3-662-49099-0_2
]Search in Google Scholar
[
[13] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. IEEE Symposium on Security and Privacy 2014: 459–474.10.1109/SP.2014.36
]Search in Google Scholar
[
[14] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions from RAMs to delegatable succinct constraint satisfaction problems. ITCS 2013: 401–414.10.1145/2422436.2422481
]Search in Google Scholar
[
[15] Eli Ben-Sasson, Alessandro Chiesa, Lior Goldberg, Tom Gur, Michael Riabzev, and Nicholas Spooner. Linear-Size Constant-Query IOPs for Delegating Computation. TCC (2) 2019: 494–521.10.1007/978-3-030-36033-7_19
]Search in Google Scholar
[
[16] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. EURO-CRYPT (1) 2019: 103–128.10.1007/978-3-030-17653-2_4
]Search in Google Scholar
[
[17] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. TCC (2) 2016: 31–60.10.1007/978-3-662-53644-5_2
]Search in Google Scholar
[
[18] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive zero knowledge for a von neumann architecture. USENIX Security Symposium 2014: 781–796.
]Search in Google Scholar
[
[19] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI: Sampling outside the box improves soundness. ITCS 2020: 5:1–5:32.
]Search in Google Scholar
[
[20] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, Tiancheng Xie, and Yupeng Zhang. Ligero++: A new optimized sublinear IOP. CCS 2020: 2025–2038.10.1145/3372297.3417893
]Search in Google Scholar
[
[21] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. EUROCRYPT (2) 2016: 327–357.10.1007/978-3-662-49896-5_12
]Search in Google Scholar
[
[22] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Gregory Maxwell. Bulletproofs: Short proofs for confidential transactions and more. IEEE Symposium on Security and Privacy 2018: 315–334.10.1109/SP.2018.00020
]Search in Google Scholar
[
[23] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks from DARK compilers. EUROCRYPT (1) 2020: 677–706.10.1007/978-3-030-45721-1_24
]Search in Google Scholar
[
[24] Nigel P. Byott and Robin J. Chapman. Power sums over finite subspaces of a field. Finite Fields and Their Applications, 5(3): 254–265, 1999.10.1006/ffta.1999.0243
]Search in Google Scholar
[
[25] Benedikt Bünz, Mary Maller, Pratyush Mishra, and Noah Vesely. Proofs for inner pairing products and applications. IACR Cryptology ePrint Archive, 2019: 1177.
]Search in Google Scholar
[
[26] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo. Zero-knowledge contingent payments revisited: Attacks and payments for services. CCS 2017: 229–243.10.1145/3133956.3134060
]Search in Google Scholar
[
[27] Alessandro Chiesa, Michael A. Forbes, and Nicholas Spooner. A zero knowledge sumcheck and its applications. IACR Cryptology ePrint Archive, 2017: 305.
]Search in Google Scholar
[
[28] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS. EUROCRYPT (1) 2020: 738–768.10.1007/978-3-030-45721-1_26
]Search in Google Scholar
[
[29] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent recursive proofs from holography. EUROCRYPT (1) 2020: 769–793.10.1007/978-3-030-45721-1_27
]Search in Google Scholar
[
[30] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation with streaming interactive proofs. ITCS 2012: 90–112.10.1145/2090236.2090245
]Search in Google Scholar
[
[31] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature problems. CRYPTO 1986: 186–194.10.1007/3-540-47721-7_12
]Search in Google Scholar
[
[32] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct nizks without PCPs. EUROCRYPT 2013: 626–645.10.1007/978-3-642-38348-9_37
]Search in Google Scholar
[
[33] Craig Gentry and Daniel Wichs. Separating succinct noninteractive arguments from all falsifiable assumptions. STOC 2011: 99–108.10.1145/1993636.1993651
]Search in Google Scholar
[
[34] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques. Cambridge University Press, 2001.
]Search in Google Scholar
[
[35] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Roth-blum. Delegating computation: Interactive proofs for muggles. Journal of the ACM, 62(4): 27:1–27:64, 2015.
]Search in Google Scholar
[
[36] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof systems. SIAM Journal on Computing, 18(1): 186–208, 1989.10.1137/0218012
]Search in Google Scholar
[
[37] Jens Groth. On the size of pairing-based non-interactive arguments. EUROCRYPT (2) 2016: 305–326.10.1007/978-3-662-49896-5_11
]Search in Google Scholar
[
[38] Jens Groth and Yuval Ishai. Sub-linear zero-knowledge argument for correctness of a shuffle. EUROCRYPT 2008: 379–396.10.1007/978-3-540-78967-3_22
]Search in Google Scholar
[
[39] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash Protocol Specification, March 2020.
]Search in Google Scholar
[
[40] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials and their applications. ASIACRYPT 2010: 177–194.10.1007/978-3-642-17373-8_11
]Search in Google Scholar
[
[41] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). STOC 1992: 723–732.10.1145/129712.129782
]Search in Google Scholar
[
[42] Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products and polynomial commitments. IACR Cryptology ePrint Archive, 2020: 1274.
]Search in Google Scholar
[
[43] Rudolf Lidl and Harald Niederreiter. Finite Fields. Second Edition. Cambridge University Press, 1997.10.1017/CBO9780511525926
]Search in Google Scholar
[
[44] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for interactive proof systems. FOCS (1) 1990: 2–10.
]Search in Google Scholar
[
[45] Ralph C. Merkle. A certified digital signature. CRYPTO 1989: 218–238.10.1007/0-387-34805-0_21
]Search in Google Scholar
[
[46] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4): 1253–1298, 2000.10.1137/S0097539795284959
]Search in Google Scholar
[
[47] NIST. Common vulnerabilities and exposures. https://nvd.nist.gov/vuln/detail/cve-2019-7167, March 2019.
]Search in Google Scholar
[
[48] Srinath Setty. Spartan: Efficient and general-purpose zk-SNARKs without trusted setup. CRYPTO (3) 2020: 704–737.10.1007/978-3-030-56877-1_25
]Search in Google Scholar
[
[49] Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4): 869–877, 1992.10.1145/146585.146609
]Search in Google Scholar
[
[50] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. CRYPTO (2) 2013: 71–89.10.1007/978-3-642-40084-1_5
]Search in Google Scholar
[
[51] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. TCC 2008: 1–18.10.1007/978-3-540-78524-8_1
]Search in Google Scholar
[
[52] Alexander Vlasov and Konstantin Panarin. Transparent polynomial commitment scheme with polylogarithmic communication complexity. IACR Cryptology ePrint Archive, 2019: 1020.
]Search in Google Scholar
[
[53] Riad S. Wahby, Ye Ji, Andrew J. Blumberg, Abhi Shelat, Justin Thaler, Michael Walfish, and Thomas Wies. Full accounting for verifiable outsourcing. CCS 2017: 2071–2086.10.1145/3133956.3133984
]Search in Google Scholar
[
[54] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish. Doubly-efficient zkSNARKs without trusted setup. IEEE Symposium on Security and Privacy 2018: 926–943.10.1109/SP.2018.00060
]Search in Google Scholar
[
[55] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Char-alampos Papamanthou, and Dawn Song. Libra: Succinct zero-knowledge proofs with optimal prover computation. CRYPTO (3) 2019: 733–764.10.1007/978-3-030-26954-8_24
]Search in Google Scholar
[
[56] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent polynomial delegation and its applications to zero knowledge proof. IEEE Symposium on Security and Privacy 2020: 859–876.10.1109/SP40000.2020.00052
]Search in Google Scholar