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1 Introduction

Water resources management and the design of fl ood 
prevention and adaptation strategies are becoming more 
challenging due to the uncertainties of climate change 
(Refsgaard et al., 2013). Global warming, variations in 
precipitation, and changes in the frequency of extreme 
events increase the probability of fl ood occurrences 
and change the total and seasonal water supply, 
among other impacts (Parry et al., 2007). Projections 
by the fi fth iteration of the Intergovernmental Panel on 
Climate Change (IPCC) point towards a likely decrease 
in precipitation over the Mediterranean by 30–45%, 
especially if temperature rises by 1.4 °C (Cisneros, 2014; 
Zhai et al., 2018). Consequently, the frequency of fl ash 
fl oods and droughts in the region is expected to increase 
in the coming years, seriously altering the ecological and 
hydrological patterns of river basins (Tzoraki, 2020).

Addressing of climate change eff ects in the development 
of hazardous risk adaptation and mitigation plans

has been on the agenda of many governments and 
institutions (Lavell et al., 2012). Hence, eff ective planning 
requires the examination of both current and projected 
climate change scenarios (Shrestha at al., 2017). 
According to IPCC, GCMs are advanced tools currently 
available for simulating the response of global climate 
system to increasing greenhouse gas concentrations. 
The use of GCMs has been the most crucial method for 
studying the implications of climate change (Wu et al., 
2015). In a global scale, several studies have quantifi ed 
potential changes in hydrological dynamics of river 
basins by climate change projections on the basis 
of GCMs (i.e., Sharafati et al., 2020; Ismail et al., 2020; 
Ebrahim et al., 2012; Hajian et al., 2016; QIN & LU, 2014; 
Emam et al., 2016; Yilmaz & Imteaz, 2011). The fi ndings 
of these studies indicate that hydrological processes 
are highly sensitive to precipitation and temperature. 
Therefore, climate change can have a signifi cant eff ect 
on hydrological regime of a river basin (Sharafati et al., 
2020).
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et al., 2018; Sharafati et al., 2020). 
Additional, weather generators 
have been used successfully for 
downscaling the output of the GCMs 
over different regions (Sharafati et al., 
2020). Weather Generator developed 
by the Long Ashton Research 
Station (LARS-WG) has been widely 
used to assess possible effects of 
climate change on hydrological 
processes (Sharafati et al., 2020). 
However, uncertainties associated 
with simulating various response 
mechanisms in GCMs are responsible 
for the fact that GCMs may simulate 
quite different responses to the 
same forcing (Randall et al., 2007). 
These differences are unlikely to 
be consistent with the uncertainty 
range of regional projections. 
Despite considerable improvements 
in computational power in recent 
years, climate models do not 
guarantee a representative range 
at finer scales of drainage systems 
(Shrestha et al., 2017). 

Future greenhouse gas emission 
scenarios are appropriate tools for 
analyzing the influence on future 
emission outcomes due to various 
driving forces and assessing related 
uncertainties (IPCC, 2000). The IPCC 
defined a series of Representative 
Concentration Pathway (RCP) 
emission scenarios for future climate 
projections based on the Coupled 
Model Intercom Paring Project phase 
5 (CMIP5). These scenarios are based 
on different 21st century pathways 
of greenhouse gas (GHG) emissions, 

population, and socio-economic 
conditions (IPCC, 2014). The RCPs 
include a stringent mitigation 
scenario (RCP2.6), two intermediate 
scenarios (RCP4.5 and RCP6.0), and 
one scenario with very high GHG 
emissions (RCP8.5) (IPCC, 2014). These 
various climate change scenarios can 
be used to define the climate change 
impact on hydrological processes, by 
downscaling the large-scale GCMs 
predictions to local scale with the 
LARS-WG (Sharafati et al., 2020). 

The main objective of the current 
study is the numerical evaluation of 
climate change impact (2021–2080) 
on the hydrological regime of a smal 
Mediterranean river, the Kalloni 
river, which flows over Lesvos 
Island of Greece. The river basin 
is of significant importance due 
to high biodiversity richness of its 
NATURA 2000 areas. The developed 
approach based on the integration 
of spatial downscaling of GCMs and 
hydrological simulation has been 
adopted in the study. 

2	 Material and methods
A methodological framework 
summarized in Fig. 1 was developed 
in the study to assess climate change 
effects on the hydrology of the 
Kalloni river basin. Climate change 
impacts on the basin hydrology were 
evaluated by comparing GCMs based 
estimates of future streamflow and 
evapotranspiration with business as 
usual (BaU) or baseline scenario. 

Although GCMs are very important 
tools for studying the implications 
of climate change, these contain 
biases when compared to observed 
data due to their parameterization 
systems and large grid size (Sharma 
et al., 2007). Outputs from the GCMs 
are typically defined at 250–600 km 
grids which are quite coarse relative 
to the scale of exposure units in 
most regional impact assessments. 
In fact, hydrological studies dealing 
with climate change impacts 
on small basins are particularly 
challenging, as they may require 
rainfall and temperature data at 
spatial resolution of 1 km2 (Shrestha 
et al., 2017). In order to overcome 
this problem, many different 
downscaling methods have been 
developed over the last few decades 
(Ebrahim et al., 2012). These methods 
aim to provide sufficient hydrological 
variables by downscaling large-scale 
GCMs forecasts to a local scale 
(Ebrahim et al., 2012). Subsequently, 
the generated variables can be used 
as inputs to basin-scale hydrological 
models to predict climate-induced 
changes in flow patterns. There is 
a range of different downscaling 
techniques, which are mainly 
dynamical downscaling, statistical 
downscaling, regression based 
downscaling, weather typing 
procedure and the stochastic 
weather generator (Semenov & 
Barrow, 1997; Wilby et al., 2002; 
Sunyer et al., 2012; Shrestha et 
al., 2017). The most commonly 
applied are dynamic and statistical 
downscaling methods (Shrestha et 
al., 2017). Dynamic downscaling is 
based on high-resolution regional 
climate models combined with 
observations and output from 
lower-resolution larger-scale climate 
models, while statistical downscaling 
is based on the development and 
application of statistical relationships 
between local weather variables and 
large-scale predictors (Wilby et al., 
2002; Hewer & Gough, 2018; Nourani  

Figure 1	 Flow diagram of methodological framework 
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1962). More specifically, the average 
annual temperature is approximately 
17 °C, with an average minimum 
temperature of 12.2 °C and an 
average maximum temperature of 
21.4 °C. The mean annual rainfall 
depth over the Kalloni river basin 
is 514 mm, ranging from a daily 
minimum of 2.1 mm in summer 
(July) to a maximum of 98.5 mm in 
winter (January). Historical weather 
data from 2003 to 2020 in terms 
of daily precipitation, maximum 
and minimum temperature, solar 
radiation, relative humidity, and wind 
speed were collected from the Agia 
Paraskevi Meteorological Station. 
Water level data was obtained from 
automatic hydrometric station 
operating in Kalloni bridge. The river 
velocity and level were measured 
by field work to construct the rating 
curve. 

In recent years, extended periods 
of drought are followed by sudden 
rainfalls of high intensity and 
short duration. This results in large 
volumes of water, which are not 
properly absorbed by the soil, 
ending up in the urban fabric. At the 
same time, the reduced cross-section 
of the riverbed at this point leads to 
overflow of the river with hazardous 
consequences for the infrastructures 
and the inhabitants. As a result, 
Kalloni experienced significant 
floods in 1986, 2005, 2011, 2016 
(Matrai & Tzoraki, 2018). 

 
Figure 2	 Kalloni river basin in Lesvos Island, Greece

 

 
Figure 3	 (a) Altitude and (b) Land uses of basin area 

2.1	 Study area

The Kalloni river basin illustrated 
in Fig. 2, which occupies the area 
of 40.28 km2 was considered for 
the current study. The basin drains 
the wider area of the Kalloni 
settlement which is the second 
largest commercial centre of Lesvos 
Island. Its hydrographic network, 
with the total length of 34.92 km, 
is characterized as a  dendritic type 
with many ephemeral streams. The 
basin area varies from lowland to 
mountainous in nature (Fig. 3a). 
North-western and western parts 
are mountainous areas with altitude 
reaching 690.3 m. North-eastern and 
central parts are intermediate hilly, 
of an average altitude of 300 m. The 
southern part is a large plain with an 

altitude almost equal to mean sea 
level. Main economic activities in the 
area are agriculture, livestock, and 
small local businesses. Fig. 3b shows 
that the watershed is primarily 
covered by agriculture (olive groves 
and cultivation patterns). Moreover, 
there are some small pine and oak 
forests at the northern tip of the 
basin, brushland habitats at the east 
and some artificial surfaces. Finally, 
in the southern part of the basin at 
the mouth of the torrent, wetlands 
and swampy areas develop. Land 
use data are provided by the 
Decentralized Administration of the 
North Aegean.

The study area has a Mediterranean 
climate with warm, dry summers 
and cool, mild, rainy winters (HMSO, 

a b
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2.2	 Geomorphological analysis 

Analyses of geomorphological and hydrological 
characteristics of the study area were performed through 
HEC-GeoHMS extension of ArcMap and ArcHydro toolbox. 
HEC-GeoHMS extension was developed as a geospatial 
hydrology toolkit for engineers and hydrologists. The 
program allows users to visualize spatial information, 
document watershed characteristics, delineate subbasins 
and streams, and expediently create hydrologic inputs 
for Hydrologic Modeling System version 4.3 developed 
by the Hydrologic Engineering Center (HEC-HMS) 
(USACE, 2013). More specifically, HEC-GeoHMS produces 
a background map file and a basin model file as inputs to 
HEC-HMS. The map file visualizes basin‘s subbasins and 
watercourses of the study area, and the basin model file 
contains hydrological and geomorphological elements 
of the basin.

A digital elevation model (DEM) with 25 m grid from the 
European Environmental Agency was used as an input 
in HEC-GeoHMS to derive eight additional datasets that 
collectively describe drainage pattern of the watershed. 
The first step is to fill the sinks from the raw DEM and 
then use it as an input to delineate the Kalloni stream 
network and the watershed boundary. The produced 
datasets consist of five grid layers that represent the flow 
direction, flow accumulation, stream definition, stream 

segmentation, and watershed delineation, and two 
vector layers of the watershed and streams. Various stages 
of watershed generation in HEC-GeoHMS are shown in 
Figs 4, 5 and 6. Therefore, twenty-three subbasins and 
corresponding reaches are identified within the Kalloni 
basin area.

2.3	 Rating curve calculation 
	 with field measurements

River monitoring is a critical issue for hydrological 
modeling that relies strongly on the use of flow rating 
curves (Manfreda, 2018). Rating curves define stage-
discharge relationship and are usually developed 
by making frequent direct discharge measurements 
at stream gauging stations. Moreover, rating curves 
depend on the hydraulic characteristics of the stream 
channel and floodplain. Hence, they may vary over time 
in alluvial rivers, as river-bed characteristics change over 
time (Westerberg et al., 2011). This implies the need for 
frequent and time-consuming field survey. 

In this study, field work measurements were carried out 
at characteristic cross sections of the streams aiming 
at calculating rating curves. The equipment consisted 
of a small flow meter device with a propeller, which is 
a  portable flow measurement system in rivers, open 
canals or even in open water pipes. The rating curve 

             

 Figure 4	 Kalloni raw DEM and fill DEM produced in HEC-GeoHMS
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 Figure 5	 Flow direction and flow accumulation maps generated in HEC-GeoHMS

    

 Figure 6	 Stream network and watershed generation in HEC-GeoHMS
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equation for discharge (Q) and stage (H) was calculated 
as follows:

	 Q = 2.7837 × H1.1608	 (2.1)

Subsequently, the observed flow time series generated 
by the rating curve are used to calibrate the hydrological 
model HEC-HMS for time period 2018–2019. Each 
observed value of daily discharge was estimated from 
the rating curve equation using observed daily stage 
measured in real time by a telemetric station operating 
in Kalloni since 2018. 

2.4	 Spatial downscaling of large-scale 
	 climate predictions

Weather Generator version 6.0 from the Long Ashton 
Research Station (LARS-WG 6.0) is a single site numerical 
model for generating daily time-series of climate 
variables, namely, precipitation (mm), maximum and 
minimum temperature (°C), and solar radiation (MJm-2.
day-1). LARS-WG 6.0 is suitable for downscaling coarse 
resolution climate model simulations in local spatial scale 
for different climate change scenarios (Sharafati et al., 
2020). The model, after calibrating site parameters with 
observed weather data for the baseline period, is capable 
of simulating synthetic daily time series of weather data 
that are statistically similar to the observed weather 
(Wilks & Wilby, 1999). LARS-WG 6.0 uses a semi-empirical 
distribution to calculate the length of wet and dry days 
(Racsko et al., 1991). Moreover, it considers each weather 
variable as a stochastic variable, and simulates seasonal 
cycles through Fourier series (Sharafati et al., 2020).

Methodology for spatial downscaling using LARS-WG to 
generate future climate data can be divided into three 
major steps: model calibration (Site Analysis), model 
validation (QTest), and generation of synthetic weather 
data (Generator). Parameter files derived during the 
model calibration step are used to generate synthetic 
weather data having the same statistical characteristics 
as the original observed data but differing on a daily 
basis. In order to ensure that the simulated data 

probability distributions are close to the true long-term 
observed distributions, a model validation process must 
be performed. The QTest validation option of LARS-WG 
carries out a statistical comparison of generated and 
observed weather data using the Kolmogorov-Smirnov 
(K-S) test, the T-test, and the F-test. Once LARS-WG has 
been calibrated and the performance of the weather 
generator has been verified, synthetic weather data may 
be simulated using the Generator option. This option 
may be used to generate synthetic data which have the 
same statistical characteristics as the observed weather 
data (baseline scenario), or to generate synthetic weather 
data corresponding to a climate change scenario from 
GCMs (Semenov & Barrow, 2002). 

The current version LARS-WG 6.0 generates high 
resolution climate change scenarios over a region using 
direct outputs from General Circulation Models (GCMs). 
LARS-WG 6.0 incorporates projections from five GCMs 
with the different climate scenarios RCP2.6, RCP4.5, and 
RCP8.5 used in the IPCC. Table 1 summarizes the different 
GCMs and RCPs that are taken into consideration in this 
study to forecast futuristic climate data for a period of 60 
years from 2021 to 2080. Calibration of site parameters 
is performed for baseline period of 18 years from 2003 
to 2020.

2.5	 Hydrological simulation and calibration

Hydrologic Engineering Centre’s Hydrologic Modeling 
System (HEC-HMS) was designed by the United States 
Army Corps of Engineers (USACE) as a software tool for 
simulating complete hydrological cycle in the context 
of solving engineering problems (Scharffenberg et al., 
2010). HEC-HMS is a deterministic, semi-distributed, 
conceptual model which is designed to simulate 
precipitation-runoff processes of dendritic drainage 
basins. It is applicable to a wide range of geographic 
areas for solving the widest possible range of problems 
(USACE, 2013). The software has been applied in a wide 
variety of geographical regions, such as large river basins, 
and small municipal and natural watersheds. In addition, 
depending on objectives of the study, it can be applied 

Table 1	 Summary of the five GCMs and corresponding emission scenarios (RCPs) 

GCM Institution Grid Resolution RCP

EC-EARTH European community Earth-System Model 1.125° × 1.125° RCP4.5, RCP8.5

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory 2° × 2.5° RCP4.5, RCP8.5

HadGEM2-ES Met Office Hadley Center, United Kingdom 1.25° × 1.875o RCP2.6, RCP4.5, RCP8.5

MIROC5
Atmosphere and Ocean Research Institute (The University of 
Tokyo), National Institute for Environment Studies and Japan 

Agency for Marine-Earth Science and Technology, Japan
1.40° × 1.41° RCP4.5, RCP8.5

MPI-ESM-MR Max Planck Institute for Meteorology, Germany 1.85° × 1.875° RCP4.5, RCP8.5
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for simulation of either individual events or continuous 
large-scale events. 

HEC-HMS has been widely used all over the world in 
a number of studies, including flood forecasting (Verma 
et al., 2010), land use change impacts (Ali et al., 2011), and 
also assessing the impact of climate change. Nyaupane 
et al. (2018) used HEC-HMS for prediction of future peak 
flow condition in the Irwin Creek watershed located 
in Charlotte, North Carolina. The study highlighted 
the significance of consideration of climate change as 
a factor likely to result in increased peak discharge in the 
existing urban watersheds. The hydrologic impacts of 
climate change in the Tungabhadra river basin in India 
was also assessed by Meenu et al. (2012). They utilized 
the HEC-HMS to model hydrologic processes and the 
Statistical Down Scaling Model (SDSM) to downscale 
daily precipitation, and maximum and minimum 
temperature. Moreover, Bai et al. (2019) proposed 
a  framework combining HEC-HMS and the Coupled 
Model Intercomparison Project Phase 5 (CMIP5) GCMs to 
assess the impact of climate change on flood events in 
the Nippersink Creek watershed located in Northeastern 
Illinois. They found that the increase in greenhouse gas 
concentration under RCP 8.5 scenario can increase future 
precipitation. It may induce a greater impact on flood 
events by 110% increase from historically-observed 100 
year return period flood.

Each model run incorporates a basin model describing 
basin‘s connectivity and physical characteristics, 
a  meteorological model storing the precipitation and 
evapotranspiration data, and a control specification 
with run options to attain outcomes (Verma et al., 2010). 
In HEC-HMS, a basin model is constructed by dividing 
the hydrological cycle (evaporation, surface runoff, 
infiltration, and groundwater recharge) into individual 
parts with possibility of processing each one separately. 
Therefore, each component of the hydrological cycle 
is represented by a mathematical model. HEC-HMS 
also provides supplemental analysis tools for model 
optimization, forecasting streamflow, depth-area 
reduction, assessing model uncertainty, erosion and 
sediment transport, and water quality (Wang et al., 
2016). Furthermore, spatial data sets can be organized 
in GIS platforms using HEC-GeoHMS, and then directly 
imported into HEC-HMS (Ali et al., 2011).

In the present study, hydrological simulation is 
performed in the examined basin with a daily time 
step. For infiltration loss calculation of the watershed, 
the “deficit and constant“ method is implemented. The 
deficit and constant loss model uses a single soil layer to 
account for continuous changes in moisture content (US 
Army Corps of Engineers, 2008). In addition, the “Clark 

unit hydrograph“ method is used to transform the flows 
and calculate the direct runoff from excess precipitation. 
The runoff is considered to be through a linear reservoir. 
Furthermore, the “linear reservoir“ method is used to 
account the baseflow. The central idea of the method is 
to take into account an underground reservoir charged 
during the infiltration phase of rainwater and then 
discharged, contributing to the surface flow after the 
end of the rainfall. Finally, the “Lag“ method is selected 
as the channel routing model. Table 2 summarizes the 
calculation methods for all the components of the HEC-
HMS model applied in the present study.

Table 2	 Calculation methods for components of the 
basin and meteorological models

Component Calculation method

Canopy simple canopy

Loss deficit and constant

Transform clark unit hydrograph

Baseflow linear reservoir

Routing lag

Evapotranspiration constant monthly

The inclusion of the evapotranspiration process in the 
HEC-HMS model is significant for long-term simulations, 
and it is also necessary when using the deficit and constant 
loss method. In the case of the Kalloni, the method of 
constant monthly evapotranspiration is selected, which 
requires a potential monthly evaporation rate (mm.
month-1) and a crop coefficient from all subbasins. The 
modified Blaney-Criddle method is applied to calculate 
the mean daily potential evapotranspiration for each 
month (Doorenbos & Pruitt, 1977): 

	 ETd = a + b × p × (0.46 × T + 8.16)	 (2.2)

where: 
ETd – the daily potential evapotranspiration (mm.d-1); 
T – the average monthly temperature (°C); p – the mean 
daily percentage of annual daytime hours (%), and a, b 
are the adjustment coefficients of the original Blaney-
Criddle equation depending on the air humidity, the 
hours of actual sunshine and the wind speed. In this case, 
the values -2.15, 1.38 are chosen for the coefficients a, 
b, respectively. These values are selected for moderate 
relative humidity conditions during the day (20–50%), 
for average wind speed conditions, and for theoretical to 
actual sunshine ratio between 0.6 and 0.8 (Ponce, 989). 
The mean daily percentage of annual daytime hours (p) 
expresses the percentage (%) of daylight hours each 
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month in relation to the total daylight hours of the year. 
This percentage is calculated from the following equation 
(Blaney & Criddle, 1950):

		  (2.3)

where:
N – the average astronomical daylight duration related to 
the latitude of the study area (h); m – the number of days 
in the month under consideration (d). Finally, the daily 
ETd is converted to monthly using the formula: 

	 ΕΤm = ETd × μ	 (2.4)

where:
ETm – the monthly potential evapotranspiration (mm.
month-1); μ – the total number of days in the respective 
month

The HEC-HMS model is calibrated using observed data 
(e.g., river discharge) to improve the predictability and 
reliability of the model. The model accuracy is typically 
based on specific statistics and ratings developed to 
evaluate various performance criteria, such as accuracy 
of predicting peak flows, total hydrograph volume, peak 
flow, time to peak etc., depending on project goals 
(World Bank Group, 2015). In this research, a set of model 
parameters is estimated empirically and manually using 
the HMS model’s tool “Calibration Aids”. The accuracy 
and performance of the calibrated model is evaluated 
by three goodness-of-fit measures, the Nash–Sutcliffe 
efficiency (NSE) coefficient, the percentage bias error 
(PBIAS), and the Root Mean Squared Error standard 
deviation ratio (RMSE Std. Dev.) of observations.

1.	 Nash-Sutcliffe efficiency (NSE) coefficient (Nash & 
Sutcliffe, 1970):

		  (2.5)

	 where:
	 Qi

obs and Qi
sim – the observed and simulated discharge 

	 value at the ith step, respectively;  is the average 

	 of the observed discharge values; n – the number 
of observed/simulated values. The NSE coefficient 
determines the relative magnitude of the error variance 
compared to the observed data variance. NSE takes 
values in range between negative infinity (-∞) and 1; 
value of 1 indicates a perfect agreement, while negative 
values indicate very poor agreement. Generally, model 
calibration can be considered satisfactory if the NSE 
coefficient is greater than 0.50, while NSE coefficient 
values greater than 0.75 indicate a very good calibration 
of the model (Moriasi et al., 2007).

2.	 Percentage bias error (PBIAS), defined as:

		  (2.6)

	 where:
	 Qsim and  – the simulated and observed mean 

discharge, respectively. This measure reflects the 
model’s capability to maintain water balance by 
reproducing total runoff volume. The lower PBIAS, the 
better is the model’s performance.	  

3.	 Root Mean Squared Error standard deviation (RMSE 
Std. Dev.), given by: 

		  (2.7)

	 where:
	 Qi

obs and Qi
sim – the observed and simulated discharge

	 value at the ith step, respectively;  – the average of 
the observed discharge values, and n is the number 
of observed/simulated values. RMSE Std. Dev. 
incorporates the benefits of error index statistics and 
includes a  normalization factor, so that the resulting 
statistic and reported values can apply to various 
constituents. RMSE Std. Dev. varies from the optimal 
value of 0 to a large positive value. Lower values of 
RMSE Std. Dev. nominate a lower root mean square 
error normalized by the standard deviation of the 
observations, which indicates the adequacy of the 
model simulation (Moriasi et al., 2007).

Table 3	 General performance ratings for examining statistics

Performance rating NSE PBIAS RMSE Std. Dev.

Very Good 0.75< NSE ≤1.00 PBIAS <±10% 0.00≤ RMSE Std. Dev. ≤0.50

Good 0.65< NSE ≤0.75 ±10%≤ PBIAS <±15% 0.50< RMSE Std. Dev ≤0.60

Satisfactory 0.50< NSE ≤0.65 ±15%≤ PBIAS <±25% 0.60< RMSE Std. Dev ≤0.70

Unsatisfactory NSE ≤0.50 PBIAS ≥±25% RMSE Std. Dev >0.70

Source: Moriasi et al., 2007

100
365 12
N

p


 


 

 

 

2

1
2

1

NSE 1

n
sim obs
i i

i
n

obs obs
i

i

Q Q

Q Q






 






 

obsQ  

PBIAS 100 (%)
sim obs

sim

Q Q

Q


   

obsQ  obsQ  

obsQ  

 

 

2

1

2

1

RMSE Std. Dev.

n
obs sim
i i

i

n
obs obs
i

i

Q Q

Q Q













 



– 36 –

© Slovak University of Agriculture in Nitra
www.uniag.sk

Faculty of Horticulture  and Landscape Engineering
http://www.fzki.uniag.sk

Acta hort regiotec, 24, 2021(1): 28–48

The performance ratings for the three goodness-f-fit 
measures given by Moriasi et al. (2007) are based on 
the evaluations and corresponding values reported 
from individual studies. The ratings are summarized in 
table 3.

3	 Results and discussion 

3.1	 Calibration of the HEC-HMS model 

Calibration of the HEC-HMS model are conducted 
manually using model’s tool “Calibration Aids”. Fig. 
7 shows comparison of observed and simulated 
monthly discharge for the calibration period and Table 
4 summarizes calibration performance metrics. As 
observed, the HEC-HMS model calibration succeeded, 
while it accurately estimates peak discharge and volume. 
The model performance for river discharge is very good 
according to NSE and RMSE Std. Dev. and good according 
to PBIAS measure. 

3.2	 Calibration and validation 
	 of the LARS-WG 6.0 model

Daily precipitation, temperature, and solar radiation data 
for the period 2003–2020 are used for the LARS-WG 6.0 
model calibration. Generated time series from calibrated 
site is generated from random seeds, and performance 
of LARS-WG 6.0 is evaluated using the QTest validation 
option. The QTest compares probability distributions, 
means, and standard deviations for observed and 
generated data from LARS-WG 6.0. All statistical tests 

carried out in Qtest calculate a p-value. A very low 
p-value means that the simulated climate is unlikely to 
be the same as the ‘true’ climate. The level of p-value that 
is considered significant is subjective and depends on 
the importance of a very close fit for each application 
(Semenov & Barrow, 2002).

Evaluation of the LARS-WG 6.0 performance in 
simulating daily precipitation and temperature data 
for the Kalloni is presented in Tables 5 and 6. The K-S 
test was used to compare observed and generated data 
histograms. Table 5 showcased that simulation of both 
minimum and maximum temperature was perfect. It can 
also be noted that the model performed very well fitting 
for mean precipitation in winter and autumn seasons, 
while on the other hand, very poor performance was 
observed for summer period (Jun – Aug). The reason for 
the poor performance may be attributed to the lack of 
precipitation recorded in summer and small available 
database time series for baseline scenario. Semenov and 
Barrow (2002) have reported that sample size affects 
the likelihood of a significant p-value and the tests are 
more likely to give a significant result with more data. 
A small sample size with little observed precipitation 
data in summer gives little information, as to approach 
‘true’ distribution. Chisanga et al. (2017) also reported 
a poor performance in precipitation due to the lack of 
observed data during summer. Furthermore, significant 
differences between simulated and observed data 
might be due to LARS-WG smoothing of observed 
data in order to eliminate random noise (Semenov & 

 
Figure 7	 HEC-HMS calibration results for river discharge (m3.s-1)

Table 4	 Calibration performance measures

Peak discharge (m3.s-1) Volume (mm) Date of peak NSE PBIΑS RMSE Std. Dev.

Simulated 1.52 143.27 24/01/2019
0.784 -0.10% 0.46

Observed 1.52 143.27 24/01/2019
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statistical characteristics of observed 
and generated monthly weather 
data. R2 value of 0.99 demonstrates 
excellent performance of LARS-WG 
6.0 in simulating weather variables. 
Ratings of the Nash-Sutcliffe 
efficiency coefficient and percentage 
bias error also showed a very good 
performance of LARS-WG 6.0 in fitting 
monthly statistics. Performance 
of LARS-WG 6.0 in simulating 
climate variables is demonstrated 
in Fig. 8 which compares observed 
and generated average monthly 
precipitation, and minimum and 
maximum temperature.

3.3	 Analysis of precipitation 
	 and temperature variables 

The first step in analysing effects 
of climate change on river basin 
hydrology is to quantify changes 
in weather variables. Table 7 
summarized downscaling results 
for mean annual precipitation and 
temperature for various GCMs-RCP 

Barrow, 2002). Ebrahim et al. (2012) 
have also stated that significant 
difference during winter season is 
likely due to LARS-WG smoothing 
for observed data.

Performance of LARS-WG 6.0 is also 
checked by using coefficient of 
determinant (R2), the Nash–Sutcliffe 
efficiency (NSE) coefficient, and 
percentage bias error (PBIAS). Table 
6 summarized results of analyses of 

Table 5	 K-S test for daily precipitation, minimum and maximum temperature distributions

Month Mean precipitation Min temperature Max temperature

K-S p-value assessment K-S p-value assessment K-S p-value assessment

Jan 0.14 0.97 perfect 0.05 1.00 perfect 0.11 1.00 perfect

Feb 0.05 1.00 perfect 0.11 1.00 perfect 0.05 1.00 perfect

Mar 0.09 1.00 perfect 0.05 1.00 perfect 0.05 1.00 perfect

Apr 0.06 1.00 perfect 0.09 1.00 perfect 0.05 1.00 perfect

May 0.07 1.00 perfect 0.05 1.00 perfect 0.05 1.00 perfect

Jun 0.24 0.49 good 0.05 1.00 perfect 0.05 1.00 perfect

Jul 0.54 0.00 very poor 0.11 1.00 perfect 0.05 1.00 perfect

Aug 0.64 0.00 very poor 0.05 1.00 perfect 0.05 1.00 perfect

Sep 0.15 0.95 perfect 0.05 1.00 perfect 0.05 1.00 perfect

Oct 0.05 1.00 perfect 0.05 1.00 perfect 0.05 1.00 perfect

Nov 0.04 1.00 perfect 0.05 1.00 perfect 0.05 1.00 perfect

Dec 0.03 1.00 perfect 0.11 1.00 perfect 0.05 1.00 perfect

Table 6	 Performance results of LARS-WG 6.0 in fitting monthly precipitation and temperature statistics 

R2 NSE PBIAS

Mean monthly precipitation 0.983 0.977 5.370

Min monthly temperature 0.997 0.992 2.640

Max monthly temperature 0.997 0.996 0.900

 
Figure 8	 Comparison of LARS-WG 6.0 generated and observed baseline data 

of mean monthly precipitation, minimum and maximum monthly 
temperature
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Observed Max Temperature
Observed Mean Temperature
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scenarios as well as percentage 
changes of these parameters 
compared to baseline scenario. 
The results show a consistently 
increasing trend both in precipitation 
and temperature values for all 
climate models except GFDL-CM3 
which shows a reduction of future 
rainfall by 5.79%. Table 7 also shows 
a large divergence in changes of 
annual rainfall totals which range 
from -5.79% (GFDL-CM3) to +6.99% 
(MIROC5) for RCP 8.5 and from 
+0.47% (GFDL-CM3) to +9.14% (MPI-
ESM-MR) for RCP 4.5. The annual rate 
of changes of mean temperature at 
the Kalloni river basin also range from 
+6.63% (MPI-ESM-MR) to +15.03% 
(GFDL-CM3) for RCP 8.5 and +4.23% 
(EC-EARTH) to +10.01% (GFDL-CM3) 
for RCP 4.5. 

Variations in GCMs outputs 
concerning predicted annual rainfall 
totals and average temperatures for 
future simulation period 2021–2080 
are shown as boxplots in Figs 9a 
and 9b, respectively. The boxplots 
represent 25th, 50th (median) and 
75th percentiles, and horizontal 
lines show mean annual values for 
Baseline Business as Usual (BaU) 
scenario. The generated data from 
Baseline BaU scenario for the period 

Table 7	 Annual changes in precipitation and temperature for all examined GCM-RCP scenarios 

Scenario Annual precipitation (mm) Temperature (°C)

GCM RCP mean value percent change (%) mean value percent change (%)

HadGEM2-ES 2.6 529.49 5.36% 18.82 7.59%

EC-EARTH 4.5 537.59 6.97% 18.24 4.23%

GFDL-CM3 4.5 504.90 0.47% 19.25 10.01%

HadGEM2-ES 4.5 543.42 8.13% 19.00 8.63%

MIROC5 4.5 546.65 8.77% 18.83 7.63%

MPI-ESM-MR 4.5 548.50 9.14% 18.29 4.54%

EC-EARTH 8.5 525.75 4.61% 18.83 7.62%

GFDL-CM3 8.5 473.44 -5.79% 20.12 15.03%

HadGEM2-ES 8.5 517.97 3.07% 19.51 11.51%

MIROC5 8.5 537.67 6.99% 19.28 10.18%

MPI-ESM-MR 8.5 536.96 6.84% 18.66 6.63%

Baseline BaU 502.56 0.00% 17.50 0.00%

 

Figure 9	 Variations in future (a) mean annual precipitation and (b) mean annual 
temperature forecasts compared to baseline scenario under the 
influence of each emissions scenario 
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2021–2080 match site statistics based on historical 
records without taking into account climate change. 
Variations in GCMs result indicate the range of uncertainty 
in GCM predictions and they arise mainly from wide 
rainfall patterns generated by different climate models 
(Hajian et al., 2016; Bates et al., 2008). Therefore, studies 
investigating the potential effects of climate change on 
water resources using outflows from a single GCM greatly 
reduce the validity and usefulness of the findings (Hajian 
et al., 2016).

Subsequently, it is important to examine the response 
of these parameters to climate change in a shorter time 
scale, as they show significant seasonal fluctuations. 
Tables 8 and 9 show average seasonal changes in 
total rainfall and average temperature. Table 8 shows 
that rainfall varies significantly between different 
GCMs, whereas Table 9 shows more uniform results for 
temperature. These variations, as well as the final values 
of the rainfall and temperature parameters on a monthly 
basis, are visualized in Figs 10a, b, c and 11a, b, c, 
respectively. As observed, the average cumulative rainfall 
shows a  downward trend in spring and summer and 

Table 8	 Seasonal changes in mean precipitation for all simulated GCM-RCP scenarios 

Scenario Seasonal Precipitation (mm) Seasonal percent change (%)

GCM RCP winter spring summer autumn winter spring summer autumn

HadGEM2-ES 2.6 267.63 93.15 32.43 137.47 1.12% 5.10% 7.10% 14.37%

EC-EARTH 4.5 274.33 81.09 27.61 155.94 3.65% -8.51% -8.82% 29.73%

GFDL-CM3 4.5 266.84 94.61 30.37 86.82 0.82% 6.75% 0.30% -27.77%

HadGEM2-ES 4.5 275.80 87.46 33.05 148.44 4.21% -1.32% 9.15% 23.49%

MIROC5 4.5 288.08 88.86 28.56 142.60 8.85% 0.26% -5.68% 18.64%

MPI-ESM-MR 4.5 279.92 88.85 27.15 153.99 5.77% 0.25% -10.34% 28.11%

EC-EARTH 8.5 262.57 83.54 28.23 152.74 -0.79% -5.74% -6.77% 27.07%

GFDL-CM3 8.5 234.61 91.97 32.50 82.70 -11.35% 3.77% 7.33% -31.20%

HadGEM2-ES 8.5 267.23 87.66 31.59 132.66 0.97% -1.09% 4.33% 10.37%

MIROC5 8.5 285.50 87.65 27.93 138.04 7.87% -1.11% -7.76% 14.84%

MPI-ESM-MR 8.5 276.69 88.60 25.37 147.62 4.55% -0.03% -16.22% 22.81%

Baseline BaU 264.66 88.63 30.28 120.20 0.00% 0.00% 0.00% 0.00%

Table 9	 Seasonal changes in mean temperature for all simulated GCM-RCP scenarios 

Scenario Mean seasonal temperature (oC) Seasonal percent change (%)

GCM RCP winter spring summer autumn winter spring summer autumn

HadGEM2-ES 2.6 10.89 17.00 27.19 20.04 12.53% 9.14% 5.18% 7.11%

EC-EARTH 4.5 10.35 16.32 26.63 19.47 6.89% 4.73% 3.04% 4.10%

GFDL-CM3 4.5 10.78 17.14 28.25 20.60 11.40% 10.01% 9.30% 10.10%

HadGEM2-ES 4.5 10.94 17.14 27.46 20.30 12.98% 10.03% 6.25% 8.50%

MIROC5 4.5 10.78 16.81 27.38 20.18 11.33% 7.87% 5.92% 7.86%

MPI-ESM-MR 4.5 10.35 16.47 26.81 19.35 6.96% 5.72% 3.71% 3.45%

EC-EARTH 8.5 10.97 16.93 27.18 20.06 13.36% 8.66% 5.15% 7.22%

GFDL-CM3 8.5 11.67 17.92 29.21 21.50 20.59% 15.00% 13.00% 14.93%

HadGEM2-ES 8.5 11.34 17.56 28.08 20.88 17.18% 12.71% 8.63% 11.60%

MIROC5 8.5 11.10 17.16 27.96 20.70 14.63% 10.16% 8.18% 10.67%

MPI-ESM-MR 8.5 10.48 16.72 27.35 19.89 8.23% 7.33% 5.83% 6.32%

Baseline BaU 9.68 15.58 25.85 18.71 0.00% 0.00% 0.00% 0.00%
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Figure 10	 Variations in monthly precipitation forecasts compared to baseline BaU scenario under the influence of each 

emissions scenario (a) RCP 2.6, (b) RCP 4.5, and (c) RCP 8.5
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Figure 11	 Variations in monthly temperature forecasts compared to baseline BaU scenario under the influence of each 
emissions scenario (a) RCP 2.6, (b) RCP 4.5, and (c) RCP 8.5 
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a particularly upward trend in winter 
and especially autumn. Moreover, 
there is a shift of peak rainfall from 
January to February, while January 
shows a drop in cumulative rainfall. 
Finally, in terms of temperature, 
there is a general increase in average 
temperature throughout the year, 
while the largest changes occur 
during the winter months.

3.4	 Climate change impact 
	 on evapotranspiration

Monthly potential evapotranspira-
tion is computed using the modified 
Blaney-Criddle method (Blaney & 
Criddle, 1950) with projected tem-
perature data for 2021–2080 period. 
Evapotranspiration under various 
GSMs-RCP scenarios is compared to 
corresponding baseline Business as 
Usual (BaU) scenario and percentage 
changes are summarized in Table 10. 
Overall results indicate an increase 
in seasonal evapotranspiration in 
the region, with significant chan-
ges for instance of 7.42%, 7.07%, 
7.77% and 7.78% for winter, spring, 
summer and autumn, respectively, 
occurring in GFDL-CM3 model for 
RCP 8.5 emission scenario. Variations 
in monthly evapotranspiration for 
all scenarios are represented in Figs 
12a, 12b and 12c. 

3.5	 Climate change impact 
	 on streamflow

Annual peak and average monthly 
river discharges are computed using 
the calibrated HEC-HMS model 
based on projected weather data 
for 2021–2080 period. Figs 13a, b, 
c and 14a, b, c show annual peak 
and seasonal discharge variations 
respectively, under all examined 
GCM models for three RCP scenarios. 
Although the results from different 
scenarios vary considerably, a general 
increasing trend of flow peaks is 
observed, especially during the long-
term period 2040–2080. In terms of 
monthly variations, January presents 
highest peaks in all scenarios as well 

 a

 
b

Figure 12	 Monthly evapotranspiration variations under all examined GCM models 
for (a) RCP2.6, (b) RCP4.5, and (c) RCP8.5 scenarios

 
c
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Table 10	 Seasonal changes in evapotranspiration for all examined GCM-RCP scenarios 

Scenario Seasonal Evapotranspiration (mm) Seasonal percent change (%)

GCM RCP winter spring summer autumn winter spring summer autumn

HadGEM2-ES 2.6 119.35 199.50 279.98 182.56 4.53% 4.29% 3.10% 3.68%

EC-EARTH 4.5 117.03 195.55 276.50 179.82 2.49% 2.22% 1.82% 2.12%

GFDL-CM3 4.5 118.87 200.36 286.64 185.36 4.11% 4.73% 5.56% 5.27%

HadGEM2-ES 4.5 119.54 200.32 281.71 183.86 4.69% 4.71% 3.74% 4.41%

MIROC5 4.5 118.85 198.42 281.17 183.28 4.09% 3.72% 3.54% 4.09%

MPI-ESM-MR 4.5 117.06 196.44 277.58 179.27 2.52% 2.69% 2.22% 1.81%

EC-EARTH 8.5 119.69 199.05 279.91 182.65 4.82% 4.05% 3.08% 3.73%

GFDL-CM3 8.5 122.65 204.82 292.64 189.78 7.42% 7.07% 7.77% 7.78%

HadGEM2-ES 8.5 121.26 202.73 285.56 186.68 6.20% 5.98% 5.16% 6.02%

MIROC5 8.5 120.21 200.50 284.83 185.87 5.28% 4.81% 4.89% 5.56%

MPI-ESM-MR 8.5 117.58 197.91 281.02 181.91 2.97% 3.45% 3.48% 3.31%

Baseline BaU 114.18 191.30 271.55 176.08 0.00% 0.00% 0.00% 0.00%

Table 11	 Annual changes in river discharge for all examined GCM-RCP scenarios

Scenario Annual discharge (m3.s-1) Annual percent change (%)

GCM RCP peak average peak average

HadGEM2-ES 2.6 4.24 1.34 -5.57% 16.86%

EC-EARTH 4.5 4.79 1.56 6.68% 36.50%

GFDL-CM3 4.5 4.70 1.37 4.68% 19.49%

HadGEM2-ES 4.5 4.70 1.48 4.68% 29.26%

MIROC5 4.5 5.02 1.58 11.80% 38.23%

MPI-ESM-MR 4.5 4.76 1.60 6.01% 39.60%

EC-EARTH 8.5 4.70 1.44 4.68% 25.84%

GFDL-CM3 8.5 4.70 1.34 4.68% 16.74%

HadGEM2-ES 8.5 4.55 1.26 1.34% 10.13%

MIROC5 8.5 4.92 1.51 9.58% 32.22%

MPI-ESM-MR 8.5 4.53 1.53 0.89% 33.69%

Baseline BaU 4.49 1.14 0.00% 0.00%



– 44 –

© Slovak University of Agriculture in Nitra
www.uniag.sk

Faculty of Horticulture  and Landscape Engineering
http://www.fzki.uniag.sk

Acta hort regiotec, 24, 2021(1): 28–48

 

 

 
Figure 13	 Annual peak discharge variations under all examined GCM models for (a) RCP2.6, (b) RCP4.5, and (c) RCP8.5 scenarios
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as in baseline scenario. However, the 
most critical months are October 
and November, which show more 
than double discharge compared to 
the baseline scenario. Also, in future, 
dry months August and September 
are expected to have even lower 
discharges. This sudden surge of 
streamflow from summer to autumn 
months is of particular concern as 
it increases the risk of flash floods 
occurrence.

Table 11 summarizes percent 
difference in annual average and 
peak discharge between baseline 
BaU scenario and each of future 
scenarios considered. It is observed 
that average discharge is increasing 
rapidly in future, with the most 
“optimistic” scenario being for 
HadGEM2-ES model and RCP8.5 
(+10.13% increase) and the most 
“pessimistic” scenario being for MPI-
ESM-MR model and RCP4.5 (+39.60% 
increase). On the other hand, annual 
peak discharge showed smaller 
changes, which vary from -5.75% 
decrease for HadGEM2-ES model 
and RCP8.5 to +11.80% increase 
for MIROC5 model and RCP4.5. 
Moreover, Table 12 summarizes 
seasonal changes in discharge as 
percentages of the mean values. 
Autumn shows the most significant 
expected increase in discharge as 
noted above, whereas summer 
and spring are the seasons with 
the largest number of discharge 
reductions. Finally, although winter 
is the season with the highest 
discharge amounts, it presents the 
smallest future percentage changes 
under climate change scenarios.

Figure 14	 Monthly discharge variations under all examined GCM models for (a) 
RCP2.6, (b) RCP4.5, and (c) RCP8.5 scenarios
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4	 Conclusions 
The present study investigates the climate change impact 
on hydrologic regime of the Kalloni river basin with 
intermittent flow in response to different climatic models 
and conditions. The LARS-WG version 6.0 was used along 
with five GCM models and three emission scenarios to 
generate climatic variables. In total, eleven sets of GCM-
RCP scenarios were considered when predicting future 
rainfall, temperatures, and radiation patterns, covering 
a wide range of uncertainties. Hydrological model 
simulations were conducted for the baseline climate and 
each of the climate scenarios in the environment of HEC-
HMS version 4.3. The results obtained demonstrate that 
the approach combining hydrological model HEC-HMS 
and LARS-WG weather generator is efficient for assessing 
the effects of climate change on the patterns of the river 
hydrology. 

Annual and seasonal predictions of weather variables, 
evapotranspiration, and discharge for the Kalloni river 
basin were obtained based on various GCMs and RCPs 
scenarios for assessing climate change impact on 
hydrologic regime of the basin. Overall findings indicate 
an increase in mean annual rainfall and temperature for 
the region. In seasonal patterns, a  significant increase 
in precipitation is expected in autumn. Slight increase 
or even  decrease can be anticipated in summer and 
spring rainfall totals. A  general increasing trend of 
mean temperature and a consequent change in 
evapotranspiration was observed throughout the year, 
with the most significant change occurring in winter. The 
projected decrease in summer precipitation and higher 
evapotranspiration are expected to cause a  reduction 

in soil water and groundwater recharge in the basin 
area. This reduction in summer combined with the 
tremendous increase in autumn discharge leads to a high 
risk of flooding, particularly in the form of flash floods. 
Such findings indicate the need for integrated water 
management and flood mitigation strategies in the area 
of the Kalloni river basin.

This paper provides a quantitative framework for 
policymakers in small, intermittent flow, river basins in the 
Mediterranean, such as the Kalloni, to plan and manage 
the expected future challenges of river discharge and 
flood occurrence.
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