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Abstract
Traditional rough set theory is mainly used to reduce attributes and extract rules in databases in which attributes are
characterised by partitions, which the covering rough set theory, a generalisation of traditional rough set theory, covers.
In this article, we posit a method to reduce the attributes of covering decision systems, which are databases incarnated
in the form of covers. First, we define different covering decision systems and their attributes’ reductions. Further, we
describe the necessity and sufficiency for reductions. Thereafter, we construct a discernible matrix to design algorithms
that compute all the reductions of covering decision systems. Finally, the above methods are illustrated using a practical
example and the obtained results are contrasted with other results.

Keywords: discernible matrix; information entropy; decision system; attribute.

1 Introduction

The Rough Set theory was proposed by Polish mathematician Zdzisław Pawlak in 1982 [1, 3, 17]. It can
effectively handle uncertain, inaccurate and incompSupposinge information . Recently, rough set theory has
successfully been applied in many fields, including machine learning, pattern recognition, decision analysis,
process control and data mining [4, 5, 10–14]. Therefore, this theory has received great attention from the
international information science community, computer science and mathematics. A large number of studies
in the literature have witnessed the development of rough sets in theory and application [26–29]. Therefore,
some scholars have extended the partition to encompass aspects explained in the above reasons, and the scope of
rough set theory research has been greatly expanded. Although much attention is paid to the set approximation
of cover, sparse research has been carried out in relation to the attribute reduction of covering rough sets. The
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attribute reduction under the algebraic point of view is generalised on the basis of the attribute reduction of
conditional information entropy.

At present, certain scholars have studied the rough set theory based on their conclusions drawn from the
information theory, and have proposed the information theory about rough set theory. Wang et al. [2] posited the
reduction of the decision table and the common properties and different characteristics of information. Yang [6]
proposed an approximate reduction method on basis of conditional information entropy in a decision table.
On this basis, an approximate reduction method was proposed for vertical multidistribution decision tables [8].
Wang Yan et al also used a reduction algorithm on information entropy and identifiable Matrix, and presented a
new combination algorithm [9]. After Hudan et al. added a probability measure to the rough set theory [7], some
concepts and properties of information theory and rough set theory were compared, and a new method of rule
extraction was obtained. Hu et al. [15] proposed a rough entropy method based on generalised rough set coverage
reduction. Chen et al. [16] proposed an optimal section for reducing the superfluous cover. Yang [18] performed
research on rough set methods, from the attribute reduction problem on inconsistent decision systems to the
attribute reduction problem on consistent decision systems. Guo [19] studied knowledge reduction based on
rough set theory for the inconsistent decision systems, such as generalised decision table, relative resolution and
knowledge reduction. Shi et al. [20] proposed attribute reduction based on the Boolean matrix. Li and Yin [21]
proposed a reduction algorithm of covering system on information theory. Ma [22] constructed a decision tree
based on the covering rough set theory. Chen et al. [23] got a multi-label attribute reduction algorithm on
neighbourhood rough set. Zhang et al. [24] developed the belief and plausibility functions from the evidence
theory and these are employed to characterise attribute reductions in the covering decision information system.
Zhang et al. [25] posited confidence-preserved attribute reduction and algorithms of rule acquisition in covering
decision systems. Jiang et al. [30] presented an accelerator for multi-granularity attribute reduction knowledge-
based systems from another angle. However, we resolve and analyse the problem in consistent and inconsistent
covering decision systems based on conditional information entropy in this article.

In this article, we propose a method to reduce the attributes of covering decision systems, which are databases
characterised by covers. First, we define two scenarios of covering decision systems and their attributes’ reduc-
tions. Second, we state the necessity and sufficiency for reductions. Third, we construct a discernible matrix
to design algorithms that compute all the reductions of different covering decision systems. Finally, the above
methods are illustrated using a practical example and the obtained results are in contrast to other results.

2 Preliminaries

We go over the basic concepts related to covering rough sets which can be found in the literature [1, 4, 11,
16, 17, 19, 21, 22, 24, 25].
Definition 1. The ordered pair (U,C), where U is any nonempty set called a universe, and C its finite covering
(i.e. C is a finite family of nonempty subsets of U and ∪C =U), is what we define as the covering approximation
space, or in short, the approximation space; the covering C is called then the family of approximating sets.
Definition 2. Supposing that (U,C) be a covering approximation space, and x belong to any element of U . The
following set:

M(x) = {K ∈C : x ∈ K ∧∀S ∈C(x ∈ S∧S ⊆ K ⇒ K = S)}

is called the minimal description of the object x.
Definition 3. Supposing that A = {A1,A2, · · · ,An} be a set of covers of U , if ∀x ∈U , Ax = ∩{A j;A j ∈ A,x ∈ A j}
holds; then Cov(A) = {Ax;x ∈U} is also a covering of U; so, we call it the leaded covering of A.
Definition 4. Supposing that π = {Ai : i= 1, . . .m} be a family of covers of U , if ∀x∈U , πx =∩{Aix;Aix ∈Cov(Ai),x∈
Aix} holds; then Cov(π) = {πx;x ∈U} is also a covering of U ; so we call it the leaded covering of π .
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3 Attribute reduction of consistent covering decision systems based on conditional information entropy

In this section, we focus on investigating the basic concepts and key results of consistent covering decision
systems [1, 4, 16, 19, 21].

3.1 Basic definition of consistent covering decision systems based on conditional information entropy

Definition 5. Supposing that π = {Ai : i = 1, . . .m} be a set of covers of U , d is a decision attribute and U/d
is a decision partition on U . If ∀ and ∃E j ∈U/d such that πx ⊆ d j, then decision system S = (U,π,d) is called
a consistent covering decision system, and recorded as H(d|π) = 0, i.e. otherwise, S = (U,π,d) is called an
inconsistent covering decision system.(

Appendix :H(d|π) =− 1
|U | ∑

x∈U
log

|[x]d ∩πx|
πx

)

The positive region of d relative to π is defined as POSπ(d) = ∪
X∈U/D

π(X).

For ∀X ∈U/d, if we believe every π̄X ⇒ X to be the possible rule and every π
−
−X ⇒ X to be a certain rule,

then all the decision rules extracted from a consistent covering decision system are consistent.
If every cover in π is a partition, then cov(π) is also a partition, and H(d|π) = 0 is just the case of a consistent

decision system in traditional rough set theory. Supposing that fd(x) is a decision function fd : U → Vd of the
universe U into value set Vd ; then, for ∀xi,x j ∈U,ifπxi ⊆ πx j, fd(xi) = fd([xi]d) = fd(πxi) = fd(πx j) = fd(x j) =
fd([x j]d).

1. If fd(πxi) ̸= fd(πx j), then πxi ∩πx j = /0, i.e. πxi ̸⊂ πx j and πx j ̸⊂ πxi; on the other hand, if πxi ̸⊂ πx jand
πx j ̸⊂ πxi, then either fd(πxi) ̸= fd(πx j) or fd(πxi) = fd(πx j) are possible.

2. On the other hand, if πxi ∩πx j ̸= /0, we get fd(πxi) = fd(πx j); to the contrary, if fd(πxi) = fd(πx j), then we
have πxi ̸⊂ πx j and πx j ̸⊂ πxi, or πxi ⊆ πx jorπxi ⊇ πx j are possible.

Further, we define the relative reduction of a consistent covering decision system.
Definition 6. Supposing that S = (U,π,d) be a consistent covering decision system and there exists Ai ∈ π if
H(d|π −{Ai}) = 0, then Ai is called a superfluous relative to d in π; otherwise, Ai is known as a indispensable
relative to d in π . For every B ⊆ π satisfying H(d|B) = 0, if every element in Bis indispensable, i.e. for
∀Ai ∈ B,H(d|B −{Ai}) = 0 being not true, then Bis called a reduction ofπ relative tod, in short known as
relative reduction. The collection of all the indispensable elements in π is called the core of π relative to d,
denoted as Cored(π).

The relative reduction of a consistent covering decision system is the minimal set of conditional covers
(attributes) which ensure that every decision rule is still consistent. For a single cover Ai, we give out some
equivalence conditions to judge whether it is indispensable.

3.2 The key points of consistent covering decision system based on conditional entropy

Theorem 1. Suppose H(d|π) = 0, if and only if for every x,y ∈U, if x ∈ πy, then x ∈ [y]d .

Proof. Since for every y ∈U ,H(d|π) =− 1
|U | ∑

y∈U
log |[y]d∩πy|

|πy| = 0, such that πy ⊆ [y]D. If for every x,y ∈U ,x ∈ πy,

then x ∈ [y]d . On the other hand, for every x,y ∈U , if x ∈ πy, we have x ∈ [y]d , hence πy ⊆ [y]d . Therefore, for
everyy ∈U , H(d|π) = 0.□
Theorem 2. Suppose H(d|π) = 0 if and only if POSπ(d) =U.
Proof. ⇒ For every y ∈ POSπ(d), then πy ⊆ [x]d , therefore y ∈ [x]d , and so we have [y]d = [x]d , i.e. πy∩ [y]d ̸= /0.
For every x ∈ πy, then x ∈ [y]d and by the Theorem 1, we get H(d|π) = 0.
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⇐ Since POSπ(d) = ∪
X∈U/d

π(X), we have π(X)⊆ X , hence ∪π(X)⊆∪X =U , and so we get POSπ(d)⊆U . On

the other hand, since POSπ(d) = ∪
X∈U/d

π(X) = ∪π([x]d), for every y ∈ POSπ(d), then πy ⊆ [x]d . By Theorem

1, H(d|π) = 0 if and only if for every x,y ∈ U ,x ∈ πy, then x ∈ [y]d ; hence U ⊆ [y]d ; then by πy ⊆ [x]d and
[y]d ⊆ [x]d , we have U ⊆ [x]d ; hence x ∈ POSπ(d) such that U ⊆ POSπ(d). So, the result is true.□

By the above two theorems of discussions, we obtain the following two corollaries.
Corollary 1. Suppose H(d|π) = 0, B ⊆ π is a positive-region consistent set on S; then (U,B,d) is a consistent
covering decision system.
Corollary 2. Suppose H(d|π) = 0, B ⊆ π is a positive-region reduction on S; then B is a minimal set such that
decision system (U,B,d) is a consistent covering decision system.
Theorem 3. Suppose H(d|π) = 0, Ai ∈ π and Cov(π −{Ai}) = {Bx : x ∈ U}; then Ai is indispensable, i.e.
H(d|π −{Ai}) = 0 is not true if and only if there exists x ∈U such that Bx ⊆ [x]D is not true.
Proof. If there exists x ∈U such that Bx ⊆ [x]D is not true, by x ∈ Bx, then for every y ∈U such that Bx ⊆ [y]D is
not true. So H(d|π −{Ai}) = 0 is not true.

If H(d|π −{Ai}) = 0 is not true, then there exists , for ∀y ∈ U such that Bx ⊆ [y]D is not true. Especially,
Bx ⊆ [x]D is also not true.

It should be indicated that Bx ⊆ [x]D not being true means that (U,π −{Ai},d) is an inconsistent decision
system, i.e. H(d|π−{Ai}) ̸= 0, Ai is thus indispensable implies it is a key cover to ensure (U,π,d) is a consistent
decision system, i.e. H(d|π) = 0.□
Theorem 4. Suppose H(d|π) = 0,Ai ∈ π , and Cov(π −{Ai}) = {Bx : x ∈ U}, then H({Ai}|π −{Ai}) > 0, i.e.
Ai is absolutely indispensable.
In other words, H({Ai}|π −{Ai})> 0 is not true if and only if Ai is called superfluous in B.
Proof. We assume that Cov(π −{Ai}) = {Bx : x ∈U} and Cov({Ai}) = {Aix : x ∈U}, If Aiis called superfluous
in B, for x ∈U,Bx have equivalence values on Ai, i.e. for every Bx(x ∈U) there is Ai(x ∈U) such that Bx ⊆ Aix,
so H({Ai}|π −{Ai})=− 1

|U | ∑
x∈U

log |Aix∩Px|
|Px| =0.

If H({Ai}|π−{Ai})> 0 is not true, then H({Ai}|π−{Ai})=− 1
|U | ∑

x∈U
log |Aix∩Bx|

|Bx| , and for every x, i, 1
|U | ∑

x∈U
log |Aix∩Bx|

|Bx| ≤

0 and 1
|U | > 0, so ∑

x∈U
log |Aix∩Bx|

|Bx| ≤ 0 is true; if there exists a certain j such that 0 <
|A jx∩Bx|

|Bx| < 1; otherwise it im-

plies H({Ai}|π −{Ai})=− 1
|U | ∑

x∈U
log |A jx∩Bx|

|Bx| >0, which is a contradiction. So for every x, i there is |Aix∩Bx|
|Bx| = 1,

i.e. Px ⊆ Aix, hence H({Ai}|π −{Ai})> 0 such that H({Ai}|π −{Ai})> 0 is not true.□
Theorem 4 implies that the superfluous knowledge in question could not supply new and useful information

to the concerned information system. However, the necessary knowledge could give helpful information for
information systems.
Corollary 3. Suppose H(d|π) = 0, Ai ∈ π , then Ai is superfluous relative tod in π if and only if H(d|π −{Ai}) =
H(d|π) = 0.
Theorem 5. Assume that H(d|π) = 0, B ⊆ π is called a reduction of π relative todif and only if

1. H(d|B) = H(d|π), and

2. for every Ai ∈ B, then H({Ai}|B−{Ai})> 0.

Proof. B ⊆ π is called a reduction of π relative to d if and only if for every Ai ∈ B such that H(d|B−{Ai}) = 0 is
not true and B is independent. As we know, it implies that Ai is indispensable attribute in B such that H(d|B) = 0;
therefore we get H(d|B) = H(d|π).

By Theorem 4, Ai is independent in B if and only if for every Ai ∈ B, then H({Ai}|B−{Ai})> 0.□
Based on the discussion of the above theorems, we could consider indicial form of information entropy as

being equivalent to expressions of algebra for attribute reduction.
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Theorem 6. Assume that H(d|π) = 0,Ai ∈ π ,Ai is then indispensable, i.e. H(d|π −{Ai}) = 0 is not true if and
only if there is at least a pair of xi,x j ∈ U satisfying fd(πxi) ̸= fd(πx j), and the factor which has the foremost
relation toπtransfers behind Ai and is removed from π .
Proof. ⇒ We note that if Cov(π −{Ai}) = {Bx : x ∈ U}, if H(d|π −{Ai}) = 0 is not true, then there are
x0,y0 ∈U such that y0 ∈ Bx0 and y0 /∈ [x0]d , which implies By0 ⊆ Bx0 and πx0 ̸⊂ πy0,πy0 ̸⊂ πx0, respectively, and
x0,y0 satisfying fd(πx0) ̸= fd(πy0), so the factor that has the foremost relation of x0,y0 with regard to π transfers
behind Ai and is removed from π .
⇐ Suppose x0,y0 ∈U satisfying fd(πxi) ̸= fd(πx j), which implies [x0]d ∩ [y0]d = /0, and πx0 ̸⊂ πy0,πy0 ̸⊂ πx0, if
their foremost relation x0,y0 with regard to π transfers behind Ai removing from π , which implies Bx0 ̸⊂ By0or
By0 ̸⊂ Bx0 is not effective. Thus if By0 ̸⊂ Bx0, then By0 ⊆ [y0]d is not effective, otherwise it points out x0 ∈ [y0]d
which is a contradiction; if Bx0 ⊇ By0, then Bx0 ⊆ [x0]d is not virtual; if Bx0 = By0 then By0 ⊆ [y0]d and Bx0 ⊆ [x0]d
are not effective. Hence H(d|π −{Ai}) = 0 is not true.□

Theorem 6 implies that an indispensable cover can be characterised by the foremost relation between two
elements in the universe. Thus, we have the following theorem to characterise a consistent decision system.
Theorem 7. Suppose H(d|π) = 0,B ⊆ π , thenH(d|B) = 0 if and only if for every xi,x j ∈U satisfying fd(πx0) ̸=
fd(πy0), the relation xi,x j with regard to π is equivalent to their relation with regard to B, i.e. πxi ̸⊂ πx j,πx j ̸⊂
πxi⇔Bxi ̸⊂ Bx j,Bx j ̸⊂ Bxi.
Proof. Since the proof is similar, here there is no need to repeat it.□

3.3 Attribute reduction of consistent covering decision system

The intention of relative reduction of covering attribute π is to discover the minimal subset of π to preserve
every decision rule invariant. Through the theorems stated in the previous section, we understand that it is coor-
dinative to preserve the foremost relation of every two elements to which variant decision values are invariant.
Based on this understanding, we could construct an algorithm to compute all the relative reductions. Definition
7 can be found in the literature [16, 21, 23].
Definition 7. Supposing (U,π,d) be a consistent decision system. Assume U = {x1,x2, . . .xn}; by M(U,π,d),
we mark a n×n matrix (mi j), called the discernibility matrix of (U,π,d), and defined as follows: A ∈ π : (Axi ̸=
Ax j)∧ (Axi ̸⊂ Ax j)∧ (Ax j ̸⊂ Axi), fd(πxi) ̸= fd(πx j)=mi j π , fd(πxi) = fd(πx j) for .xi,x j ∈U
Theorem 8. Supposing (U,π,d) be a consistent covering decision system, then we obtain
(1) For every B ⊆ π , B∩mi j ̸= /0 is a valid result for every i, j ≤ n if and only if H(d|π) = 0.
(2) Cored(π) = {∀A ∈ π ∧ (∃mi j ∈ Mn×n(S)∧mi j = {A}} for some i, j.
Proof.

1. Assume H(d|π) = 0. If fd(πxi) = fd(πx j), then mi j = π , hence B∩mi j ̸= /0 is true for every B ⊆ π . If
fd(πxi) ̸= fd(πx j), and since πxi ⊆ Bxi ⊆ [xi]d , πx j ⊆ Bx j ⊆ [x j]d , then, we have fd(Bxi) ̸= fd(Bx j). By
the Theorem 7, πxi ̸⊂ πx j,πx j ̸⊂ πxi⇔Bxi ̸⊂ Bx j,Bx j ̸⊂ Bxi, there is a Ai0 ∈ B such that Ai0x ̸= A j0y, i.e.
Ai0x ̸⊂ A j0y,A j0y ̸⊂ Ai0x and so we have B∩mi j ̸= /0.

On the contrary, if B∩mi j ̸= /0, for x,y ∈U satisfying fd(πx) ̸= fd(πy), it points out that there are enough
covers in B to maintain the relation of x,y with regard to π equivalent to the relation of x,y with regard to
B. Thus we obtain H(d|π) = 0.

2. If every , then H(d|π −{Ai}) = 0 is not true, which means there exists at least a pair of x,y ∈U satisfying
fd(πx) ̸= fd(πy) whose foremost relation with regard to π transfer behind A is removed from π . Thus A is
the only cover in π satisfying (Axi ̸⊂ Ax j)∧ (Ax j ̸⊂ Axi). By the Definition 7, we have mi j = {A}.

Hence we have CoreD(π)⊆{∀A∈ π∧(∃mi j ∈Mn×n(S)∧mi j = {A}}. If mi j = {A} for some i, j, it is obvious
A ∈CoreD(π).□

The value of core in information system is exclusive, which is the most important part of knowledge category
in the information system.
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By the Theorem 8(2), a method is used which can directly obtain Cored(π), for any A ∈ Cored(π) if and
only if there is at least a mi j satisfying mi j = {A}for 1 ≤ j ≤ i ≤ n of the discernibility matrix M(S). Suppose
E = π −Cored(π), then covering attribute on E can be reduced from the known values of core set, but it cannot
be reduced at the same time. If π have a minimal subset, i.e. Core(π) = Min(π), then, we could reduce covering
attribute synchronously. Generally speaking, π have several minimal subsets.
Theorem 9. Supposing (U,π,d) be a consistent covering decision system. Suppose E1 ⊆ E,E = π −Cored(π),
then H(d|π −{Ei}) = 0 is true if and only if mi j ̸⊂ E1 for all mi j,1 ≤ j ≤ i ≤ n.
Proof. ⇐ Since E1 ⊆E, then any element of E cannot contain in Cored(π), or in other words, it could be reduced.
mi j ̸⊂ E1 for all mi j, 1 ≤ j ≤ i ≤ n means that we could guarantee H(d|π −{Ei}) = 0 after the attributes on E1
are reduced.

⇒ If the attributes on E1 could be reduced at the same time, and there also exists a mi j such that mi j ⊆ E1,
then we obtain mi j = /0 after the attributes on E1 are reduced at the same time, which point out the attributes on
E1 could not be reduced at the same time.□

4 Attribute reduction of inconsistent covering decision systems based on information entropy

In many of practical problems, we always have inconsistent covering decision system. In this section, we
propose attribute reductions for inconsistent covering decision systems. We understand that some rules extracted
from inconsistent decision systems may not be consistent. As to covering decision system, experts can still give
the decision-making in the case of inconsistent information, so it can be assumed that the decision-making
property is not empty. So we have the following definition of attribute reduction. We always suppose U is a
finite universe and π = {Ai : i = 1, · · ·m} is a family of covers of U . Then, the induced cover of π is defined as
in terms of Cov(π) = {πx : x ∈ U}, U/d = {[x]d : x ∈ U} is the decision partition, d is a decision attribute and
POSπ(d) ̸= /0.

4.1 Key definitions of inconsistent covering decision systems based on information entropy

In this subsection, we discuss the key definition of inconsistent covering decision systems which can be
found in the literature [7, 16, 17, 19].
Definition 8. Suppose U is a finite universal set and π = Ai : i = 1, ...,m is a family of covers of U , Ai ∈ π , d is
a decision attribute relative to π on U and fd : U → Vd is the decision function, denoted by fd(x) = [x]d , then,
Icds =U,π,d is an inconsistent covering decision system, i.e. H(d|π) ̸= 0 or POSπ(d) ̸=U .
Definition 9. Suppose Icds = U,π,d is an inconsistent covering decision system. For B ⊆ π , we define the
limitary entropy, d, and limitary conditional entropy, π , as to attribute decision by

LH(d|π) =− 1
|K| ∑

x∈K
log

|[x]d ∩πx|
|πx|

;

LH(d) =− 1
|K| ∑

x∈K
log

[x]d
|K| ;

the limitary mutual information of B and d is defined as follows

LI(B;d) = LH(d)−LH(d|B) =− 1
|K| ∑

x∈K
log

[x]d
|K| −

1
|K| ∑

x∈K
log

|[x]d ∩Bx|
|Bx|

where K = {x ∈U : πx ⊆ [x]d}.
Definition 10. Suppose Icds = U,π,d is an inconsistent covering decision system. For every Ai ∈ π and
LH(d|π −{Ai}) = LH(d|π), then Ai is superfluous relative to d in π . For every and , then is independent
relative to in .
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Definition 11. Suppose is an inconsistent covering decision system. For every B⊆ π , if two following conditions
are met:

1. LI(B;d) = LI(π;d),

2. If ∀Ai ∈ B, then LH(d|B)< LH(d|B−{Ai}),

Then B is a reduct of π relative to d, denoted by B ∈ Redπ(d).

4.2 Basic properties of inconsistent covering decision system based on positive region

Proposition 1. Supposing Icds = (U,π,d) be an inconsistent covering decision system. For every W ⊆ B ⊆ π ,
then POSW (d)⊆ POSB(d).
Proof. Suppose Cov(B) = {Bx : x ∈U} and Cov(W ) = {Wx : x ∈U}. For every x ∈ POSW (d), then there exists
X ∈U/d, such that x ∈W (X). There exists y ∈Wx, for every x such that Wx ⊆ X . Suppose B =W ∪{b1, . . . ,bt},
then the following attribute sets are made:

B1 =W ∪{b1};

B2 = B1 ∪{b2};

. . .

Bt = Bt−1 ∪{bt};

Obviously, we can get W ⊆ B1 ⊆ . . . ⊆ Bt = B. For ∀b ∈ B, there exists Bx ⊆ (B−{b})x such that Bx = Btx ⊆
B(t−1)x ⊆ ·· · ⊆ B1x ⊆Wx, i.e. Bx ⊆Wx. Based on the covering lower approximation, we can have x ∈ B(X), then
x ∈ POSB(d). So for every W ⊆ B, then POSW (d)⊆ POSB(d).□
Theorem 10. Supposing Icds = (U,π,d) be an inconsistent covering decision system. For B ⊆ π, |POSπ(d)|=
|POSB(d)| is true if and only if POSπ(d) = POSB(d).
Proof. Here we will not prove it.□
Theorem 11. Suppose Icds = (U,π,d) is an inconsistent covering decision system, for every B ⊆ π , if b is a
superfluous attribute relative to d in π , then CoreB(d)⊆CoreB−{b}(d) is true.
Proof. If a ∈ CoreB(d) and B−{a} ⊂ B ⊆ π , then POSπ(d) ⊇ POSB−{a}(d). Since a is an indispensable
attribute, then POSπ(d) ̸= POSB−{a}(d), thus we can get x1 /∈ POSB−{a}(d) such that x1 /∈ B−{a}(X), we
can further get (B−{a})x1 ̸⊂ X . For every (B−{a})x1 ̸⊂ X and (B−{a})x1 ⊆ ((B−{a})−{b})x1, then
((B−{b})−{a})x1 ((B−{a})−{b})x1 ̸⊂ X , which shows that x1 /∈ POS(B−{b})−{a}(d). Since X have arbi-
trary, x1 ̸= POS(B−{b})−{a}(d), thus POS(B−{b})−a(d) ̸= POSB−{a}(d). By the given condition, we will get
CoreB−{b}(d) = POSπ(d) and a ∈CoreB−{b}(d). Thus CoreB(d)⊆CoreB−{b}(d).□

4.3 Properties of inconsistent covering decision system based on limimtary information entropy

Lemma 1. Supposing Icds=(U,π,d) be an inconsistent covering decision system. For B,Q⊆ π and POSB(d)=
POSQ(d), then LI(B;d) = LI(Q;d).
Proof. For every X ∈ U/d, by the definition of positive region, we get POSπ(d) = ∪

X∈U/d
B(X). If every y inU ,

there exists xi ∈ U then By ⊆ [xi]d⇔ Qy ⊆ [xi]d . Since B(x) = {x : ∀y ∈ U(x ∈ By → By ⊆ X)}, Q(X) = {x :
∀y ∈ (x ∈ Qy → Qy ⊆ X)} and POSB(d) = POSQ(d), thus we obtain B(X) = π(X). Clearly, we get LD(d|B) =
LD(d|Q). By the definition of mutual information, we can obtain I(B;d) = I(Q;d).□
Lemma 2. Suppose Icds = (U,π,d) is an inconsistent covering decision system. For every B ⊆ Q ⊆ π , if
LI(B;d) = LI(Q;d) is true, then POSB(d) = POSQ(d).
Proof. The same is true; here we will not prove it.□
Corollary 4. Supposing Icds = (U,π,d) be an inconsistent decision system. For every B ⊆ Q ⊆ π , if LI(B;d) =
LI(Q;d) is true if and only if POSB(d) = POSQ(d).
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Theorem 12. Suppose Icds = (U,π,d) is an inconsistent covering decision system, for every Ai ∈ π , Ai is a
superfluous element relative to d in π , if and only if LH(d|π) = LH(d|π −{Ai}).
Proof. If Ai is a superfluous element relative to d in π , by the definition of positive region, we can get POSπ(d) =
POSπ−{Ai}(d). And by Lemma 2, we have LI(π −{Ai};d), thus LH(d|π −{Ai}) = LH(d|π).

If LI(π −{Ai};d) = LH(d|π)⇒ I(π;d) = I(π −{Ai};d) and π −{Ai} ∈ π , by Theorem 10, we can obtain
POSπ(d) = POSπ−{Ai}. Therefore, Ai is asuperfluous element relative to d in π .□
Corollary 5. Supposing Icds = (U,π,d) be an inconsistent decision system. For every Ai ∈ π , Ai is dispensable
relative to d in π , if and only if LH(d|C)< LH(d|π −{Ai}).
Corollary 6. Supposing Icds = (U,π,d) be an inconsistent decision system. For every Ai ∈ π , Ai is independent
relative to d in π , if and only if LH(d|C)< LH(d|π −{Ai}).
Theorem 13. Suppose Icds = (U,π,d) is an inconsistent decision system, for every B,Q ⊆ π , if B ≺ Q, then
LH(d|B)> LH(d|Q).
Proof. Suppose Cov(B) = {Bx : x ∈U} and Cov(Q) = {Qx : x ∈U}. If B precQ, there exists Bx ⊆ Qx for every
x ∈U .

Since

LH(d|B)−LH(d|Q) =− 1
|K| ∑

x∈K
log

|[x]d ∩Bx|
|Bx|

− 1
|K| ∑

x∈K
log

|[x]d ∩Qx|
|Qx|

=− 1
|K|2 ∑

x∈K
log

|[d]d ∩Bx|
|Bx|

× |[x]d ∩Qx|
|Qx|

(1)

If (1) met Bx ⊆ [x]d ,Qx ⊆ [x]d and Bx ⊆ Qx, then LH(d|B) = LH(d|Q).
If (1) only met Bx ⊆ Qx, we obviously can get LH(d|B)> LH(d|Q).
Therefore, LH(d|B)≥ LH(d|Q).□
Theorem 14. Supposing Icds = (U,π,d) be an inconsistent covering decision system, if B precQ for every
B,Q ⊆ π , then LI(B;d)≥ LI(Q;d).
Proof. Here we will not prove it.□
Theorem 15. Supposing Icds = (U,π,d) be an inconsistent covering decision system. For every B,Q ⊆ π , if
LH(d|B)> LH(d|Q) and LH(Q|B) = 0, then B ≺ 0.
Proof. Suppose Cov(B) = {Bx : x∈U} and Cov(Q) = {Qx : x∈U}. If LH(d|B)> LH(d|Q) is true, then Bx ⊃Qx

must be wrong (If Bx ⊃ Qx is true, then LH(d|B)≤ LH(d|Q) by Theorem 13, which is contradiction!), thus we
could obtain Bx ⊆ Qx or Bx ̸⊂ Qx. If Bx ̸⊂ Qx is true, there at least exists Bx1(x1 ∈ U), for every Qy1(y1 ∈ U),
then Bx1 ̸⊂ Qy1, if Bx ∩Qx ̸= /0 is true for every x ∈ U , then H(Q|B) = − 1

|K| ∑x∈K
|Qx∩Bx|
|Bx| > 0, which implies a

contradiction, thus Bx ⊆ Qx is true.□
Similarly, we can prove the following theorem:
Theorem 16. Suppose Icds = (U,π,d) is an inconsistent covering decision system. If LI(B;d)≥ LI(Q;d) and
LH(Q|B) = 0,B,Q ⊆ π , then B ≺ Q.
From the description of Theorem13 through Theorem 16, we know that there exists corresponding relation for
one to one between rough of knowledge and information entropy in inconsistent covering decision system.

4.4 Based on split policy inconsistent covering decision system for attribute reduction

Well-known scholars in Poland initially proposed discernibility matrix [11], or discernibility function can
be used to calculate all attribute reduction in the decision table. Although the resolution matrix and its approach
have been widely used, but due to the definition of resolution matrix, the data regarding the degree of incon-
sistency and its effects are not fully taken into account, so there are limitations. Literature [4, 20, 21] improved
methods and discussed the case of inconsistent decision table, so that the former method can obtain the correct
(all) attribute reduction results. Hence, such research is of great significance and, ultimately, a new application
used in inconsistent decision tables to distinguish Matrices. Further, a method is proposed to distinguish ma-
trix in the literature [31] based on the past, that is, split-based strategies and to distinguish Matrices decision
table attribute reduction. Literature [19, 30] presents rough set theory, algorithms and applications, but also
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specifically pointed out that the resulting matrix method to distinguish demand for inconsistent decision tables
is relatively simple errors in the nuclear, and also presented the results of a detailed analysis. Please refer to
literature [19, 30].
Supposing U1 = ∑X inU/d π(X) and U2 =U −U1
Definition 12. Suppose Icds = (U,π,d) is an inconsistent covering decision system, all subjects on universe, U ,
are divided into consistent covering sub-table π|U1 → d|U1 and inconsistent covering sub-table π|U2 → d|U2.
We denote a x×n matrix (mi j), called the discernibility matrix of Icds, such that if xu,x j ∈U satisfies

{A ∈ π : (Axi ̸⊂ Ax j)∧ (Ax j ̸⊂ Axi)}∨{Ap ∧Aq : (Apxi ⊂ Apx j)∧ (Aqx j ⊂ Aqxi)}

Theorem 17. Supposing Icds = (U,π,d) be an inconsistent covering decisive system, denoted by IM(π) =
{mi j} where mi j is a single attribute, IM(π) =Cored(π) is true if and only if ∃mi j ∈ a single attribute such that
mi j ∈Cored(π).
Proof. We denote Cov(π −{Ai}) = {Bx : x ∈ U}, if Ai ∈ IM(π) is true, then there exists mi j = {Ai} for every
A j ∈ π −{Ai} such that Ay j = Ax j is true.
Suppose x j ∈ π([xs]d)(s ∈ [1, l]), we will divide them to two parts for further discussion: first we prove IM(π)⊆
Cored(π). If y j ∈ U1 and fd(x j) ̸= fd(y j) are true, then there exists t ∈ [1, l] and t ̸= s such that y j ∈ π([xy]d)
and Bx j ∩π([xt ]d) ̸= /0.
By Definition 12, Ai is indispensable. If y j ∈U2 is true, then Bx j ∩U2 ̸= /0 is true such that ai is indispensable.
So IM(π)⊆Cored(π) is true.
On the other hand, if Ai ∈Cored(π) is true, then there exists xs ∈ π([xi]d)(i∈ [1,k]) such that one of the following
conditions is true:
(1) there exists j ∈ [1,k] and j ̸= i such that Bxs ∩ [x j]d ̸= /0;
(2) Bxs ∩ (U −∑x∈U([x]d)) ̸= /0
If Condition (1) is true, then there exists xt ∈ [x j]d and A j ∈ π −{Ai} such that Axs j = Axi j and Axsi ̸= Axti, and
because of xs ∈ ([xi]d),xt ∈ ([xt ]d), then we can obtain fd(xs) ̸= fd(xt) for xs ∈U1,xt ∈U2 such that mst ∈ {Ai}.
If Condition (2) is true, then there exists xr ∈U2, for every A j ∈ π −{Ai} such that Axs j = Axr j and Axsi ̸= Axri

for xs ∈U1,xy ∈U2, therefore we could get msr = {Ai}. So Cored(π)⊆ IM(π) is true.
Theorem 18. Supposing Icds = (U,π,d) be an inconsistent covering decision system, denoted by subset E =
π −Core(π),E1 ⊆ E, then POSπ(d) = POSπ−{E1}(d1) is true if and only if for every mi j(1 ≤ j ≤ i ≤ n) such that
mi j ̸⊂ E1 is true.
Proof. If there exists E1 ⊆ E such that any element of E1 does not belong to Cored(π), so E1 can be reduced. If
for every mi j and 1 ≤ j ≤ i ≤ n, then we could get mi j ̸⊂ E1, which still ensure POSπ(d) = POSπ−{E1}(d1) after
reduction of properties on E1 at the same time.
If there exists mi j after reduction by properties on E1 contemporarily such that mi j and mi j ̸= /0 is true, which
implies properties on E1 cannot be reduced at the same time.
Theorem 18 implies that as long as there is a simple observation and treatment for discernibility matrix, we will
have cores and reducts in the inconsistent covering decision system. The following Corollary 7 can be founded
in the literature [21, 25].
Corollary 8. Suppose B ⊆ π , then B is a relative reduct of π if and only if it is the minimal set satisfying
B∩mi j ̸= /0 for mi j ̸= /0, i, j ≤ n.

5 Experimental analysis: a test application

Example 1. Here is a car which is to be considered for analysis. Suppose U = {x1, . . . ,x10} to be a set of
ten cars, and E ={price; colour; quality; oil-consumption} to be a set of attributes. The values of ‘price’ are
{high; middle; low}, the values of ‘colour’ are {pretty; ordinary; poor}, the values of ‘quality’ are {good;
bad}, the values of ‘oil-consumption’ are {tiny; relative-tiny; reasonable; numerous}. We have four specialists
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E = {A,B,C,D} to evaluate the attributes of these cars. Moreover, their evaluation results are not the same when
compared with one another. The evaluation results are listed below.
For attribute price:

A : high = {x1,x2,x4,x6,x7,x8,x9,x10}, middle = {x3}, low = {x5};

B : high = {x1,x2,x3,x5,x6,x8,x9,x10}, middle = {x4}, low = {x6,x7};

C : high = {x1,x2,x3,x4,x8,x9,x10}, middle = {x8}, low = {x3,x4,x5,x6,x9};

D : high = {x1,x2,x3,x5,x6,x8,x9,x10}, middle = {x7}, low = {x5,x6};

For attribute color:

A : pretty = {x1,x2,x3,x4,x5}, ordinary = {x6,x7,x8,x9}, low = {x10};

B : pretty = {x1,x2,x3,x4,x5,x6}, ordinary = {x7,x8,x9}, low = {x10};

C : pretty = {x1,x2,x3,x4,x5,x6,x7}, ordinary = {x8,x9}, low = {x10};

D : pretty = {x1,x2,x3,x4,x5,x7}, ordinary = {x6,x8,x9}, low = {x10};

For attribute quality:
A : good = {x1,x2,x3,x6,x8,x19}, bad = {x4,x5,x7,x9};

B : good = {x1,x2,x3,x8,x10}, bad = {x4,x5,x6,x7,x9};

C : good = {x1,x6,x8,x9,x10}, bad = {x2,x3,x4,x5,x7};

D : good = {x1,x2,x6,x8,x10}, bad = {x3,x4,x5,x7,x9}

For attribute oil-consumption:

A : tiny = {x1,x2}, relative− tiny = {x3,x4,x5}, reasonable = {x3,x4,x5}, numerous = {x7,x9};

B : tiny = {x1,x3}, relative− tiny = {x2,x4,x5,x6}, reasonable = {x7,x8,x10}, numerous = {x9};

C : tiny = {x1,x3}, relative− tiny = {x2,x4,x5,x7}, reasonable = {x6,x8,x10}, numerous = {x9};

D : tiny = {x1,x2,x6}, relative− tiny = {x3,x4,x5}, reasonable = {x8,x9,x10}, numerous = {x7,};

We think that the evaluation of every index is has the same importance. Therefore, we get a cover rather than a
partition for every car attribute, which implies a certain uncertainty caused by the interpretation of the data.

price : A1 = {{x1,x2,x3,x4,x6,x7,x8,x9,x10},{x3,x4,x6,x7},{x3,x4,x5,x6,x7},

colour : A2 = {{x1,x2,x3,x4,x5,x6,x7},{x6,x7,x8,x9},{x10}},

quality : A3 = {{x1,x2,x3,x6,x8,x9,x10},{x2,x3,x4,x5,x6,x7,x9},}

oil − consumption : A4 = {{x1,2 ,x3,x6},{x2,x3,x4,x5,x6,x7},{x6,x8,x9,x10},{x6,x7,x9}}

Final decision d is given as U/d = {sale; further evaluation for sale; against sale}; sale={x1,x2,x4,x6}, further
evaluation for sale={x4,x5,x7}, against sale={x1,x2,x4,x6}. Suppose π = {Ai : i = 1, . . . ,4},πxi, abridges πi, Bi

means Bxi for short, then we can obtain:

π1 = {x1,x2,x3,x6},π2 = {x3,x2,x6},π3 = {x3,x6}

π4 = {x3,x4,x6,x7},π5 = {x3,x4,x5,x7},π6 = {x6},π7 = {x6,x7}
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π8 = {x6,x8,x9},π9 = {x6,x9},π10 = {x10}.
The positive domain of d relative to π is:

POSπ(D) =
⋃

x∈U/D

π(X) = {x1,x2,x3,x6,x10} (1)

Supposing B = π −A1, then B1 = {x1,x2,x3,x6}, B2 = B3 = {x2,x3,x6}, B4 = B5 = {x2,x3,x4,x5,x6,x7}, B6 =
{x6}, B7 = {x6,x7}, B8 = {x6,x8,x9}, B9 = {x5,x9}, B10 = {x10}, the positive domain of d relative to B is:

POSB(D) =
⋃

x∈U/D

B(X) = {x1,x2,x3,x6,x10} (2)

As to (1) and (2), we could obtain POSB(D) = POSπ(D). By the Definition 12, Ai is a superfluous relative to d
in π . Here we can see

πx1 ̸⊂ πx4,πx4 ̸⊂ πx1 =⇒ Bx1 ̸⊂ Bx4,Bx4 ̸⊂ Bx1,

and
πx2 ̸⊂ πx4,πx4 ̸⊂ πx2 =⇒ Bx2 ⊂ Bx4,πx3 ⊂ πx4 =⇒ Bx3 ⊂ Bx4.

The uppermost relation of x2,x4 to π changes after Ai is deSupposinged from π . A1 is a superfluous element of
π relative to D, so it is an exemplar of inconsistent covering decision system.
Suppose U1 = {x1,x2,x3,x6,x10} and U2 = {x4,x5,x7,x8,x9}. By the Definition 12, we have the discernibility
matrix of inconsistent covering decision system (U,π,D), which is follows (covers have been distinguished i
instead of Ai, otherwise 0 instead of π):

0 0 0 0 {2,4} {3,4} {1,3,4} {3,4} {2,4} {2,4}
0 0 0 0 {2,4} {1∧3,2∧3,3,4} {1,3,4} {2∧3,1∧3,3,4} {2,4} {2,4}
0 0 0 0 {2,4} {3,4} {1,3,4} {2∧3,3,4} {1,2,4} {1,2,4}
0 0 0 0 {2,3,4} {3,4} {1,2,3,4} {3,4} {1,2,4} {1,2,4}

{2,4} {2,4} {2,4} {2} 0 {2,3,4} {1,2,3,4} {2,3,4} {2} {2}


and f (U,π)(Ā1, Ā2, Ā3, Ā4) =∧{∨mi j : 1 ≤ j < i ≤ 10,mi j ̸= /0}= (A1∨A3∨A4)∧(A2∨A4)∧(A3∨A4)∧(A2∨
A4)∧ (A1 ∨A3 ∨A4)∧ ((A1 ∨A3)∨ (A2 ∨A3)∨A3 ∨A4)∧ (A1 ∨A2 ∨A4)∧ ((A2 ∧A3)∨A3 ∨A4)∧ (A1 ∨A3 ∨
A4)∧ (A2 ∨A3 ∨A4)∧ (A3 ∨A4)∧ (A1 ∨A2 ∨A3 ∨A4)∧{A2}= (A2 ∧A4)∨ (A2 ∧A3), so

Red(π) = {{A3,A4},{A2,A3}}, CoreD(π) = {A2}.

It should be pointed out that if the covering decision system is consistent, then the method proposed in this
section is equivalent to the one in Section 4. If is a partition, then the method adopted in this section is just the
method for computing relative reducts of traditional rough sets in the literature [32] to ensure that we find the
smallest reduction.
If these ten cars are trial samples, then we have two different kinds of evaluation references for other input
samples: {colour; oil-consumption}, {colour; quality}. Clearly, the attributeis the key attribute for the evaluation
of cars.
To illustrate the methods of space and computational complexity in the section, we will compare our methods
with the methods of literature [21, 23, 24], such that if n = |U1|+ |U2| satisfies,
(1) The space complexity can be compared: without considering compression and storage of symmetric matrix,
the elements of discernibility matrix in the section are |U1| × n, while the elements in the literature [21] are
n×n.
(2) The computational complexity can be compared: the computational complexity in literature [21, 23, 24] is
O(m×n× logn)+O(m×n2), while the method in this section is O(m×n× logn)+O(m×|U1|×n).
It is evident that the space and computational complexity in the section are lower than the literature [21].There-
fore, the methods in this section could be used effectively not only to reduce the computational cost, but also in
providing a new framework to certain extent based on the covering rough sets theory.

https://www.sciendo.com


2114 Xiuyun Xia et al. Applied Mathematics and Nonlinear Sciences 8(2023) 2103–2116

6 Conclusions

According to classical rough sets theory, attributes of decision systems consist of two parts namely condi-
tional attributes and decision attributes. Every conditional attribute decide a partition in a complete decision
system. The abstract information systems which come from reality problems are mostly incomplete decision
system. Every conditional attribute in this decision system determines a cover of U. This paper mainly studies
theories and methods of systems and discusses about related attribute reduction for covering decision infor-
mation reduction algorithms on the basis of conditional information entropy. Moreover, attribute reduction of
covering decision systems also have wide applications in the three-way, which indicates the importance of the
direction of research currently.
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