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Abstract. Data stream processing has been gaining attention in the past
decade. Apache Flink is an open-source distributed stream processing en-
gine that is able to process a large amount of data in real time with low
latency. Computations are distributed among a cluster of nodes. Cur-
rently, provisioning the appropriate amount of cloud resources must be
done manually ahead of time. A dynamically varying workload may ex-
ceed the capacity of the cluster, or leave resources underutilized. In our
paper, we describe an architecture that enables the automatic scaling
of Flink jobs on Kubernetes based on custom metrics, and describe a
simple scaling policy. We also measure the effects of state size and tar-
get parallelism on the duration of the scaling operation, which must be
considered when designing an autoscaling policy, so that the Flink job
respects a Service Level Agreement.

1 Introduction

Apache Flink [5, 18, 10] is an open-source distributed data stream process-
ing engine and framework. It can perform computations on both bounded and
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unbounded data streams using various APIs offering different levels of abstrac-
tion. A Flink application consists of a streaming pipeline, which is a directed
graph of operators performing computations as nodes, and the streaming of
data between them as edges.

Flink applications can handle large state in a consistent manner. Most pro-
duction jobs make use of stateful operators that can store internal state via
various state backends, such as in-memory or on disk. Flink has an advanced
checkpointing and savepointing mechanism to create consistent snapshots of
the application state, which can be used to recover from failure or to restart
the application with an existing state [4, 3].

These streaming jobs are typically long-running, their usage may span weeks
or months. In these cases, the workload may change over time. The applica-
tion must handle the changed demands while meeting the originally set service
level agreement (SLA). This changing demand may be predictable ahead of
time, in case some periodicity is known, or there are events that are known to
influence the workload, but in other cases, it is bursty and unpredictable. Stat-
ically provisioning resources and setting the job’s parallelism at launch-time is
unsuited for these long-running jobs. If too few resources are allocated (under-
provisioning), the application will not keep up with the increasing workload,
and start missing SLAs. If the resources are provisioned to match the pre-
dicted maximum load, the system will run over-provisioned most of the time,
not utilizing the resources efficiently, and incurring unnecessary cloud costs.

Flink jobs’ parallelism can not be changed during runtime. It is possible
however to take a savepoint, then restart the job with a different parallelism
from the snapshot. If the job is running in the cloud, it is also possible at this
point to provision (or unprovision) additional resources, new instances that
can perform computations. This is called horizontal scaling.

Restarting a job is an expensive operation. The state must be written to a
persistent storage beforehand, which can be done asynchronously, but restoring
from this savepoint after the restart can take a considerable amount of time.
Meanwhile, the incoming workload is not being processed, so the restarted
application has to catch up with this additional delay. Scaling decisions should
therefore be made wisely. We must monitor various metrics of the running
job, take into account the delays allowed by the SLA, and decide whether
the trade-off of the scaling is worth it. Algorithms that make this decision
automatically, reacting to the changing load dynamically, and performing the
actual scaling operation are of great value, and make the operations of long-
running streaming applications feasible and efficient.
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Container orchestrators such as Kubernetes [9] allow us to both automate
the mechanics of the scaling process, and to implement the custom algorithms
that make the decisions. We have set up a system that can perform these
scaling operations using Kubernetes’ Horizontal Pod Autoscaler resource [20]
and Google’s open-source Flink operator [21].

In this paper, we discuss the architecture of this system. We describe a
simple scaling policy that we have implemented, that is based on operator
idleness and changes of the input records’ lag. Additionally, we analyze the
downtime caused by the scaling operation and how it is influenced by the size
of the application state. We make observations regarding these results, that
should be considered when designing an autoscaling policy to best meet a
given SLA while minimizing overprovisioning.

2 Related work

Cloud computing is a relatively new field, but in the recent years it has gained
a large interest among researchers.

The automatic scaling of distributed streaming applications consists of the
following phases [13]: a monitoring system provides measurements about the
current state of the system, these metrics are analyzed and processed, which is
then applied to a policy to make a scaling decision (plan). Finally, the decision
is executed, a mechanism performs the scaling operation. Most research is
focused on the analytic and planning phase.

The authors of [13] have reviewed a large body of research regarding au-
toscaling techniques. They categorize the techniques into five categories: (1)
threshold-based rules, (2) reinforcement learning, (3) queuing theory, (4) con-
trol theory, and (5) time series analysis based approaches.

The DS2 controller [11] uses a lightweight instrumentation to monitor stream-
ing applications at the operator level, specifically the proportion of time each
operator instance spends doing useful computations. It works online and in
a reactive manner. It computes the optimal parallelism of each operator by
a single traversal of the job graph. The authors have implemented instru-
mentation for Flink among other streaming systems. They have performed
experiments on various queries of the Nexmark benchmarking suite to show
that DS2 satisfies the SASO properties [1]: stability, accuracy, short settling
time, and no overshoot. The job converges to the optimal parallelism in at
most 3 steps (scalings). The resulting configuration exhibits no backpressure,
and provisions the minimum necessary resources.
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PASCAL [12] is a proactive autoscaling architecture for distributed stream-
ing applications and datastores. It consists of a profiling and an autoscaling
phase. In the profiling phase, a workload model and a performance model are
built using machine learning techniques. These models are used at runtime by
the autoscaler to predict the input rate and estimate future performance met-
rics, calculate a minimum configuration, and to trigger scaling if the current
configuration is different from the calculated target. For streaming applica-
tions, these models are used to estimate the CPU usage of each operator in-
stance for a predicted future workload. The authors show that their proactive
scaling model can outperform reactive approaches and is able to successfully
reduce overprovisioning for variable workloads. In our work, we use a different
metric from the CPU load, based on how much the job lags behind the in-
put. Our policy is a reactive approach, but it might be interesting to explore
whether a proactive model could be built on these metrics.

Ghanbari et. al. [8] investigate cost-optimal autoscaling of applications that
run in the cloud, on an IaaS (infrastructure as a service) platform. They pro-
pose an approach that uses a stochastic model predictive control (MPC) tech-
nique. They create a model of cloud and application dynamics. The authors
define a cost function that incorporates both cloud usage costs, as well as the
expected value of the cost or penalty associated with the deviation from cer-
tain service level objectives (SLOs). These SLOs are based on metrics that
describe the overall performance of the application.

In our work, we aim to describe the characteristics of scaling Flink jobs, to
serve as a base for an optimal scaling policy in the future. We also provide an
architecture for making and executing the scaling decisions.

3 System architecture

We have implemented an autoscaling architecture on Kubernetes. This section
gives an overview of the components involved in running, monitoring and
scaling the applications.

3.1 Kubernetes operator

Flink applications can be executed in different ways. Flink offers per-job, ses-
sion and application execution. Flink supports various deployment targets,
such as standalone, Yarn, Mesos, Docker and Kubernetes based solutions.
There are various managed or fully hosted solutions available by different ven-
dors.
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There are also multiple approaches of running Flink on Kubernetes. One
method is to deploy a standalone cluster on top of Kubernetes. In this case,
Kubernetes only provides the underlying resources, which the Flink application
has no knowledge about. Flink also supports native Kubernetes deployments,
where the Flink client knows about and interacts with the Kubernetes API
server.

We have decided to use the standalone mode combined with Kubernetes’ op-
erator pattern [6] to manage Flink resources. The open-source operator [21] by
Google defines Flink clusters as custom resources, allowing native management
through the Kubernetes API and seamless integration with other resources and
the metrics pipelines. The operator encodes Flink-specific knowledge and logic
in its controller.

The desired state of the cluster is specified in a declarative manner, con-
forming to the format defined in the custom resource definition (CRD). The
user submits this specification to the Kubernetes API server, which creates
the FlinkCluster resource. The operator, installed as a deployment, starts to
track the resource. The reconciliation loop performs four steps.

1. It observes the resource, and its sub-resources, such as JobManager or
TaskManager deployments, ingresses, etc.

2. The controller uses the observed information to compute and update the
Status fields of the resource through the API.

3. The desired state of the individual cluster components is calculated,
based on the (potentially changed) observed specification, and the ob-
served status.

4. Finally, the desired component specifications are applied through the
API.

This loop runs every few seconds for every FlinkCluster resource in the
Kubernetes cluster.

3.2 Scale subresource

We have modified the operator to expose the scale subresource on the FlinkClus-
ter custom resource. This exposes an endpoint that returns the current status
of the scaling, which corresponds to the number of TaskManager replicas and
the job parallelism, as well as a selector, which can be used to identify the
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Pods that belong to the given cluster. Additionally, this endpoint can be used
to set the desired number of replicas in the FlinkCluster Spec.

The scaling process starts with this step, the desired replicas are set through
the scale subresource. The scaling is done in multiple steps, with intermediate
desired deployments in the process. The operator can keep track of the clus-
ter’s and the job’s state, and perform the steps of a scaling operation. As the
scale subresource’s replicas specification changes, the operator first requests
a savepoint and the deletion of the existing cluster. Once this is complete, it
computes the desired deployment (step 3 of the reconciliation loop) with the
newly desired replicas. When the cluster components are ready, it resubmits
the job with the appropriate parallelism, starting from the latest savepoint.

3.3 Custom metrics pipeline

The scaling decisions are based on metrics from the Flink job. We have used
Prometheus [2] to scrape the job’s metrics. Flink has an established metrics
system, including access to connector metrics (such as Kafka). We have used
Flink’s Prometheus reporter to expose the metrics to Prometheus.

To access Prometheus metrics through the Kubernetes metrics API, we have
used an adapter [16]. It finds the desired time series metrics in Prometheus,
connects them to the appropriate Kubernetes resources, and performs aggre-
gations, exposing the results as queryable endpoints in the custom metrics
API. The metrics we have decided to calculate will be described in detail in
Section 4. Figure 1 shows the overview of the metrics pipeline.

3.4 Horizontal Pod Autoscaler

The Horizontal Pod Autoscaler (HPA) [20] is a built-in Kubernetes resource. It
can control the scaling of Pods in a replication controller, such as ReplicaSet
or Deployment. It can also scale custom resources whose Scale subresource
is exposed and the scaling logic is implemented. Since we have done this for
FlinkCluster resources, we can set them as scaling targets for the HPA.

The Horizontal Pod Autoscaler uses the currently observed replica count
(either calculated by counting pods with certain labels, or read from the scale
endpoint), as well as various types of metrics to calculate the desired number
of replicas, by the following formula:

desiredReplicas = max
i∈usedMetrics

⌈
currentReplicas× currentMetricValuei

desiredMetricValuei

⌉
(1)
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Figure 1: The custom metrics pipeline with Prometheus, used in our scaling
architecture.

We have used the latest, autoscaling/v2beta2 version of HPA, which has
support for both resource, custom, and external metrics. We can specify mul-
tiple metrics, including those we have exposed through Prometheus and the
custom metrics API. The HPA calculates the desired replica count based on
each metric, and uses the largest value to scale the resource. In our setup, we
have used two metrics through the custom metrics pipeline described above.
The metrics will be described in Section 4.

The above equation assumes that the application can handle workload pro-
portionally to the number of replicas, and that the metrics linearly change
with the utilization, and therefore inversely with the number of replicas. This
means that if the current metric is n times the desired metric, the desired
replicas are calculated to be n times the current replicas. After the scaling, we
expect the current metric value to decrease to near the desired metric value.

4 Scaling policy

We have implemented a scaling policy inspired by [15, 7]. We assume that the
stateful Flink job reads a stream of data from a Kafka topic, performs some
calculations on the records, and emits the results to another Kafka topic.
Apache Kafka [14] is an open-source event streaming, message broker plat-
form. Producers can write and consumers can read topics that are stored in a
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distributed manner among Kafka brokers. The data in the topics is broken up
to partitions.

The data is assumed to be evenly distributed, i.e. there is no skew among
the number of messages in the partitions, so the parallel operator instances
are under a nearly equal load.

The scaling policy uses two different metrics. One is based on the relative
changes in the lag of the input records, and the other on the proportion of
time that the tasks spend performing useful computations.

4.1 Relative lag changes

The goal of autoscaling is for the Flink job to be able to handle the incoming
workload. In distributed systems, failures are inevitable and a part of normal
operation, so the processing capacity of the job should slightly exceed the rate
of incoming records. This way, in the case of a failure, the job can catch up
after a recovery. However, the job should not be overprovisioned by a large
factor, to avoid wasting resources.

Kafka keeps track of the committed offsets in each partition (number of
records that have been read by Flink), as well as the latest offset (the number
of records). The difference between these is called the consumer lag. Flink uses
a separate mechanism from Kafka’s offsets to keep track of how much it has
consumed, due to the way it handles checkpoints and consistency, but it is still
possible to extract information about how far the consumption lags behind.

Flink’s operators are deployed to tasks as multiple parallel instances. Each
task of the Kafka source operator is assigned a number of partitions of the in-
put topic. A total lag or an average lag metric would be more useful, but it is
not available with this setup. Therefore, we give an upper bound for the total
lag using the records lag max metric, which returns for instance the maximum
of the lags in the partitions that they read. For example, consider a topic with
1 million messages evenly balanced among 20 partitions, when read from the
beginning by a Flink job with 4 consumer instances. Each instance would get
assigned 5 partitions, and when reading from the beginning, the lag for each
partition would be 50000, hence the records lag max would also be 50000 for
each instance. As the job consumes the messages (faster than they are pro-
duced), the lag in each partition would decrease, and this metric would give
the largest among them for each task instance. We give an overestimation for
the total lag by multiplying this metric for each instance with the correspond-
ing assigned partitions metric, and summing this value for all tasks with the
source operator’s instances. Equation 2 summarizes this calculation.
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totalLag =
∑

i∈SourceTasks
records lag maxi × assigned partitionsi (2)

If this lag is nearly constant, the job is keeping up with the workload. If the
lag is increasing, the job is underprovisioned and needs to scale up. If the lag
is decreasing, the job may be overprovisioned. However, this may be a desired
scenario if there was a large lag, as the latency will decrease if the job can
process the lagging records.

To decide whether the current parallelism is enough to handle the workload,
we take the rate of change of the lag metric (in records / second), using
PromQL’s (Prometheus’ query language) [2] deriv function over a period of 1
minute.

The specific value of lag by itself is not too meaningful, and neither is
its rate of change. To be useful, we compare it to the rate at which the job
processes records (in records/second), which can be calculated by summing the
records consumed rate metric for each operator instance of the Kafka source,
which we call totalRate. To smooth the effect of temporary spikes, we use a
1-minute rolling average of this metric.

The ratio of these two metrics gives a dimensionless value, which repre-
sents how much the workload is increasing (positive) or decreasing (negative)
relative to the current processing capabilities. After adding 1, the resulting
number is the multiplier necessary for the number of replicas to keep up with
the load.

relativeLagChangeRate = 1+
deriv(totalLag)

totalRate
(3)

This number is only meaningful for scale up decisions, since a decreasing lag
might still warrant the current number of replicas, until the application catches
up to the latest records. By using relativeLagChangeRate as the currentMet-
ricValue, and 1 as the desiredMetricValue for the Horizontal Pod Autoscaler,
as described in Equation 1, the desired replicas are properly calculated when
scaling up. For downscaling, multiplying the parallelism with this value would
still correctly make the job match the incoming message rate, but a down-
scaling is likely not warranted until the lag is below a certain threshold. The
utilization portion of the policy, described in the next subsection, is responsible
for making downscaling decisions.

To make the job catch up to the lag after the scaling, and to account for
future failures, it might be worthwhile to slightly overshoot when scaling up.
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This could be achieved by setting the desired metric value to a slightly smaller
number or including a multiplier in the fraction in Equation 3.

When the job can process messages at the rate they are generated, or if
the job is overprovisioned with no lag, then the change of the lag is 0, giving
the relativeLagChangeRate metric a value of 1. These two cases need to be
distinguished, as in the latter case scaling down might be possible. Since the
HPA sets the parallelism to the maximum dictated by various metrics, a value
of 1 for relativeLagChangeRate in the case of 0 lag would prevent a downscaling
based on other metrics (whose values would be between 0 and 1).

To avoid this, we need some logic not to use this metric when the total lag
is below a desired threshold. To simulate this, we can use the following value
instead in the query for the HPA:

totalLag− threshold

abs(totalLag− threshold)
× relativeLagChangeRate (4)

If the total lag is less than the threshold, then the fraction in the equation
is −1, which makes the above expression negative. Then, this metric will no
longer prevent the downscaling based on the other metric, since the HPA takes
the maximum of the values calculated based on various metrics. If the total
lag is larger than the threshold, then the fraction is 1, so this metric will be
taken into account when making the scaling decision.

As noted before, this metric always overestimates, since the total lag is
calculated based on the maximum lag of each subtask. If the data has a large
skew, the effect of this overestimation may be very large. Therefore, it may
be necessary to adjust the desired value of this metric based on knowledge
about the actual data being processed. If the number of subtasks matches the
number of Kafka partitions, and each subtask processes one partition, then
the metric is based on the true lag value. Obviously, due to scaling, this will
not be the general case, because the parallelism changes over the lifetime of a
job. In the future, it would be desirable to expose a metric about the lag in
each of the partitions.

4.2 Utilization

As noted in the previous subsection, another rule is necessary for the policy
to distinguish between cases when the lag remains unchanged because the
job’s processing capabilities match the incoming rate, and when the job could
process more than the incoming rate, but there are no records to be processed.
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This rule is based on the idleTimeMsPerSecond metric. It is a task-level
built-in metric in Flink, that represents the time in milliseconds that a task
is idle. A task can be idle either because it has no data to process, or because
it is backpressured (it is waiting for downstream operators to process their
data).

If a task is idle due to a lack of incoming records, then the job is overpro-
visioned for the current load. We define the utilization metric for a job as the
average portion of time its tasks spend in a non-idle state.

In our observations, the tasks executing the source operators (Kafka con-
sumers) have shown an idleTimeMsPerSecond metric of 0 ms when there was
no lag and the job was able to keep up with the messages, and 1000ms when
the job was processing events at its maximum capacity, due to the source tasks
being backpressured by the downstream processor operators. This is not an
accurate representation of the overall utilization of the job, therefore we have
excluded the tasks containing the first operator from the calculation. For this
metric to be useful, the source operators should not be chained to others.

The metric can be expressed with the following formula:

utilization = 1−
avgnonSourceTasks(idleTimeMsPerSecond)

1000
(5)

This is a dimensionless number between 0 and 1, representing the average
utilization of tasks in the job. We use this as the currentMetricValue in the
Horizontal Pod Autoscaler, and set the desired value to a number less than 1.

If the utilization is above the desired value, it may trigger a scale up before
the lag metric. Its main purpose however, is to scale down when the utilization
is low. If this is the case, the lag metric is 0, so the job would be able to process
more records than the incoming rate. For example, if the target utilization is
0.8, and its current value is 0.4, then a scale down should be triggered, the
new parallelism should be half of the original.

This simple metric assumes that the job’s tasks are under even load. A finer-
grained approach could be used with more knowledge about a job’s specifics,
such as which operators perform heavy calculations, and consider tasks with
different weights in the average.

5 The effects of scaling on performance

The scaling operation requires the snapshotting of the whole application state
onto persistent storage. Additionally, in our Kubernetes operator implemen-
tation, the original job’s pods are destroyed, and new pods are provisioned
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instead with the appropriate replica count. The Flink job then has to be
restarted from the recently snapshotted state.

In this section, we analyze how the size of the state affects the downtime
during the scaling operation. We perform measurements regarding the save-
point duration, the overall downtime, and the loading time of the savepoint
after the scaling.

5.1 Experimental setup

We have created a simple Flink job that reads records from a topic in Apache
Kafka [14], keys them by one of the fields, performs a simple calculation in a
KeyedProcessFunction, and writes the results to another topic. The job stores
a random string of configurable size in a keyed state. The number of keys is
also configurable.

A separate data generator job produces the records of the input topic. The
creation timestamp is stored as a field of each record. The main job’s last
operator before the Kafka producer calculates the difference between its own
processing time and the stored timestamp, and writes this elapsed time to the
emitted record. This value can be used to determine the total downtime in
Section 5.3. We disregard the differences among the nodes’ clocks.

We have used the operator’s savepoint mechanism, as well as the scale end-
point to trigger savepoints and restarts. We have observed the duration of
savepointing on the JobManager dashboard. To calculate the downtime and
latency distribution, we have observed the output Kafka topic’s records with
the elapsed time field.

5.2 Effects of state size on savepoint duration

Flink has an aligned checkpoint mechanism [3]. When triggering a snapshot,
a snapshot barrier is inserted at each input operator, which flows along the
streaming pipeline along with the records. An operator takes a snapshot of its
state when it has received the snapshot barriers from all of its inputs. When
operators are under different loads, this can significantly delay the snapshot-
ting of certain operators’ states.

The latest versions of Flink also support unaligned checkpoints [19] (but
not unaligned savepoints), where checkpoint barriers can overtake buffered
records, and thus avoid this delay caused by the alignment. This does not affect
the time required for the I/O operations involving the checkpoint. In future
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Figure 2: Duration of taking a savepoint as measured by Flink, with relation
to state size, when the job runs with a parallelism of 1 or 3.

research, it might be worthwhile to investigate how using aligned or unaligned
checkpoints instead of savepoints might affect performance and scaling time.

Each operator must serialize its state and write it to a persistent storage.
We have measured how the size of application state affects this portion of the
snapshotting process. To avoid the fluctuation caused by the barrier mecha-
nism, we have stopped the data generator, and thus the stream of incoming
records, before taking snapshots. At this point, the keyed application state
had the sizes of {1.0, 2.0, 3.0, 4.0, 8.0} GB. The application has run with a
parallelism of 1 and 3. We have used Amazon’s Elastic File System (EFS) to
store the snapshots. This is one of the storage options that can be used for
Kubernetes, but there are other implementations and providers that may offer
different performance characteristics. In the future, it might be worthwhile to
compare the offerings of various providers.

We have manually triggered savepoints 5 times for each combination of
parallelism and state size. The measurements, read from the Flink dashboard,
were rounded to seconds, and an average value was taken. As seen on Figure 2,
state size has a strong linear correlation to the serialization and writing time
of the snapshotting phase.
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The parallelism of the job did not affect the savepoint duration. It is limited
by the write rate of the file system. EFS offers 100 MiB/s (105 MB/s) bursting
performance. In our measurements, we have confirmed that savepoints were
written at this rate.

This has been measured when the application is in a healthy state and
not backpressured. The job did not need so spend time synchronizing the
checkpoint barriers, as the pipeline was simple, with no multi-input operators.
Backpressure does significantly increase the time to the completion of a save-
point, since the snapshot barriers must flow through all operators of the job.
The beginning of writing an operator’s state may thus be delayed until the
barrier reaches it. The magnitude of this effect depends highly on the specific
job.

The snapshotting of an operator’s state happens asynchronously, with a
small impact on the overall performance of the pipeline. While this effect
itself may cause delays in processing and slow the pipeline, it is unlikely to
cause problems in real-world scenarios due to its small magnitude, so we have
decided not to focus on this effect.

5.3 Effects of state size on scaling downtime

The majority of the downtime during a scaling operation is due to the loading
of state from the persistent storage. The properly partitioned state must be
distributed to the operator instances from the persistent storage.

We have measured how the total downtime of the processing job is affected
by the size of the state. We have manually triggered trigger scale-up and scale-
down operations with different state sizes. To measure the downtime, we have
used the method described in Subsection 5.1.

With state sizes of approximately 1, 2, 4 and 8 GB, we have found that the
creation of the infrastructure done by Kubernetes, the deletion and initializa-
tion of pods is a factor with a large variance, that is responsible for the larger
portion of the scaling time. Additionally, if the Flink image is not available
on the node, or the image pull policy is set to Always, its pulling is another
factor that we have little control over, and might dominate the scaling time.

In an extreme case, the cluster has no available resources to provision the
requested number of pods, and the job is in a stopped state until resources
become available, or a new node is initialized by some autoscaling mecha-
nism. To make measurements feasible, we limit the experiments to cases when
enough resources are available on the cluster, and new pods can be provisioned
without delay.
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However, even in this limited case, our observations have shown a large
variance in the scaling times due to the above described factor of waiting
for Kubernetes. Figure 3 shows the downtimes we have measured for target
parallelisms of 2 to 8, with state sizes between 2 and 8 GB. Based on the
observed data, we were not able to establish the effect of either the state size
or the target parallelism on the scaling time.

Figure 3: Total time for the scaling operation, during which the job processes
no messages.

5.4 Effects of state size on savepoint restoration duration

To directly observe the effects of state size, while eliminating the large vari-
ance described in the previous section, we have taken a different approach. We
have added a measurement directly to the OperatorChain class’ initializeS-
tateAndOpenOperators method. This exposes the duration of initializing each
operator’s state. This can either be a newly created state, or one restored from
a savepoint. In our setup, only one operator had stored state, whose size we
have had control over. We have exposed the load time as a gauge type metric
through Prometheus, and filtered it by the operator name in a query.
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We have performed measurements with state sizes up to 8 GB, and target
parallelisms of 2, 4, 6, and 8. In each measurement, we have recorded the state
initialization time of each stateful parallel operator instance. The operator
instances work in a parallel manner, so the job is able to start processing at
the full rate after the last subtask has loaded its state. We have measured the
averages and the maximums of the subtask load times.

We have hypothesized the correlation between state size and load times to be
linear. This was confirmed by performing a linear regression on the data points
of the maximum and average values, while disregarding the target parallelism
component. The R2 values of 0.905 and 0.833 respectively indicate that state
size explains a large portion of the load times’ variability. Figure 4 shows the
data points and the trendlines for linear regression.

Figure 4: Maximum and average state initialization times of all instances of
the stateful operator in job restarts with various state sizes.

5.5 Effects of target parallelism

Each parallel operator instance loads only a portion of the state, partitioned
by some key. With a higher parallelism, the state that each operator must load
is smaller, which may result in a quicker load time. However, there may be
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other bottlenecks (e.g. disk or network performance), that may limit the rate
of loading the state.

Flink uses key groups as the smallest unit of distributing keyed state. Each
key group gets assigned to a parallel instance of an operator. The number of
key groups is equal to the maximum parallelism, which can only be set when
the job is first started. If key groups are not distributed evenly, the state size is
uneven between operator instances. It is recommended [17] to use parallelisms
that are divisors of the maximum parallelism setting to avoid this issue. In
our measurements, we have used a maximum parallelism setting of 720, which
is divisible by most of the parallelism settings we have measured with (except
for 32).

We have performed measurements to determine what the effect of the target
parallelism is on the load time. We have used a cluster with 6 AWS m5.2xlarge
instances, and ran the benchmark job with approximately 10 GiB state. We
have initiated the scaling operation with target parallelisms of 4, 6, 8, 12, 16,
24, and 32, scaling from various parallelisms. The job was initially started with
a parallelism of 8.

We have measured the state load times of each subtask using the same
tooling as before. We have scaled the job to each parallelism 6 times, and taken
the averages of the maximum and the average load times of each measurement.

Based on the results of the measurements, seen in Figure 5, we were not able
to observe a clear correlation between the target parallelism and the loading
time of the state.

6 Discussion and future work

We have worked on the problem of autoscaling Flink applications to adapt
to the current workload. We have built and described a scaling architecture
based on Kubernetes and its operator pattern.

We have focused on Flink jobs with inputs from Kafka, and detailed a sim-
ple scaling policy based on relative changes to the Kafka consumer lag, as well
as the idle rate of the tasks in the job. The policy is implemented on a Hor-
izontal Pod Autoscaler with custom metrics. We have described this scaling
architecture in detail. It can be used to implement different policies with min-
imal modifications. For more complex setups, the Horizontal Pod Autoscaler
may be replaced with a custom controller that implements an advanced scaling
algorithm.
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Figure 5: The average of the 6 measurements for maximum and average load
times.

We have investigated the factors that affect the downtime caused by the
scaling operation. Due to the steps of the scaling, the processing latencies of
records may greatly increase during and after the scaling, as there is some
downtime when there are no records being processed.

We have found that there is a linear correlation between the state size and
the duration of savepointing to a persistent storage, excluding the time spent
aligning the checkpoint barriers. While this is done asynchronously, it causes a
delay between when the scaling is triggered and the beginning of the downtime.

Our measurements showed that there is a large variance in the total down-
time caused by the scaling operation. We were not able to establish the effect
of state size or target parallelism at this point. The time it takes for Kuber-
netes to reconcile the number of necessary pods, pull the images and start the
Flink processes takes up a large portion of the total duration.

This means that with this setup there is a lower bound to the maximum
latencies and the downtime. Therefore it is not possible to give guarantees
that every record will be processed with a low latency, the SLA has to allow
for occasional downtimes on the scale of a few minutes, if the application uses
autoscaling.
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In our measurements, we have tried to break down the factors that influence
the job’s restarting time. When restarting from a savepoint, portions of the
state are loaded by the subtasks from the persistent storage. The duration of
this loading is one of the factors that affect the total downtime. We have found
that the state size is linearly correlated with this duration. We have not found
a correlation between the parallelism of the restarted job and the maximum
or the average load time of its subtasks.

Our described policy may serve as a basis for designing a more advanced
autoscaling setup. When the policy must respect an SLA, the scaling downtime
is a factor to take into consideration. A longer restart time means that the job
will accrue a larger lag during the scaling operation. Thus, it might violate
the SLA for a longer period. It might make sense to overprovision by a larger
factor to account for this and make the job catch up quicker.

In future work, it may be worthwhile to investigate how to incorporate
our results about the effects of state size to the policy. If we can calculate
the scaling downtime based on state size, it can be approximated how much
additional lag the restart will cause, and how much the total lag will be. Based
on this, we may calculate an appropriate scaling factor that allows the job to
catch up (to decrease the lag below a threshold) within the time allowed by
the SLA.

With a good autoscaling architecture and policy, long-running Flink jobs will
be able to keep up with changing workloads while utilizing resources effectively.
Our contributions serve as a basis towards building such an architecture and
designing an optimal policy.
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