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Abstract. This paper is based on research results achieved by a col-
laboration between Ericsson Hungary Ltd. and the Large Scale Testing
Research Lab of Eötvös Loránd University, Budapest. We present de-
sign issues and empirical observations on extending an existing industrial
toolset with a new intermediate language1.

Context: The industry partner’s toolset is using C/C++ as an inter-
mediate language, providing good execution performance, but “somewhat
long” build times, offering a sub-optimal experience for users.

Objective: In cooperation with our industry partner our task was to
perform an experiment with Java as a different intermediate language
and evaluate results, to see if this could improve build times.
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1An intermediate language is a language which the input program is translated to, by
using the already existing compilation toolchain, reaching the executable state.
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Method: We extended the mentioned toolset to use Java as an inter-
mediate language.

Results: Our measurements show that using Java as an intermediate
language improves build times significantly. We also found that, while
the runtime performance of C/C++ is better in some situations, Java,
at least in our testing scenarios, can be a viable alternative to improve
developer productivity.

Our contribution is unique in the sense that both ways of building
and execution can use the same source code as input, written in the same
language, generate intermediate codes with the same high-level structure,
compile into executables that are configured using the same files, run on
the same machine, show the same behaviour and generate the same logs.

Conclusions: We created an alternative build pipeline that might en-
hance the productivity of our industry partner’s test developers by re-
ducing the length of builds during their daily work.

1 Introduction

Nowadays, the usage of software – developed by 11 million professional soft-
ware developers ([4]) – belongs to the everyday life of our society. Software
helps in navigating to destinations, communicating with other people, driving
the production, distribution and consumption of energy resources. Software
drives companies, trades on the markets, takes care of people‘s health. In or-
der to support the growing demand for assuring quality ETSI2 designed the
TTCN-33 ([16]) standardised notation specifically for testing. TTCN-3 is im-
portant in many industrial domains. It is used for testing telecommunication
systems ([13, 14]), IoT4 systems ([45]), ITS5 systems ([15, 34]), oneM2M sys-
tems ([25]), security in the industry ([3]), smart grids ([35]), etc.

As the products to be tested grow, so did their test systems written in
TTCN-3, growing to millions of lines of code in size ([5]), having complex ar-
chitectures ([36, 39]), showing code quality patterns ([27, 28, 37]) and evolution
trends ([38]) very similar to those present in other programming languages.
The size and complexity of these huge test systems lead to long lasting build
and development iterations (also seen for various projects ([23]) using other
programming languages). At our industry partner in a full build scenario –
Figure 1(a) – building some of these large-scale test systems could require

2European Telecommunications Standards Institute
3Test and Test Control Notation 3
4Internet of Things
5Intelligent Transportation Systems
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approximately 20 minutes from zero even on server-grade, 28 core machines
allocated for such tasks only. In an incremental, iterative scenario – Figure
1(b) – even if every developer worked on such a dedicated server, it would
still take a few minutes to check the effect of a code change. Clearly, neither
scenario means “fast feedback” for the developers and allocating a separate
build server for each developer is not cost-efficient.

Sources Binary Result

Build Execution

(a)

Binary

Result

BuildExecution

New Source 
version

Modification

(b)

Figure 1: Building from source code. In the full build scenario 1(a) the full code
base is built from zero so that the developer is able to execute the produced
binary to see how it works. In the incremental build scenario 1(b) developers
perform some modifications to the code, re-build the binary (incrementally, us-
ing the already built parts), execute the produced binary to see how it works
and based on the result produce further modifications to the source starting
the loop again. The length of these loops (build and execution time together)
highly impact the development speed. Please note that applying a Continu-
ous Integration machinery the full build can also be a loop, determining how
fast/often developers can get feedback on their changes.

In this paper we present how a build process was created for our industry
partner’s tool that uses Java as the intermediate language. This new process
is based on the existing one that used C/C++. We were tasked by our indus-
try partner for performing and experimenting on the effects of adding a new
intermediate language to our industry partner’s toolset. We found that our
solution is a good way to support the process of building large-scale TTCN-3
test systems by enabling the developers to get faster feedback after a code
change.

Some of the reasons why our industry partner (at around 2000 as shown in
[40]) chooses to create a build process that uses C/C++ as an intermediate
language:
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� TTCN-3 defines itself to be a language operating on an abstract level,
creating abstract test suites, offering standardised mapping of its runtime
([12]) and control ([17]) interfaces to Java, ANSI C, C++6, C#.

� Translating from TTCN-3 to C/C++ and lets platform dependent C/C++
compilers generate the binary, reduces development cost by supporting
several platforms (operating system) handled by the C/C++ compilers.

� In case of a new C/C++ compiler version, used in the build pipeline on
a platform, improves its code optimisation mechanisms (as part of the
build process) then users of our industry partner’s tool will also benefit
from it on that platform.

� Translating from TTCN-3 to C/C++ not just offers high execution
speeds, but as the code generated is statically typed, the type correctness
of the operations is checked by the C/C++ compiler as well.

While for the purpose of the experiment presented in this article Java is
just another programming language, in practice, our industry partner chooses
Java for its added benefits:

� As the part of the toolset running on Eclipse was already written in
Java (syntax and semantic analysis, code quality checking, refactoring,
architecture visualisation), generating Java code keeps their systems con-
sistent, and builds on already existing expertise.

� Eclipse users have access to a free and mature Java Development En-
vironment that can be used to compile the generated Java code to an
executable format, supports users in executing these projects, offers ex-
tensive support for developing code (for example developing test ports),
etc...

� Opposed to C/C++ codes, that require to build separate binaries for the
different operating systems, Java is running on virtual machines available
on most platforms, and only one build is needed during the release, and
CI procedures to support those systems (and maybe even ones not yet
supported) automatically.

Our contribution is unique in the sense that with our extension there are
two different build and runtime environments (see Figure 2) available for the

6Our industry partner uses a proprietary mapping better suited for their specific needs
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developers. The input to both can be the same TTCN-3 source code. In order
to unburden the conversion of the already existing platform dependent code
parts, we kept the new runtime architecture, generated code and conversion
methods as close as possible to the original one. The execution of the built “bi-
naries” can be configured with exactly the same configuration files, performed
on the same machine, creates same log messages, and in parallel mode, con-
nects to and is directed by the same main controller via the same internal
protocols. This puts us in the position of being able to study the effects of
both environments on the development of the same user product.

TTCN3 code

Executable

Log file

Executable

Execution Java code

Titan Runtime
libary (Java)

C/C++ code

Titan Runtime
libary (C/C++)

Java compiler

C/C++ compiler

Titan
Build

{XOR}

Figure 2: The figure presents the relationship of the 2 build and runtime envi-
ronments. The input is the same for both the Java and C/C++ build pipeline
and the execution of the binaries produce the same log files. The runtime li-
braries are the implementation of the base types, additional functions, etc. of
the TTCN-3 language.

Our findings indicate that while C/C++ still might have performance ad-
vantages over Java in some situations, Java enables faster development itera-
tions, and at least in our case, provides acceptable execution performance.

This paper is organised as follows. In Section 2 we present earlier work
related to our subject. Section 3 presents our design and Section 4 some general
implementation details. Section 5 shows our measurements and comparisons
on build times and execution performance on both the C/C++ and Java sides.
Section 6 deals with the limitations and Section 7 deals with the validity of
our results. Finally, Section 8 summarises our findings.

In Section A in the Appendix we provide a short introduction to TTCN-3
and in Section B we show more details to our measurements.
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2 Related Work

The examined toolset, Titan7, has actively been developed and used in the last
20 years. During this time it has already gone through the usual steps of build
time improvements: optimisation, experimenting with Continuous Integration
configurations, better hardware, incremental build support, caching, etc. Our
industry partner’s experience showed that in the case of Titan’s build process
the full length of the compilation mostly came from using C/C++ as the
intermediate language (in the projects shown in sections 5.2 and 5.5 this is
measured to be approx. 96-97%). In order to improve the build process our
university laboratory were asked to perform an experiment for compiling to a
different intermediate language and for creating an alternative build process
for the users of our industry partner’s tool.

Although it could be said that we had to create a cross-compiler translating
from TTCN-3 to Java and the runtime library it links to, this is only a part of
the build process that creates value for the users. The users, in this case, write
automated tests and execute them. From their point of view all of the oper-
ations required to make their tests run are “necessary technical limitations”
that should be done in the background as fast as possible, as it engrosses time
from the productive work. Also the term “cross-compilation” might induce
misunderstandings: In the everyday usage of the term, a cross-compiler is a
compiler that is compiling to a different hardware/software architecture that
is not available, or does not support direct compilation on itself (like embed-
ded devices). Compared to this, our solution takes the same input source code
and creates an output executable that will be executed on the same machine
(see figure 2). As such, we also find it better to look at our work as creating
an alternative side of the toolset (instead of cross-compilation) as that better
captures the scope and goal of the work.

When we tried to elicit information on the build time of different program-
ming languages, we found that plenty of people engage in rather unhealthy
discourses on how one programming language is “better” than the other, with-
out any measurements for practical use cases. The general internet community
does not seem to have easily available and thorough information about that.
There also seems to be little academic interest on this topic. Maybe this is
coming from the lack of deep connection between industry and academia.
Maybe it is hard to find funding to run a 3 year-long experiment purely on

7https://projects.eclipse.org/projects/tools.titan
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the academic side to reach functional equivalence in the implementation, while
keeping industrial level code quality and coding practices.

At the same time long compilation times seem to be a widespread problem.
While studying GitHub repositories of Java and Ruby projects Ghaleb et
al. found ([23]), that 40% of the builds lasted more than 30 minutes. They
suggest that developers should properly configure their Continuous Integration
systems and use tools to identify cacheable spots. Others, like Abdalkareem
et al. [1], tried to combat long-running builds by trying to identify changes for
which the CI build might be skipped. While their results might make it possible
to skip on average about 5% of the CI builds, in the iterative working scenarios
we are investigating, this would still mean too many, too long-running builds,
that hold back the productivity of the developers.

Reinholtz predicted ([33]) that Java not only can, but also will have better
general performance than C++. He reasoned that Java can compile and re-
compile the program as it executes and has access to runtime information not
available to a traditional C++ compiler allowing to achieve better execution
performance. Our measurements show that C++ still has an edge during the
initial executions, however, for longer executions, Java can reach a measurably
better performance in some situations.

Although they directly migrated a software from COBOL to Java, the clos-
est to our task we could find was the experience of De Marco et al. ([8]). They
explained that an earlier attempt at redeveloping the same application from
scratch has failed. So they choose to migrate the application to a new plat-
form and programming language using code and data translation approaches.
They reported delivering an application functionally equivalent to the origi-
nal and provided some useful remarks: (1) the new Java application still had
to follow COBOL idioms and mainframe concepts, (2) they observed perfor-
mance bottlenecks during the conversion, and (3) mentioned that even with
the translation they needed to develop deep application understanding.

Batyuk et al. found ([6]) that native C applications running on the Linux
layer of Android can be up to 30 times faster than identical Java applications
running on the Java Virtual Machine of Android. For their measurement they
sorted arrays of random integers with different sorting algorithms. Although
this can be a way for performance measurement it is not something most
people use their phones for.

Some researchers have already observed that even if Java is not always
“better” than C++, it has other features which might make it as a reasonable
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choice. Amedro et al. ([2] compared the performance of a Fortran + MPI8 and
a Java implementation of the NPBs9. They found that “the overhead of Java is
now acceptable when performing computationally intensive tasks”, but they
also found that (in 2008) Java had scalability problems in communication-
intensive benchmarks.

Gherardi et al. found ([24]) that using the server compiler option, Java was
only 1.09 to 1.91 times slower in their tests aiming at robotics-related scenarios.
They concluded that for their use cases, also taking into account the additional
benefits offered by the language, “Java can be considered a valid alternative
to C++”.

Taboada et al. analysed ([41]) the applicability of Java for High-Performance
Computing. They also started with the assumption that Java lacks thorough
evaluation on its performance, therefore they provided their implementation.
They concluded that Java may achieve similar performance to natively com-
piled languages. Their most favourite features of the language (platform in-
dependence, portability, type safety, etc.) seem to them reasonable for the
trade-off in the performance overhead.

Cook found ([7]) that a Java implementation of OpenMP10 can be faster
than a C implementation. They hypothesised that maybe the GCC implemen-
tation of OpenMP had deficiencies.

Nanz and Furia analysed ([31]) programs from the Rosetta Wiki, a site that
collects solutions to programming tasks, implemented in various programming
languages. This repository allowed them to compare several solutions, written
in different programming languages, to the same programming tasks. Using
statistical analysis (p-values, effect sizes) they found that “C is the king on
computing-intensive workloads”, but in the case of “everyday” workloads “lan-
guages may be able to compete successfully regardless of their programming
paradigm”. Later Furia et al. reanalysed ([21]) the same data with Bayesian
techniques allowing them to draw more detailed conclusions.

While their works ([31, 21]) are consistent for their purposes, from our
point of view their performance measurement had a bias for languages that
compile into machine code: a) the compilation times were not measured/dis-
closed, which effectively gives an edge to pre-compiled languages over Just-
In-time languages; b) as each execution was a standalone execution, this still
might have penalised the Just-In-Time compiled languages where optimisa-
tions might only happen after a code part was executed several times (to have

8Message Passing Interface
9Numerical Aerodynamic Simulation Parallel Benchmarks

10http://www.openmp.org



142 I. I. Farkas, K. Szabados, A. Kovács

profiling information for the optimisation). This way, pre-compiled languages
could spend as much time as they wish on compilation and code optimisation
at no cost in this setup, while Just-In-Time compiled languages might have
been penalised for it if this starts during execution (because their compilation
happens during execution), or have optimisations effectively disabled in some
cases.

The papers described above presented some advantageous features of Java
over C++, and in special cases showed that they have similar runtime perfor-
mance. However, we could not find any recent academic studies which would
present us the experiments on full build and execution times.

While working on this article it came to our attention that some hardware
testing youtube channels like Gamers Nexus ([29]) started to publish code
compilation test results for their hardware tests, in order to be able to measure
the performance differences in massively multi-core modern CPUs. Their work
offers useful, publicly available and detailed information for developers on what
hardware to buy as their development equipment to improve their productivity.
At the same time, by the very nature of their tests (building the same code
with the same build system on several different CPUs), they will miss the
opportunities presented in this article (where we reduce the build time on
the same hardware, by using a different intermediate language, to reach a
functionally equivalent executable).

3 Design

In this section we go into the design of our solution. We introduce the general
context in which the design had to fit in. We explain the general design rules
that we had to follow to be able to handle the long-lasting development process.

We don’t detail the mapping of TTCN-3 elements to C/C++ or Java for
two reasons: 1) as we tried to follow the mapping already existing on the C
side, we dare claim as original ideas/observation only those cases where we
had to differ in some way, 2) to save space in this article, as the mapping of
TTCN-3 elements, runtime elements and API are already described in detail
in the reference guide of the C side ([11]) and the reference guide of the Java
side ([10]). We also made an example package available ([20]) containing a
”Hello World” and some simple types in TTCN-3, together with the C/C++
and Java codes they compile into.



Improving productivity by changing the intermediate language 143

3.1 Context

To the best of our knowledge, at present TTCN-3 is the only internationally
standardised notation designed specifically for testing which is also used fre-
quently in the industry. Originally, Titan was able to translate TTCN-3 using
C/C++ as the intermediate language ([40]). We were tasked to extend the
part of Titan that runs on Eclipse to be able to generate Java code and write
the necessary runtime libraries. As the examined tool stands behind many
applications our solution might have a high impact, and at the same time, is
also limited in how far we can drift from the current setup incentivising us to
keep the architecture as close as possible to the original one.

Compared to De Marco et al. ([8]), we already had a deep understanding of
the behaviour of the already existing code. Our team had a profound experi-
ence with Titan, either being its system architect, or being the member of the
Large Scale Testing Research Lab.

Almost all of the needed tests had already been available for us before
starting the development. Titan uses TTCN-3 code to test how well it can
build and execute TTCN-3 code. As the new extension had to support the
same input language, resulting in the same behaviour and output, and needed
to conform to the same tests, our industry partner selected a set of their
already existing tests to test our extension. We had to be able to successfully
build and execute these tests, generate the same runtime logs during execution
to show that the result of our experiment can be functionally equivalent to
the existing solution.

We would like to highlight that we consider functionally equivalent the
C/C++ and Java side if the logs, of the executions of the same tests, are
the same since the logs contain detailed information together with the result
(none, pass, inconc, fail, error) of the test cases. Keeping the architecture and
the Java implementation as close as possible to the C/C++ architecture and
implementation also contributed to guarantee this functional equivalence.

3.2 General design approach

It was clear from the beginning, that this experiment was going to take years,
so we had to establish some general design rules that would govern our work
and accept that certain limitations were reasonable to keep the timeframe.

Instead of inventing a new concept, we decided to stick to the already exist-
ing build and runtime structures. The following design decisions were made:
(1) maximize the speed of work, (2) minimize the risk of running into major
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blocking issues, (3) provide the users of our industry partner with the option
to choose between tools that are as much as possible identical in their func-
tionality, (4) minimize the cost of converting the already existing platform
dependent code (testports and external functions). We also decided to leave
possible Java-specific optimisations (that were not necessary to provide the
same functionality) for later.

3.3 Performance optimisation shifted to the end

It is important to understand that when building a compiler, most of the
infrastructure must be in place and language support must be implemented,
before any kind of relevant performance measurement, needed for optimisation,
can be done. For example:

� The concept of the compiled code, the runtime libraries and how they
relate to each other must exist.

� The compiler needs to be able to generate the classes that represent the
TTCN-3 modules.

� The compiler must also be able to generate code for functions and func-
tion calls.

� The runtime must have a decent implementation of the classes repre-
senting the used types, so that they could be used in the generated code.

� The compiler must be able to generate code for variables of these types,
for their instantiation, for checking their values, etc...

� The compiler must also be able to support statements that represent
loops, assignments, variable definitions, etc...

Already, reaching the minimum level to do some performance measurement
(e.g. simple operation in a loop) requires substantial work, and this might still
not be indicative of the performance characteristics of the final tool, as that
will need to support much more features with possibly different structures.
Hence, as the first step, we decided to “just rewrite” the existing C/C++
code to a functionally equivalent Java code, and optimise it further only after
thorough testing.
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3.4 Handling long development timeframe

It took us 3 years to reach a stage where we could claim to have reached
functional equivalence on the tests we received from our industry partner. This
is of course not complete functional equivalence to the industrial tool, but a
transition point when our experiment can be turned into industrial product
to reach complete functional equivalence.

To make sure we are on the right track we used parts of the tests we received
from our industrial partner. Throughout the development we have seen that
the build times were showing promising results (for the limited set of elements
supported at those times) and that we did not run into problems that could
have blocked this project.

To handle the challenge of not yet supported features and missing code
parts, we used FIXME and TODO tags in the compiler and Dynamic Testcase
Errors (DTE) in the runtime. Initially, we generated a syntactically erroneous
FIXME string into the code for every statement, type and definition telling
what is missing. Also, functions in the runtime libraries reported DTE when
executed. Putting them together:

1. When a new branch was implemented in the code generator or the run-
time, the FIXME tag was moved into the still missing branch. In this
way, we could effectively reduce the scope of the FIXME tags and allow
testing the executable paths.

2. When a feature was first implemented in the compiler to generate valid
code, the library function still reported a DTE during execution reducing
the scope of the FIXME tag effectively.

3. When a design element for a type, statement or a feature was fully
implemented, all tests had to be run to pass.

This strategy enabled us precise tracking of what was still missing, since those
tests didn’t compile or run into errors.

The TODO tags were used similarly as the FIXME tags, marking improve-
ment ideas that will be implemented later.

4 Implementation

In this section we go into the technical implementation details of which fea-
tures/concepts of the original C/C++ conversion could be reused, and which
needed to be done differently in Java to succeed. Finally, we show a way
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how a compiler in an IDE might offer better performance than a traditional
command-line compiler.

4.1 Concepts that could be reused from the C/C++ side

As we tried to stay as close to the original architecture as possible, there were
several points/concepts that could be reused on the Java side without any
problems.

� On the C side, each module was generated as a separate .hh and .cc

file with a name generated from the module’s name. The Java side kept
the concept, generating a separate .java file from each module, using
the same name conversion procedure.

� On both the C and Java sides non-synonym types were generated as
a class representing the value version of the type and a class (with
template postfix in its name) representing the template version of the

type.

� The runtime libraries of Titan on both sides contained the implemen-
tation of the same built-in types, runtime functionalities and additional
functions.

� The implementation of each type in the runtime library of Titan on both
sides followed the same abstract logic, had similar abstract interfaces,
access patterns, etc...

4.2 Concepts of the C side that needed to be adapted

While many of the concepts could be reused, we had to make some changes.

� In the generated .hh and .cc files of the modules the code was located
in a namespace generated from the module’s name. On the Java side, we
generated a class from each module, and the definitions of the module
would be members and static nested classes of this class.

� Synonym types were mapped on the C side onto typedef -s. On the Java
side we either used the referenced type’s name instead of the new type’s
in the generated code or generated new classes to extend the referenced
ones (if the user requested it or additional properties made it necessary).
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� While the runtime libraries of Titan contained the same abstract con-
tents on both sides, there were some minor differences: all code had to
be placed into a package, the additional functions into a class of their
own (on the C side they were outside namespaces), etc...

� While the implementations of each type in the runtime library of Titan
on both sides were similar on an abstract level, in the actual implemen-
tations they differed slightly: Operator overloadings from the C side were
translated as functions on the Java side (operator[] → get at(),

operator== → operator equals(), etc... ). Also, const and non-const
access operators are important in the runtime, so they have been mapped
to functions following the naming convention get() / const get(),
get at() / const get at(), etc...

� On the C side each TTCN-3 import statement was translated to be a
C/C++ include statement. As this statement is transitive in C/C++,
it automatically ensures that all needed types are present. However, im-
ports are not recursive in Java. As such, we decided not to generate code
for TTCN-3 import statements, but whenever the code generator found
that it needed to use a definition that was not defined in the TTCN-
3 module (we are currently generating code for) it would generate the
necessary Java import instead for the class that represents the mod-
ule of that definition and generate the “usage” prefix with the name
of its encompassing class (that represents the module it is located in).
Please note, that this way the dependency hierarchy in the generated
Java code can be different from that present in the generated C code.
When the code compiled does not have unnecessary imports, all directly
used modules will be referenced in both generated codes.

� In the generated code the C side used implicit type conversions11 heavily.
In the Java generated code, we had to use two different methods: (1) in
the general case we generated the type conversions as static functions, or
calls to constructors, or (2) we create several versions of the functions in
the runtime library with both native and generated/runtime represented
types, allowing to save the costs of the conversion.

� The Java side had a unique challenge not present on the C side. Nested
classes in the .java files are translated into separate .class files. On MS-

11E.g. assignments between different types when the receiving type has a constructor with
a single parameter of the type to be assigned to it or the assigning type has an implicit cast
operator to the target type.
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Windows however, where the file system is not case sensitive by default,
this created a problem when the names of two or more embedded classes
differ only in small/capital letters, as the file system will not allow gener-
ating the class files properly. To solve this problem an extra translation
step checking the names of TTCN-3 types in the modules, before code
generation, and the problematic names were postfixed with the starting
offset of the definition (to make them unique). As this might create in-
conveniences for the users accessing these definitions from Java, a code
smell checker was implemented in Titanium12 that warns the user dur-
ing semantic checking about similar type definition names in the same
module.

� While C/C++ compilers can choose to ignore unreachable codes (and
so it was also allowed in TTCN-3 in Titan), this is a semantic error in
Java. Since we already had a code smell checker for such situations, we
decided that this issue can be fixed best by the users: they can remove
(the already reported) unnecessary statements from the TTCN-3 code.

� On the C side, the internal representation of string types used reference
counting. This enabled efficient TTCN-3 assignment operations since the
left-hand side could be set to reference the same internal structure used
on the right-hand side (for example unsigned char array for hexstrings)
and delay the actual copy till the variable of a string type needs to be
modified and its internal structure has a reference count > 1. When we
implemented this feature on the Java side we did not measure any sig-
nificant performance benefit (outside of artificial use-cases) and decided
to leave it out to keep the code as simple as possible.

� On the C side, static values of string types were generated into the code
only once, as static objects, that are unique, initialised at startup time
and only referenced during execution. On the Java side, each occurrence
of such a string created a new object in the code. Once implemented, such
an optimisation should improve the runtime speed of the Java generated
code.

� The internal representation of some types on the C side used unsigned

char array to store the elements (for example, hexstring, octetstring).
As Java does not support such an unsigned type we had to use other

12The code quality analyser of Titan for checking for code smells, measuring code metrics
and having support for extracting and visualizing architecture.
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signed types, for example byte arrays instead. This also meant using
additional code (for example using & 0xFF to make sure the value was
understood correctly as an unsigned value) in certain operations.

� Java also has the limitation that functions cannot contain more than
65535 bytes of code ([43]). We run into this in two situations: (1) Some
of the functions generated for a TTCN-3 union type with more than
approx. 1670 alternative fields (in which case we had to generate helper
functions each of which could handle 200 alternatives), or (2) we also
ran into a 2.800+ lines long TTCN-3 function (where we had to ask the
users to partition it into smaller parts as we could not find an easy way
to automatically generate helper functions to it so far).

� When a new PTC13 was created on a HC14 the C side does a fork, both
resulting in a parallel process for the new PTC and also copying the
memory contents15. Java does not support this behaviour, so we decided
to use threads instead. This way, while every PTC was a new process
on the C side, they were new threads on the Java side. Plus, every
static variable inside the runtime library on the C side was mapped to
be a thread-local variable on the Java side. Thus, we do not need to
start a new JVM and configure it for every PTC created, as the C side
algorithms had already been designed to run in their own process, and
the TTCN-3 language also does not allow direct access between two
PTCs. This introduced minor slowdowns during access. As thread-local
variables are currently implemented inside the JVM using map data
structures with the threads as keys, accessing the value that should be
seen in the current thread has the overhead of an extra data access.

For a detailed description of the mapping of TTCN-3 elements, runtime
elements and API turn to the reference guide of the C side ([11]) and the
reference guide of the Java side ([10]). To demonstrate the mappings we made a
short example package available ([20]). This package contains a ”Hello World”
module and some simple types in TTCN-3, together with the C/C++ and Java
codes they compile into, to illustrate the mappings between these language
elements. For a more complete example turn to the regression tests ([19]) we

13Parallel Test Components are TTCN-3 concept for components created by the Main
Test Component and running in parallel to each other.

14Host Controllers are instances of the executable test program.
15Actual implementations might use a copy-on-write solutions for performance.
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used for our measurements, which can also be used to check the mappings of
all supported language elements.

4.3 The benefits of being an IDE

In this subsection, we show one more element of our work, that goes beyond
simple cross-compilation, to improve the performance of the build process. As
the Java side was built into an IDE, that was able to track changes on a fine
grain level to optimise semantic checking, we could use this information to
improve the build times even before the compilation to Java happens.

On both the C and the Java sides the codes were generated on a per-
module base. That is, first the code generator compiled the string char*

and StringBuilder that represents the module in the target language (called
S further), then compared it to the content of the already existing file. The
string S was only written out if the target file did not exist, or had a dif-
ferent content. The mentioned process created a potentially large saving in
compilation time: since most of the TTCN-3 modules do not change from one
compilation to the next, their generated code will also not change, not even
be touched. During the build process the C/C++ and Java compilers might
notice that their input file has not been changed, and skip its compilation. It
can be a large improvement, as comparing the contents of strings and files is
negligible compared to compiling the file again (in larger systems the generated
code can be several hundreds of thousands or millions of lines of code).

On the Java side, the compilation process could further be improved since
it was part of the TTCN-3 IDE of Titan. As presented in the work of Oláh
([32]), the Designer part of Titan could analyze the code of TTCN-3 projects
incrementally. Once the project was analyzed, and when the user edited some-
thing, the IDE was able to discover easily (and on a fine grain) the code parts
whose status might have changed (being correct or erroneous in some way, or
referring to a different target, etc...) and used this information to minimize
the amount of code whose semantic information needed to be re-checked.

There is no need to generate the string S for modules which had already
been compiled and their status has not been changed. Adding this technique
(further referred to as IDE mode) to the new compiler, it had a substantial
effect on the speed characteristics of compilation: as most daily changes can
be reasonably assumed to affect the status of only a few code parts, the (same)
file overwriting process can be saved for most of the dependent modules. For
example, while a full compilation might have compiled all code, changing the
signature of a function required recompiling only that module and the modules
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from where that function is called directly. While a change inside a function
only required compiling the module it is located in.

Please note that while in this article we analyse this feature as something
that can be turned on/off, in the product it will be always active.

5 Performance measurements

In the first part of this section we describe the input on which we performed
the measurements together with the testing machines. In the second and third
part, we present the build and execution performance. In the last part, we
show the information we have on the scalability of our implementation.

5.1 Performance measurement environment

To measure and compare the performance of the C and Java sides we used the
subset of the regression tests of Titan provided to us by our industry partner
([19]). These tests included:

� Tests for handling the values of all

– Base types (boolean, integer, float, objid, bitstring, hexstring,
octetstring, charstring, universal charstring);

– Complex types (records, sets, record ofs, set ofs, enumerations,
unions, the anytype type).

� Tests for template matching for all base types and complex types.

� Tests for basic statements.

� Two ASN.1 modules and two TTCN-3 modules that import them (to
test importing from ASN.1).

� Tests for the predefined functions of TTCN-3.

� Tests for timers within testcases and used as a testcase timer to limit
their execution duration.

� Tests for the all from language construct (for its special handling of
values).

� Tests for the “RAW” encoding supported by the Java code generator.
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We note that although the verdict tests were excluded from our measurements,
they could also be compiled and executed. The reason was that when test
verdicts other than pass are reported, the replication studies can be confusing.

Altogether 90 source files were used in the measurement of compilation
and execution speed: 88 TTCN-3 files and 2 ASN.1 files. The package also
contained configuration files, set to execute all control parts in the modules at
a given amount of times. This package can be downloaded from [19].

From our point of view, these tests were input. Examining the output we
could conclude that the implementation was functionally equivalent with the
original compiler.

For the measurements, we used two different architectures (laptops).

1. Laptop 1 used for measurements was a HP EliteBook 840 G5, with
an Intel® Core� i5-8350U CPU, 16 GB RAM, using a SSD, running
Windows 10 and the 3.0.7-1 version of Cygwin ([44]), GCC 7.4.0, Eclipse
4.4.2, Java SDK 1.8.

2. Laptop 2 used for measurements was a Lenovo ideapad Y700, with an
Intel® Core� i7-6700HQ CPU, 8 GB RAM, using a HDD, running
Windows 10 and the 3.0.7-1 version of Cygwin, GCC 7.4.0, Eclipse 4.10.0,
Java SDK 1.8.

Laptop 1 was expected to be the target architecture at our industry partner,
Laptop 2 was used as a control platform to check our observations in a different
setup ([22]). We had to use a control platform to account for the potential
issues coming from Laptop 1 being a machine used at our industry partner.
Users (test automation developers in this case) have limited control over it
(the firewall software could not be stopped/deactivated/reconfigured for the
duration of measurements, operators might trigger minor refreshes remotely,
that would run in the background, etc.).

The source code used for the measurements is part of the ”CRL 113 200/6
R6A ( 6.6 pl0)” version of Titan ([46]), with the ”6.6.0” tag on github.

5.2 Build speed

To get a picture of the speed of the build processes for both the C and Java
sides we set up and measured 4 uses cases.

1. Full build. In order to measure the speed of a full build we cleaned all
generated files and ran the build process from scratch.
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2. Incremental build with minor change. In order to measure how the sys-
tem might perform in daily operations we also measured the build times
after a small change in an already built project. For this reason, we
changed in the 22nd line of the TboolOper.ttcn file the true value to
false and back. This modification triggered the re-generation of the
code for this module but did not re-generate code for any other mod-
ules. Also it made the “boolAssign” test report a fail verdict, but this
was not an issue for measuring the compilation time.

3. Incremental build with inserting/deleting a testcase. In this use case we
simulate a scenario when users write or delete a small testcase in a single
file resulting in only one incremental build after this operation. For this
purpose in the TboolOper.ttcn file we commented out the execution
call of the boolAssign testcase from the control part, deleted the code
of the testcase for one change and reverted this modification as another
change.

4. Incremental build, refactoring in 5 files at the same time. In this use
case we simulate a scenario, when users perform refactoring operations
that create changes in 5 files at the same time. For this, we extended the
TcharOper.ttcn, TbitstrOper.ttcn, ThexstrOper.ttcn, Toctetstr-
Oper.ttcn and TucharstrOper.ttcn files with a new testcase called
“dummy test()” having an empty body and using the search & replace
features of Eclipse we renamed it “dummy2 test” for one change and
reverted it for another.

Full builds are expected to happen rarely (as they take a long time), but
when developers wish to make sure that everything works from zero, they have
to do full builds and it gives an upper bound for our measurements.

Incremental builds are expected to happen more frequent in practice. In fact,
in Eclipse one of the default settings for builds is to “Build Automatically”.
That is, whenever a developer saves a file after a change, Eclipse starts an
incremental build in the background. For builds on the C side users had to
turn this off, as the duration of incremental builds was a lengthy and resource
intensive process. Based on the numbers we have measured for incremental
builds, on the Java side users should be able to leave this feature on and work
interactively in the environment.

As the extended tool was an IDE running on Eclipse (supporting both
C/C++ and Java code generation), we measured the compilation speed via
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the Eclipse’s interface16. This method allowed us measuring the entire build
duration, as the user would experience it. At the same time, it applied a com-
mon interface for both the build process generating the C/C++ code and the
build process generating the Java code.

Internally, the build on the Java side used the mechanisms provided by
Eclipse to build the generated Java files. Here we assumed that the process
used all available processing power for a fast compilation. We considered the
following settings as a form of configuration that might affect the build:

� The Eclipse in which the builds were done was launched with the “-
Xms5178m” and “-Xmx5178m” options. In this way we could minimise
the chance for garbage collections.

� Inside the Eclipse instance where the builds were done, we set the “Com-
piler compliance level” of the “JDK Compliance” options to 1.6 (compil-
ing for Java version 1.6), as that is the minimal version of Java supported
by the generated Java code.

On the C side, we used the processes and tools Titan offers for its users. The
“-O2” flag was used to control the optimisation used by g++, make was called
with “-j8” to enable parallel compilation, and inside the generated makefile
the following rule was used to call g++ to translate the generated .c and .cc
files into .o files17:

. cc . o . c . o :
g++ =c $ (CPPFLAGS) =Wall =O2 =o $@ $<

Where CPPFLAGS listed the files to be included from the runtime libraries
of Titan.

To do statistically rigorous performance evaluation ([22]) we measured 50

compilations for all scenarios.
We could make several observations from the results presented in Tables

1(a) and 1(b).
The full build (case 1) was measured to be much faster on the Java side than

on the C side, 14∗ faster on laptop 1 and 8∗ faster on laptop 2. Considering
case 2 from the table the Java side was 35∗ faster on Laptop 1 and 21∗ faster

16To run our plugins from source we already had “Eclipse application” style launch config-
urations set up. We selected the “build/invoke” and “debug” options for the measurements
on the launch configuration’s “Tracing” tab. This way, for every build invoked in the launched
Eclipse instance, we got debug logs on the duration of the build in the Eclipse instance the
source code was located in.

17Please note that these are the default and recommended settings of our industry partner



Improving productivity by changing the intermediate language 155

Tool case 1 case 2 case 3 case 4

C side
avg 153.40 34.51 35.15 35.20

min 150.25 29.06 33.44 32.63

max 159.49 41.64 37.60 36.99

Java side
avg 10.95 0.98 0.86 0.87

min 9.51 0.88 0.82 0.83

max 18.31 1.30 1.16 0.97

Java side + IDE
avg 0.15 0.18 0.34

min 0.08 0.15 0.31

max 0.24 0.22 0.39

(a) Laptop 1

Tool case 1 case 2 case 3 case 4

C side
avg 224.52 25.73 25.74 26.38

min 221.29 25.09 24.65 25.52

max 234.08 26.72 27.47 27.26

Java side
avg 28.12 1.23 1.29 1.64

min 26.43 1.09 1.18 1.59

max 29.94 1.52 1.44 1.74

Java side + IDE
avg 0.3 0.32 0.74

min 0.25 0.29 0.7

max 0.38 0.44 0.82

(b) Laptop 2

Table 1: Build speeds measured on Laptop 1 1(a) and Laptop 2 1(b) in seconds.
Case 1 is Full build, Case 2 is Incremental build with a minor change, Case 3
is Incremental build with inserting/deleting a testcase, Case 4 is Incremental
build with refactoring in 5 files at the same time

on Laptop 2. When the IDE mode was used, the speedup increased to 230∗
on Laptop 1 and 85∗ on Laptop 2.

The speedups were different, but were present on both laptops in all scenar-
ios used for measurements. It would be reasonable to assume that the HDD
in Laptop 2 might have created the overhead in both cases (access time and
read/write speed), compared to the SSD in Laptop 1.

Our observations shows that the effort for reducing the build time was suc-
cessful. We could also see how users benefit from the IDE mode: knowing what
the user has edited it is possible to calculate the set of code pieces needed for
the re-analysis.

In order to understand better the importance of the measurements it is
beneficial to look at the development activity from the viewpoint of the user
([26, 42]):

� 0.1 second is the limit where the user still feels the interface to be reacting
instantaneously.

� 0.1 − 1 second is a “stammer”, when the user’s flow of thought is not
interrupted, but the delay is noticeable. User’s do loose the feeling of
operating directly with the interface.
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� > 10 seconds is “disruption”, this is the limit of keeping the user’s atten-
tion focused. User’s might wish to do something else while the computer
is working, leading to even longer non-productive periods of time.

Based on the above classification we found that the user experience of builds
on the C side fall into the “disruption” category, on the Java side into the
“stammer” category, keeping user’s attention un-interrupted. In best case sce-
narios the user experience can even be instantaneous on the Java side.

5.2.1 Some interesting facts and observations

1. On the C side for this project, in full build, the translation from TTCN-3
to C/C++ files took approximately 6 seconds, the translation of C/C++
files into .o files approximately 132 seconds, linking the object files took
approximately 15 seconds. Altogether, approximately 96% of the build
on the C side was coming from using C/C++ as the intermediate lan-
guage.

2. On the Java side for this project, in full build, the translation from
TTCN-3 to Java files took approximately 1.2 seconds. Here, approxi-
mately 89% of the build on the Java side was coming from using Java
as the intermediate language.

Although we lack the necessary skills to analyse the internal procedures
done during build in GCC and Eclipse’s Java toolset, we can still offer some
intuitive reason for this difference in build speeds:

� In C/C++ the platform specifics of the target system has to be taken
into account during build time. In Java this is not done during build, as
the actual execution platform is only known during execution.

� In C/C++ all optimisations have to take place during build, before ex-
ecution. As Java is a Just In Time compiled language, most of the opti-
misation work happens during execution.

5.3 Execution speed

The execution speed of the generated C/C++ binary was measured on both
laptops in a Cygwin bash shell instance using the time command.

To measure the execution speed of the Java code, as it was executed from
within Eclipse, we had to extend the generated code of the main class used for
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single-mode execution Single main. The very first Java line to be encoun-
tered was long absoluteStart = System.nanoTime() (this was executed
before any test-related code) and the last line calculates the elapsed time as
(System.nanoTime - absoluteStart) * (1e-9) and outputs to the stan-
dard output (this was executed after all test-related code is properly termi-
nated).

To see how each side performed on a longer run we decided to run and
measure different amount of iterations of the same test set. A single iteration
means that in the configuration file each module’s control part was executed.
Each control part in a module executed the testcases in that module, resulting
in each testcase was executed exactly once. The 500 iteration means that we
had a configuration file which listed the contents of the single iteration 500

times. This was not a good simulation for complex tests running for days,
simulating complex network components and user, while sending millions of
messages per seconds, but the best option we had to understand how the Java
side we created might perform in such situations (the effects of Just In Time
compilation, garbage collection, whether we had memory leaks, etc...).

Since these tests also contained tests on how Titan was handling timers, we
decided to perform two different measurements. The “with timers” means that
we were executing the tests as they were. The “without timers” means that
the testcases testing timers were commented out from their module’s control
parts. More precisely, in the TcontrolTimer.ttcn and TlostTimer.ttcn files
we put in comment the content of the control part. This eliminated the part of
the execution that was not beneficial for performance testing and also reduced
the number of features to be tested. For each iteration size, both with and
without timers, we measured the execution time 50 times.

Performance measurements (see Figures 5 and 6 in the appendix) showed
similar results on both machines for high iteration counts, in the same mea-
surement modes. For low iteration counts Laptop 1 executed the C side code
and Laptop 2 the Java side code somewhat faster at identical settings (see
data in [18]).

Figures 3 and 4 (showing the per iteration times on Laptop 1 and 2) help
emphasise some interesting observations. In the first iteration, we could see
that the C side is usually faster in both measured ways. The C side also
had an approximately constant per iteration execution time for all iteration
scenarios. The Java side seemed to “warm-up” as the number of iterations
increased reaching a constant per iteration execution time after approximately
50 iterations. On Laptop 1, without timers, the iteration time (initially 2.37s)
decreased to approx. 0.42s on average which is 83% reduction. Java finished the
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(a) Laptop 1 (b) Laptop 2

Figure 3: Box & Whisker chart of the Per Iteration Execution times with
Timers.

(a) Laptop 1 (b) Laptop 2

Figure 4: Box & Whisker chart of the Per Iteration Execution times without
Timers.

500 iterations in 390 seconds which was 65% faster than the C side. On Laptop
1, the Java side was running faster than the C side from the 3rd iteration, on
Laptop 2 from already the second iteration.

We analysed our measurements with the statistical package R (see table
2). We applied t-tests (Welch two-sample) and Bayesian analysis (BESTmcmc
described in [30]). Both showed a clear difference between the C and Java
sides for the same iteration counts. BESTmcmc also showed how the C side
was faster in one iteration, but fell behind the Java side for iteration counts
larger than two for both laptops (see tables 2(a), 2(b)). For the 2-iteration
case there was a difference between Laptop 1 and Laptop 2: the Java side was
faster on Laptop 2 but slower on Laptop 1, compared to the C side.
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Measurement \ Iteration 1, 2 3 5 - 500

with timers
p < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

muDiff 0.0 100.0 100.0

without timer
p < 2.2e− 16 < 1.523e− 10 < 2.2e− 16

muDiff 0.0 100.0 100.0

(a) Laptop 1

Measurement \ Iteration 1 2 3 - 500

with timers
p < 2.2e− 16 < 2.2e− 16 < 2.2e− 16

muDiff 0.0 100.0 100.0

without timer
p < 2.2e− 16 < 2.756e− 14 < 2.2e− 16

muDiff 0.0 100.0 100.0

(b) Laptop 2

Table 2: t-test results on execution times (p value is reported by t.test in R
doing Welch Two Sample t-test, muDiff is the $>compval value of muDiff
reported by the summary of BESTmcmc result)

We note that, although so far we have only aimed at providing the necessary
functionality, not execution performance, according to our measurements our
tool might be also useful in long-running testing scenarios to improve the
runtime performance of tests.

Recall that both Java and C sides were built from the same TTCN-3 code,
had to parse the same configuration file, run on the same machine and gener-
ated the same amount of log files, so the measured difference in speed could
not be explained by a different workload on the abstraction level of executing
the testcases. However, while the static compilation of the C side might have
resulted in faster code loading-up, the Java side might have also needed to
start the JVM and/or perform the first iteration in interpreted mode (adding
the JIT compilation as an extra overhead) 18.

5.3.1 Some interesting facts and observations

1. We could see the largest standard deviation of the measured execution
times in case of the 1-iteration executions. In case of Laptop 1, the worst
1-iteration execution times of the C side were similar to the best Java
execution time for the same scenario.

2. In the case of 1-iteration on Laptop 2, there were no huge extremal
values. The deviation increased having multiple iterations compared to
Laptop 1 in case of “with timers” (Figure 3).

18One more technical difference was that the C side used flex+bison for parsing the con-
figuration files, the Java side ANTLRv4. The startup time could also be explained by the
different performance characteristics of LALR(1) parsing used by Bison and LL* used by
ANTLRv4, but as the input in our case was very simple, this was unlikely.
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3. We could see that the per iteration time on Laptop 2 was larger than on
Laptop 1 for the C side, however, on Java side, they were very close to
each other.

4. A 500-iteration long execution was executing 882, 500 testcases.

5. A 500-iteration long execution generated a log file of 1.7GB19.

6. The execution with timers was executing 1765, while the execution with-
out timers executed 1757 testcases.

While in our research we did not do a deep analysis of why we observed
such different performance curves we can still offer some intuitive reason that
can explain them:

� In C/C++ the optimisations happen during build time, the built exe-
cutable does not undergo changes during execution. As Java is a Just
In Time compiled language, the performance of the application can be
optimised during execution time, possibly leading to better performance
over time.

� Parallel hardware architectures might also play a role. As the software ar-
chitecture used by our industry partner is single threaded, on the C side
memory deallocation has to be done by the same thread doing the busi-
ness logic. In Java, even though the business logic is still single threaded,
garbage collection can happen at any time after a resource is no longer
in use delaying the cost of deallocation and the garbage collector itself
might run on a CPU core different from the business logic, eliminating
all work that CPU core would have to do to free up memory.

5.4 Build + Execution iterations

We have already presented our observations separately on the improvements in
build time and the execution speeds on our test project. It is also interesting
to take a look at these observations from the point of developer iterations,
where we are interested in how long a single build + execute iteration takes.
This is the duration developers need to wait from changing the source code,
to being able to analyse the effects of the change.

19This cost was present on both sides during the execution.
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For this we decided to check how long it would take for a build and execution
to last, for 4 different build scenarios20 and all iteration numbers measured so
far, by adding together the average build time of the given build type and the
average execution time of the given execution with a given iteration number,
presented in the Appendix in Table B.

Please note that these are only theoretical durations, the real world dura-
tions could be much bigger. In the case of the incremental build and single
iteration execution combination, on the Java side this operation is so fast (2, 49
seconds) that simply the act of moving the mouse pointer after invoking the
build to the toolbar of Eclipse to start the execution could substantially in-
crease it. At the other end of the spectrum, full build and 500 iterations on
the C side, we see approximately 53 minutes where the developer is bound to
start doing something else either leaving their computer, or slowing it down
with some other activities.

5.4.1 Some interesting facts and observations

1. For all build scenarios and iteration number combinations (and on both
laptops) we observe that the Java side performs better. Having the short-
est theoretical duration between a change by the developer and having
the execution results ready to be analysed.

2. In case of full builds and executions with timers the improvement is at
least approximately 140 seconds, increasing to approximately 535 sec-
onds for the largest iteration number on Laptop 1 (respectively 88% to
16% improvement).

3. In the case of incremental builds and executions with timers, the im-
provement is at least approximately 33 seconds, increasing to approx-
imately 424 seconds for the largest iteration number on Laptop 1 (re-
spectively 82% to 13% improvement).

5.5 Scaling up for larger projects

In order to see if our solution would scale up for larger projects we asked for
some help from our industry partner. They have provided us with another
large scale project and one of their system architects could spend a day on
providing us with some measurements on this project on a build server used by

20We leave out the incremental build on the Java side without the IDE mode, as the users
will not be able to turn off IDE mode.
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our industry partner. The aim in this exercise was purely to see if our solution
would be able to scale up. We disclose both our numbers and the numbers
we got from our industry partner, but note that at that point in time and
implementation completeness, this was not a core part of our observations,
only a look ahead. The 3 years of development was not enough for our group
to reach full functional equivalence and for many of these numbers, we had
to rely on the information given to us by our industry partner, where we had
little control on the way the measurements were done.

The project used had 1275 modules (1143 TTCN-3 and 132 ASN.1), 1.24
million LOC at the time of measurements21. Our Java code generator gener-
ated 930 MBs of .java files from it. Since it was a large codebase, this project
seemed to be appropriate to see if our method would work on large scale
projects. There were 2 issues unique to this measurement, that we could not
overcome for the amount of work needed:

1. At that time, our implemented compiler supported only the “RAW”
encoding, while the examined project on the C side used several others.
This means, that on the C side somewhat more code was generated.
Approx. 18.93% of the code was used to support the other encodings.

2. To compile the project, we created dummy implementations (empty
function bodies) of all required platform-dependent testports and exter-
nal functions (proper implementation would have required a solid back-
ground on protocols and a large amount of time). The creation was made
by hand and constitutes only a small amount of code compared to the
930MB generated codes. Hence, we didn’t expect them to greatly impact
the scaling of the build performance.

We performed 3 measurements for full build and 10 for incremental on Lap-
top 1, with the Java side only, as this project did not compile on Cygwin on
the C side due to missing libraries.

The full build of the project took approximately 741 seconds (see Table 3).
The time needed to incrementally re-build the project was approximately one
to five seconds, depending on how many Java files had to be re-generated for
the change. All 8 logical processors were heavily used during the builds.

To be able to compare build times of the C and Java sides of this project, a
system architect of our industry partner (Eduard Czimbalmos) was asked to
perform the measurements on one of their industrial build servers. The build

21More information is available on this project at [38, 39].
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Scenario build time

Laptop 1 full build 741.70

Laptop 1 incremental build (4 files are re-generated) 3.27

Laptop 1 incremental build (1 file is re-generated) 1.28

Table 3: Large industrial project build times on Laptop 1 (Java only, in sec-
onds)

server characteristics used for the measurements were: Intel® Xeon® E5-
2450v2 CPU @ 2.50Ghz, 64 GB RAM, running GCC version 4.8.5 (Ubuntu
4.8.5-4Ubuntu2) and Java HotSpot� 64-Bit VM (build 25.201-B09) in server
mode.

We received the numbers presented in Table 4 from our industry partner,
who also told us that they were measuring a typical working scenario and
there was no other task running on the build server during the measurements.
Please note as these measurements were not done by our group, we had no
direct control on the measurements and don’t have more detail about them.
These numbers should only be regarded as showing the possibility of scaling,
not as exact figures.

Scenario build time

Build Server full C build 1150

Build Server full Java build 640

Build Server incremental C build 61-130
Build Server incremental Java build 12

Table 4: Large industrial project build times on the Build Server (in seconds)

The full builds on the build server took 1150s on the C side and 640s on
the Java side (see Table 4). The incremental build took approximately 61-130
seconds on the C side and 12 seconds on the Java side.
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5.5.1 Some interesting facts and observations during the measure-
ments

1. During the C build all 28 cores were used to almost 100% for the whole
duration of the build (maximum or close to the maximum potential
parallelisation of build).

2. During the Java build for most of the build time 1-3 cores were used
and jumped to 4-8 cores only for a few seconds (as they could observe it
using the output of top command).

3. On this project, doing a full build, the translation from TTCN-3 to
C/C++ files took approx. 33 seconds, leaving 97% of the build on the
C side coming from using C/C++ as the intermediate language.

5.5.2 Consequences

(1) While the C side required a 28 core build server for the development
and build scenarios, the Java side might have made it possible to develop
this project on a laptop; (2) the full build time of the Java side was half, the
incremental build was 1/5th to 1/10th to the C side; (3) the scaling of the Java
build in terms of build duration seemed to break in the many-core situations,
as it was not able to take advantage of all cores to build faster; (4) at the
same time, from the resource usage point of view, the Java side had about
50 times more efficient resource usage. While the C side put the build server
under heavy load for approximately 20 minutes to build this project, using
Java it might have been possible for approximately 20-28 developers to work
on the same machine at the same time and still finish the full build in half the
time.

6 Limitations

This paper presents a work that was an experiment with limited scope. We had
a list of features not yet supported by our extension, compared to the industrial
tool, but they were not used in the examples provided by our industry partner.
It is also possible that there might be programming issues in the generated
Java code. The C side had been in production and use for about 20 years,
long enough for most issues to manifest. Although our extension was new, we
were able to show functional equivalence (as far as the tests provided by our
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industry partner go). This makes us confident to say that we don’t expect
issues resulting in larger architectural changes in our solution.

As a limitation, there might be problems with scaling. The Java class file
format is known to have some strict limitations ([43]) that might cause further
problems in the generated Java code for larger projects.

Due to the very specific context of our work, our results might not generalise
to other systems. Compiling from TTCN-3 to Java in itself might be a limited
context and measuring build times and execution times of test systems might
also not be a priority for other companies with smaller test systems.

We followed the approach presented by Georges et al. ([22]) to make our
performance evaluation statistically rigorous for the compilation and execution
measurements done on Laptop 1 and 2, but not for the build server as we had
limited and indirect access to it.

7 Threats to validity

During our measurements we had to turn on some debug printouts, which
might have added some overhead, that will not be present during the normal
usage of the tool.

We had limited control over Laptop 1, as it was used at our industry part-
ner (the firewall software could not be stopped/deactivated/reconfigured for
the duration of measurements, etc.). We tried to make sure that no resource
intensive operation was running in the background while performing our mea-
surements, but there is still a possibility of some background tasks specific to
our industry partner’s systems affecting our measurements in ways that might
not be present when reproducing this research elsewhere.

There is also a question of fairness in our measurements: we do not have
intimate understanding of the internal implementations of either the C/C++
compiler or the Java builder used. That is, in our experiments we tried to reach
the best possible performance on both sides. On the C side we used ”-O2” to
get optimised binaries and ”-j8” to use all processing power available in our
laptops. On the Java side, in Eclipse, we could not find such options, but we
made sure to give enough memory for the build process to minimise the need
for garbage collection.

Also at the time our work was accepted by our industrial partner we had
limited access to their internal test systems: information on how certain equip-
ment is being tested could raise potential security concerns.
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As we had no control over the measurements our industry partner did,
checking whether our solution is able to scale might not be perfectly valid
and reproducible. However, our industry partner used the information gained
from those measurements, and decided that our solution can be turned into
an industrial product, we believe that it was in their best interest to gain valid
and reliable information.

8 Summary

In this paper we presented our work and empirical observations on extending
an industrial compiler to support a new intermediate language.

We have shown how we created an alternative of the existing build proce-
dures of our industry partner by creating an extension that uses Java as the
intermediate language besides the already supported C/C++. We described
how much of the architecture could be kept to proceed fast and how we over-
came the difficulties coming from the differences of the languages.

Our contribution is unique in the sense that both the build and the execu-
tion used the same source code (as input) written in the same input language,
generated intermediate codes with the same abstract hierarchy, built into ex-
ecutables that were configured using the same files, performed the same be-
haviour on the same machine and generated the same logs. Evidenced by the
test files provided to us by our industry partner, selected from their regression
tests, to decide if our solution could be functionally equivalent to their existing
system.

Our measurements showed that using Java as an intermediate language
might improve build times significantly, providing users with better develop-
ment iteration times, that might lead to improved productivity. While C/C++
still has better performance in some situations, at least in longer testing sce-
narios, Java can be a viable alternative as an intermediate language.

In contrast to De Marco et al. ([8]), our development from scratch can be
considered a successful migration as we couldn’t identify any performance
bottleneck and is more maintainable since the knowledge was transferred by
programmers using Java idioms where it was possible without changing the
architecture. Our observations both supported and contradicted the findings
of Nanz and Furia ([31]) and Furia et al. ([21]). Our 1-iteration measurements
supported that the same input compiled to C/C++ could usually execute
faster compared to Java (although at the cost of much longer compilation).
But our measurements with larger iteration counts showed a reversing situ-
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ation, where compiling to Java might lead to executables that finish faster.
Adding the overhead of the build to the execution time (to measure build-
execute workflows) would, in our situation, lead to Java finishing earlier in all
investigated situations. As such in contrast to Taboada et al. ([41]), we found
that for us, Java was a good alternative also from a performance point of view.

Thanks to the help of our industry partner we could check (using one of
the largest test systems of our industry partner) that our method scaled up
well and kept its benefits, even on large scale test systems. This will enable
our industry partner to provide a unique solution for their customers. The
developers of these large industrial test systems will be able to use the Java-
based build system to work from an IDE with fast feedback cycles (eliminating
the negative effect on productivity coming from the C sides build times). At
the same time, they will also be able to build the same test systems using the
C/C++ based build system for situations where the Java-based executable
would not be able to provide the necessary runtime performance.

To support the reproduction of the results of this study all information
was made publicly available. The code of the toolset is part of the open-
source Titan ([9]) toolset (the Eclipse plugins), and the tests used for testing
compilation and execution speed are available at [19].

9 Further work

Even with so limited time we could reach a point where we can confidently
say that it is desirable to continue this work.

First of all, there were several features still missing from our solution, that
were present in Titan already. We hope they will be added by our industry
partner while turning our solution into an industrial product. So that their
users can enjoy the benefit of this research.

As described in section 3.2, the 3 years of development was only enough to
reach the level of functional equivalence our industry partner required from us.
As a follow-up research, it would be desirable to investigate opportunities for
performance optimisations in both the runtime and build time. For example:
we generated the Java files from TTCN-3 files sequentially. In theory, all of
these files could be generated at the same time, in parallel, leading to further
build time improvements.

This analysis could be extended to involve more and different hardware
into the research and go into more detail on how different hardware features
impact performance. It would also be interesting to see how different compiler
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versions (GCC, Java, etc...) perform on the same source codes in build time
and execution performance. For us, the target platforms we were aiming to
support were given by our industry partner.

It would be interesting to look into how to improve CPU utilisation on mas-
sively multi-core CPUs. According to our industry partner, the build on the
Java side did not seem to use all cores to provide maximum build performance.

It might also be a good idea to think of our solution as a platform for
further research. A side effect of our solution is that we are transforming large
scale industrial and standardised test codes, that are in active use, into a
large amount of Java code. This could allow researchers to experiment with
how different Java features and usage patterns impact both compilation and
runtime performance. Such an experiment would just need to change how our
solution translates TTCN-3 code into Java code to have a large amount of
source code, from complex and in use systems, for measurements.
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Appendices

A Short introduction to TTCN-3

TTCN-322 is a high level standardised language ([16]) designed for testing.
Mostly used for functional testing (conformance testing, function testing, in-
tegration, verification, end-to-end and network integration testing) and perfor-
mance testing. TTCN-3 can be used (1) to test reactive systems via: message
based communication, (2) API based and analog interfaces and systems.

The language is governed by a strict, internationally accepted specification.
Each language construct, allowed by the syntax and semantics of the standard,
has a well specified behaviour. Tests written in TTCN-3 can be transferred to
other vendor’s tools without modification. Some standards of reactive systems
(for example communication protocols) offer their specifications together with
a set of tests written in TTCN-3. This provides an easy and automated way
for tool vendors and users to check the conformance of the implementation.

TTCN-3 offers platform independent abstract data types (see listing 1).
There is no value range restriction for integers, no precision restriction for
floats, and no length restriction for string types. String types are differentiated
based on their contents (bitstring, hexstring, octetstring, charstring, universal
charstring). Creating new types is supported by building structured types with
fields (record, set) or by list of an element type (record of, set of). It is also
possible to create new types with restriction (for example length restriction on
strings). This rich type / data constructs can easily be extended by importing
other data types / schema (ASN.123, IDL24, XSD25 and JSON26) without need
for manual conversion.

The templates of TTCN-3 merge the notions of test data and test data
matching into one concept (see listing 2). This enables the specification of
expected responses in a concise way. Matching rules can be for example: sin-
gle value (“Budapest”), list of alternatives (“Monday”, “Tuesday”), range
(1 .. 5), ordered and unordered lists of values, sub- and supersets of un-
ordered values, string patterns (pattern”* chapter”), permutations of values.
When declaring templates for structured data types, these matching rules
can be declared for each field and element individually or for the whole tem-

22Test and Test Control Notation 3
23Abstract Syntax Notation One
24Interface Definition Language
25XML Schema Definition
26JavaScript Object Notation
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Listing 1: data types example

var boo lean v boo l ean := t rue ;
const i n t e g e r c i := 123456789101112131415;
const f l o a t c f 1 :=1E2 ;
const f l o a t c f 2 :=100 .0 ;
var b i t s t r i n g v b i t s := ’01101 ’B ;
var c h a r s t r i n g v char s :=”ABCD” ;
var hex s t r i ng v hex s := ’01A’H ;
var o c t e t s t r i n g v o c t s := ’0BF2 ’O;
var u n i v e r s a l c h a r s t r i n g v uchars := ”F” & char (0 , 0 , 0 , 65)

type record recordOper t record {
i n t e g e r x1 op t iona l ,
f l o a t x2 } ;

type record o f o c t e t s t r i n g r ecordOper t r eco f ;
type s e t r e co rdOper t s e t {

i n t e g e r x1 ,
f l o a t x2 op t i ona l } ;

type s e t o f c h a r s t r i n g r e co rdOpe r t s e t o f ;

type i n t e g e r t emp l a t e In t s u b t y p e ( 0 . . 1 4 5 7 6 6 4 ) ;
type record l ength (3 )

o f record l ength (3 )
o f record l ength (3 ) o f i n t e g e r threeD ;

Listing 2: templates example

template i n t e g e r t i := 123456789101112131415
var template f l o a t v t f := ( 1 . 0 . . 2 . 0 ) ;
template mycstr t mycs t r := pattern ”ab” & ”cd” ;

template t emp la t eChar s t r r ec t emp l a t eCha r s t r tL i s t :={
x1 :=”00AA” , // s p e c i f i c va lue
x2 :=(”01AA” , ”01AB” , ”11AC” ) , // va lue l i s t
x3 :=complement ( ”11” , ”0A” , ”1BC0” ) , // complement l i s t
x4 :=? l ength ( 2 . . 4 ) , //any s t r i n g wi th a l ength o f 2 to 4
x5 := pattern ”10*” //any s t r i n g matching the pattern

} ;
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Listing 3: Example for receiving message

t e s t c a s e t c He l loWor ld ( ) runs on MTCType system MTCType
{

t imer TL T := 1 5 . 0 ;
map( mtc :MyPCO PT, system :MyPCO PT ) ;
MyPCO PT . send ( ” Hel lo , world ! ” ) ;
TL T . s t a r t ;
a l t { // branching based on even t s

[ ] MyPCO PT . r e c e i v e ( ” Hel lo , TTCN=3!” ) {
TL T . s top ;
s e t v e r d i c t ( pass ) ; / / r e c e i v i n g the r i g h t message

}
[ ] TL T . t imeout {

s e t v e r d i c t ( inconc ) ; // the t e s t timed out
}

[ ] MyPCO PT . r e c e i v e {
TL T . s top ; // some other message was r e c e i v ed
s e t v e r d i c t ( f a i l ) ;

}
}

}

plate. Checking whether a data value matches to the template is as easy as
“match(value, templateValue)”. Other constructs offer additional functional-
ity, e.g. “∗.receive(templateValue) → value” activates only if a value matching
to the provided template is received, in which case the value of the message is
saved in “value” for further processing.

TTCN-3 can also be viewed as a “C -like” procedural language with test-
ing specific extensions. The usual programming language features (function,
if, while, for, etc. ) are extended with other constructs needed for testing: test
cases as standalone constructs, sending/receiving messages, invoking remote
procedures and checking the content of the received data structures (mes-
sages/results/exceptions), alternative behaviors depending on the response of
the tested entity, handling timers and timeouts, verdict assignment and track-
ing, logging of events (see listing 3) are all built in.

Creating distributed test cases and test execution logic is easy as well. A
TTCN- 3 test may consist of several parallel test components which are dis-
tributed on a set of physical machines, able to work in tandem to test all
interfaces of the tested system, or able to create high load. Test components,
communication ports to the tested entity and to other test components are
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defined in TTCN-3. The number of test component instances and their con-
nections are controlled from the code of the test case dynamically using various
language features (see listing 4). Deploying and controlling the test component
also happens in an abstract and platform independent way. The user does not
need to work with the implementation details. It is the tools responsibility to
utilize the available pool of machines, possibly running on different operating
systems.

Listing 4: multiple components example

t e s t c a s e commMessageValue ( ) runs on commMessage comp2 {
var commMessage comp1 comp [ 5 ] ;
var i n t e g e r x x i n t ;
f o r ( var i n t e g e r i :=0; i <5; i := i+1)
{ l og ( i ) ;

comp [ i ] := commMessage comp1 . c r e a t e ; // c r ea t i n g component
comp [ i ] . s t a r t ( commMessage behav1 ( i ) ) ; / / s t a r t remote behav ior
connect ( s e l f : Port2 [ i ] , comp [ i ] : Port1 ) ; / / connect to component
x x i n t :=5;
Port2 [ i ] . send ( x x i n t ) ; / / send message on port
Port2 [ i ] . r e c e i v e ( i n t e g e r : ? ) => va lue x x i n t ; // r e c e i v e response
i f ( x x i n t==5+i ) { s e t v e r d i c t ( pass )}

e l s e { s e t v e r d i c t ( f a i l ) } ;
}
f o r ( i :=0; i <5; i := i+1) {comp [ i ] . s top } ; // stop the components
} ;

TTCN-3 is also independent from the test environment. The user needs only
to define abstract messages exchanged between the test system and test tested
entity. Message encoding (serialization), decoding (de-serialization), handling
of connections and transport layers are done by the tools.

TTCN-3 also offers to control the test case execution logic and dynamic
test selection from within the the TTCN-3 code itself (see listing 5). Module
parameters allow for the user to leave data open in the source code and provide
the actual values at execution time (IP addresses, IDs, passwords, etc...)



176

Listing 5: execution control example

con t r o l {
f o r ( var i n t e g e r i := 0 ; i < 10 ; i := i+1)
{

execute ( pa rame t e r i s e d t e s t c a s e ( i ) ) ;
}
execute ( t r an s f e rTe s t ( ) ) ;
execute ( t c r u n s o n s e l f ( ) ) ;

}

B Measurement details and histograms
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Figure 5: Histogram of the measured execution times on Laptop 1. C (5(a))
and Java (5(b)) side with timers; C (5(c)) and Java (5(d)) side without timers.
On each histogram the horizontal axis shows the execution times, the vertical
axis the number of their occurrences.
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Figure 6: Histogram of the measured execution times on Laptop 2. C (6(a))
and Java (6(b)) side with timers; C (6(c)) and Java (6(d)) side without timers.
On each histogram the horizontal axis shows the different execution times, the
vertical axis the number of their occurrences.
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it. nr C + full Java + full C + inc Java + IDE m.

1 159.69 18.13 40.80 7.29

2 165.81 23.71 46.92 12.88

3 171.90 29.13 53.02 18.30

5 184.16 39.90 65.27 29.07

8 202.58 55.99 83.69 45.15

10 214.95 66.55 96.06 55.71

50 460.13 280.08 342.24 269.24

100 766.49 546.76 647.60 535.93

200 1378.82 1079.79 1259.93 1068.95

300 1992.45 1613.31 1873.56 1602.47

400 2602.08 2140.54 2483.19 2129.70

500 3205.31 2669.37 3086.42 2658.53

(a) Laptop 1 with timers

it. nr C + full Java + full C + inc Java + IDE m.

1 154.75 13.33 35.86 2.49

2 155.92 13.99 37.03 3.15

3 157.12 14.57 38.23 3.74

5 159.52 15.51 40.63 4.67

8 163.09 16.86 44.20 6.02

10 165.47 17.73 46.58 6.90

50 213.30 34.43 94.41 23.60

100 273.09 55.22 154.21 44.38

200 392.69 96.13 273.80 85.29

300 513.03 137.67 394.14 126.83

400 633.35 180.51 514.46 169.67

500 756.39 223.90 637.50 213.06

(b) Laptop 1 without timers

it. nr C + full Java + full C + inc Java + IDE m.

1 231.20 35.44 32.40 7.61

2 237.80 40.97 39.00 13.14

3 244.84 46.28 46.04 18.46

5 258.65 57.01 59.85 29.19

8 278.94 73.01 80.14 45.19

10 291.41 83.60 92.61 55.78

50 565.01 296.07 366.21 268.24

100 684.41 562.35 710.14 534.53

200 1364.92 1094.89 1390.65 1067.07

300 2228.21 1623.23 2029.41 1595.41

400 2953.54 2147.90 2754.74 2120.07

500 3590.27 2676.44 3391.47 2648.62

(c) Laptop 2 with timers

it. nr C + full Java + full C + inc Java + IDE m.

1 226.18 30.66 27.38 2.78

2 227.75 31.29 28.95 3.41

3 229.24 31.83 30.44 3.94

5 232.45 32.70 33.65 4.82

8 236.94 33.95 38.14 6.07

10 240.20 34.75 41.40 6.87

50 301.68 49.57 102.88 21.69

100 379.07 68.06 180.27 40.18

200 534.88 104.07 336.08 76.19

300 685.23 144.76 486.43 116.87

400 838.43 186.96 639.63 159.08

500 996.47 231.90 797.67 204.02

(d) Laptop 2 without timers

Table 5: The sums of the average build times of the build kinds (already
presented in Table 1) and the averages of execution times for different iteration
numbers on Laptop 1 with 5(a) and without timers 5(b), on Laptop 2 with
5(c) and without timers 5(d) in seconds (also already presented on Figures 3
and 4). The full postfix of the table means a full build, the inc postfix means
the incremental build and the inc means the incremental build in IDE mode.

Received: April 18, 2021 • Revised: June 1, 2021


	1 Introduction
	2 Related Work
	3 Design
	3.1 Context
	3.2 General design approach
	3.3 Performance optimisation shifted to the end
	3.4 Handling long development timeframe

	4 Implementation
	4.1 Concepts that could be reused from the C/C++ side
	4.2 Concepts of the C side that needed to be adapted
	4.3 The benefits of being an IDE

	5 Performance measurements
	5.1 Performance measurement environment
	5.2 Build speed
	5.2.1 Some interesting facts and observations

	5.3 Execution speed
	5.3.1 Some interesting facts and observations

	5.4 Build + Execution iterations
	5.4.1 Some interesting facts and observations

	5.5 Scaling up for larger projects
	5.5.1 Some interesting facts and observations during the measurements
	5.5.2 Consequences


	6 Limitations
	7 Threats to validity
	8 Summary
	9 Further work
	Appendices
	A Short introduction to TTCN-3
	B Measurement details and histograms

