
Acta Univ. Sapientiae Informatica 13, 2 (2021) 361–372

DOI: 10.2478/ausi-2021-0017

DP-solver: automating dynamic

programming

Zoltan KATAI
Sapientia Hungarian University of

Transylvania
Department of Mathematics and

Informatics
Tirgu Mures, Romania

email: katai zoltan@ms.sapientia.ro

Attila ELEKES
Sapientia Hungarian University of

Transylvania
email: attilaelekes97@gmail.com

Abstract. Dynamic programming (DP) is a widely used optimization
method with several applications in various fields of science. The DP
problem solving process can be divided in two phases: mathematical part
and programming part. There are a number of researchers for whom the
mathematical part is available, but they are not familiar with computer
programming. In this paper we present a software tool that automates
the programming part of DP and allows users to solve problems based
only on their mathematical approach. The application builds up the “d-
graph model” of the problem to be solved and applies the “d-variant” of
the corresponding single source shortest path algorithm. In addition, we
report experimental results regarding the efficiency of the tool relative to
the Matlab implementation.

1 Introduction

Dynamic programming (DP) is an optimization method used in numerous
fields of science. It was proposed by Richard Bellman in his book published

Computing Classification System 1998: F.2.2
Mathematics Subject Classification 2010: 68R15
Key words and phrases: dynamic programming, d-graphs, software tool

361

https://www.ms.sapientia.ro/~katai_zoltan/
https://sapientia.ro/en
https://sapientia.ro/en
https://sapientia.ro/en
https://sapientia.ro/en
https://sapientia.ro/en
mailto:katai_zoltan@ms.sapientia.ro
https://sapientia.ro/en
https://sapientia.ro/en
mailto:attilaelekes97@gmail.com


362 Z. Katai, A. Elekes

in 1957 [1]. Since that, this strategy has become an often used problem solv-
ing method in applied mathematics, computer sciences, artificial intelligence,
bioinformatics, macroeconomics, etc. The solving process of these kinds of
problems can be divided into two major steps. Firstly, a functional equation
is established, which describes the problem solving process in a recursive way
by implementing the principle of optimality. Secondly, a computer program is
implemented, which processes the recursive formula in a bottom-up way. In
this paper we will refer to these two phases as mathematical and programming
parts of DP.

Due to the diversity of applications of this optimization method, the pro-
gramming part of DP may cause difficulties for researchers who are not familiar
with the programming languages or scripts. In this paper we present a soft-
ware tool that automates the programming part of DP and allows users to
solve problems based only on their mathematical approach.

2 Literature review

As mentioned above, in the last more than half century DP has been applied in
several fields of science. More recently, for example, it was applied for solving
the k-Color Shortest Path Problem that arises in the field of transmission
networks design [3]. The authors of this study compared their DP approach
with two previously published methods and they found that the DP algorithm
vastly outperformed previous approaches. The authors of paper [18] present
a survey of financial applications under a specific semimartingale result of
Markov chains and two of the described strategies apply DP approach. Besides,
other recent studies apply DP in the field of genomics and bioinformatics [15],
for developing modern rainwater harvesting systems [17], for optimizing the
synchronization and reducing gear-shifting time in mechanical transmissions
[13], and even for solving the School Bus Routing Problem [19].

As DP became more widespread, software tools for solving (more or less au-
tomatically) certain DP problem families began to appear. For example, the
Stochastic Dynamic Programming application (published in 1995) was a com-
mercial software for solving general stochastic and deterministic optimization
problems [14]. This tool (running on PCs using DOS operating system) was
able (i) to accommodate user-specified conditions and functions of stage, state
and decision; (ii) to minimize or maximize the optimal value function; (iii) to
solve finite and infinite time-horizon problems, etc. Another software tool for
solving DP problems is DP2PN2Solver [4]. This application uses specialized



DP-solver 363

Petri nets, named Bellman nets, to solve DP problems. In addition, it should
also be mentioned the tool named MDPToolbox, which has been developed
since 2004 [2]. MDPToolbox is a set of functions for solving Markov-decision
Problems in various platforms like Matlab, Scilab, R and GNU Octave.

De Moor [16] also emphasizes the need for DP solvers. After stating that in
contrast with other techniques (such as linear programming, where there exists
a single generic program that solves all instances) DP is usually regarded as a
design technique where each application is designed as an individual program,
he argues that it would be much preferable if dynamic programming could be
understood as a software component. The component presented by De Moor
is suitable for a large class of applications in which the decision process is a
sequential scan of the input sequence. With respect to the programming part
he introduces a C++ and Haskell program and concludes that the simplicity
offered by lazy functional programming is preferable. Another useful tool is
VisuAlgo [24] which is a website for visualizing different algorithms includ-
ing DP strategies. This tool was developed mostly for educational purposes
and also uses a programming language (JavaScript) instead of mathematical
functional equations.

Relatively recent studies were realized in this field by Kátai [5, 6, 7, 8, 10, 12].
In [5], he proposed the concept of d-graphs for modelling DP problems. The
software tool presented in [9] was based on this approach. Later, Katai refined
the model and introduced the notion of generalized d-graphs [5]. Katai and
Fulop [11] compared Petri nets (used by the above referred DP2PN2Solver)
and d-graphs as tools for intermediate representation of certain DP problems.
They emphasize two advantages of d-graphs: (i) d-graphs can handle problems
with cyclic target function; (ii) while the usage of DP2PN2-Solver requires the
knowledge of gDPS language, d-graphs can be built based on the functional
equation. In [12], Katai defines the so-called generalized deterministic Markov
decision processes where each decision may result in more than one next state.
The author also proposed a combined d-graph algorithm for finding optimal
policies for the previously mentioned Markov processes.

From this enumeration the probably most generally known and commonly
used software cannot be missed. The Matlab is an available commercial soft-
ware, which is able to perform numeric computations and to visualize data
structures and models. There are also a lot of available plugins for solving
various problems, including DP. The programming language used by Matlab
is also relatively simple and has a high abstraction level.

In this paper we present a simplified implementation of the approach Katai
proposed [10, 12], and more importantly, we present a software tool that imple-



364 Z. Katai, A. Elekes

ments this strategy and also visualizes the DP solving process. In addition, we
report experimental results regarding the efficiency of the tool we developed
(compared with the Matlab solutions).

3 Mathematical part of the DP solving process

The core of DP is the principle of optimality, which states that the optimal
solution for the initial problem is based on the optimal solutions of its subprob-
lems. This principle is expressed by a recursive formula (target function). Sub-
problems are solved in bottom-up order (starting from the level of the trivial
ones), and the optimal solution of the current subproblem is computed (based
on the recursive formula) from the optimal solutions of previously solved (and
stored) simpler subproblems. The solving process is a sequence of optimal deci-
sions (min or max) that results in the optimal solution of the original problem.
To illustrate this approach we present the strategy on a sample problem.
Two Person Game: Let us consider a sequence of natural numbers stored

in array ai, i = 0, . . . , n− 1 (where n is even). In every step the current player
takes a number from the beginning or the end of the sequence. The question is,
what is the highest score which can be collected by the beginner? We assume
that both players are taking the optimal decision.

Assuming that cell cij of array c (i, j = 0, . . . , n−1) stores the optimal value
associated to sub-sequence ai . . . aj, the functional equation for this problem
is the following:

cij =


0 j ≤ i

max{ai + min{ci+1,j−1, ci+2,j},

aj + min{ci+1,j−1, ci,j−2}} i < j

In this problem the sub-problems are represented by the even length sub-
sequences of the original sequence. More precisely, cell ci,j stores the maximum
score that can be collected by the first player if they play on sub-sequence
ai . . . aj. The solving process implies the computation of the highest scores
which the first player can collect from all 2, 4, . . . , n length sub-sequences.
Function max reflects that player 1 takes optimal decisions. Function min
reflects that player 2 also takes optimal decisions.



DP-solver 365

4 The idea behind the software

As mentioned above, Kátai [10] proposed generalized d-graphs as intermediate
representations to solve DP problems based on the optimal path algorithms in
weighted graphs. There are three main single-source shortest path algorithms
in weighted digraph:

� If the graph is cycle free, the optimal paths can be found based on the
topological order of the vertices (Viterbi algorithm);

� If the graph contains circles and all arcs have positive weights, then we
use the Dijkstra algorithm;

� If the graph contains negative weighted arcs, but does not contains “neg-
ative cycles” (the sum of the weights of the arcs of the cycle is negative),
the problem is solved by the Bellman-Ford algorithm.

Katai [7, 10] emphasizes that, on the one hand, these algorithms implement
DP strategies and, on the other hand, the DP problem solving process can be
reduced to these strategies. Katai suggests the following approach (for details
see [10]): (i) the DP problem to be solved is modelled with a d-graph where
p-vertices represent the sub-problems and d-vertices represent the possible
choices defined by the target function; (ii) the optimal decision sequence is
found by searching for the optimal d-path between the source vertex, repre-
senting the original problem, and a virtual sink vertex, representing the trivial
sub-problems. In the second step the d-variant of the corresponding optimal
path algorithm is applied (d-Viterbi, d-Dijkstra, d-BellmanFord).

5 DP-solver

DP-solver is a software tool for solving DP problems based only on the math-
ematical functional equation. To automate the programming part of the DP
solving process it takes advantage of the relationship between dynamic pro-
gramming and optimal paths algorithms. The tool is easy to use in the sense
that it does not presume to learn any programming language and the input
format is very similar to the mathematical syntax. Another functionality is
the visualization of the solving process. This feature uses 1D and 2D arrays,
where the cells represent the sub-problems. Thus, DP-solver is both a scientific
and educational tool.

The application was implemented using the JavaFX language and its core
is a Java package, named exp4j [20], which is able to interpret mathematical



366 Z. Katai, A. Elekes

expressions. From developer point of view, exp4j is an easy to use package
which knows the fundamental mathematical operators and functions and it is
able to work with variables and general formulas and to detect syntactic and
runtime errors. Since it is easy to define more operators and functions, the
package could comfortably be adapted to the current software requirements.

As mentioned above, the main functionality of the software is to solve DP
problems based on the mathematical equation. Accordingly, the user’s role
includes the following steps: (i) to introduce the formula and its variables, and
to ask the tool (ii) to evaluate the formula and (iii) to visualize the solving
process. The application also enables users to save, reload and edit previously
created DP models. In visualization mode the software works similarly to a
media player.

Figure 1: The main window of DP-solver



DP-solver 367

6 The graphical interface

Figure 1 shows the graphical interface of DP-solver. In the input fields labeled
with “Branch” and “Criteria” the user has to introduce the formula, branch-
by-branch. Attached to each branch, the corresponding criterion has to be also
introduced.

In the “Target variable” field the user has to specify the array which stores
the optimal values corresponding to the optimal solutions of the subproblems.
The dimension of the problem (dimension of the target variable) and the in-
dices of the cell that represents the optimal value of the original problem
(“Start indices”) are also required to be specified. In the “Variables” field the
input variables (which are included in the formula) have to be defined. Before
the evaluation starts the software checks all input fields for syntax errors. The
optimal value attached to the optimal solution is displayed in the field named
“Result”.

The status bar (on the bottom of the window) informs the user about the
state of the problem solving process. For example, the user is informed about
the currently performed task and error messages also appears here.

Figure 2: Input and output of the Two Person Game problem

Figure 2 illustrates the usage of DP-solver for the above presented Two
Person Game problem for a 10-length number sequence. As it could be no-
ticed, the recursive formula has two branches, the target variable is a 10x10
bi-dimensional array and cell c09 represents the original problem. If the input
sequence stored in array a is {19, 2, 4, 16, 3, 15, 4, 14, 17, 1} then the opti-
mal value which is going to appear (after pushing the “Run” button) in the
“Result” field is 65.

After the result appears, the solving process can be visualized step by step.
Since sub-problems correspond to the even length sub-sequences, only every
second diagonal of the target variable is filled (green cells containing non-NaN
values) (see Fig. 3). The diagonal below the main diagonal stores the optimal



368 Z. Katai, A. Elekes

Figure 3: The completed visualization process (Two Person Game problem)

values for the trivial sub-problems (corresponding to the 0-length sequences).
The optimal values of “non-trivial cells” are computed from diagonal to diag-
onal. Lastly, cell c09 gets the value 65.

The screenshot from Figure 4 captures the solving process in an intermediate
step. By default every cell has a white background color and dotted border.
The default value of each cell is NaN until the result of the corresponding sub-
problem is computed. Accessed cells get a light gray background color (the
solving process reached them, but their values are not computed yet). The



DP-solver 369

Figure 4: The visualization process in progress (Two Person Game problem)

current cell is marked with black thick solid border and dark gray background
color. The cells representing the direct descendants of the current subproblem
(the value of the current cell is computed based on these cells’ values) are
highlighted with a yellow dashed border. When a subproblem is solved, the
related cell turns its border to solid and its background color to green. The
buttons for controlling the visualization process are in the bottom left corner
of the main window.



370 Z. Katai, A. Elekes

7 Performance

To find out our software’s performance, we compared DP-Solver with Mat-
lab®. We have chosen Matlab®, because it is one of the most commonly
used, well known and widely available programming software used for mathe-
matical problem solving. In our tests we used the Matlab® R2017b version.
The laptop we used has the following configuration: Intel® Celeron® N2940
CPU (quad core, up to 2.23 GHz), 4 GB DDR3L memory and Samsung 860
EVO SSD.

Figure 5: DP-solver vs. Matlab® results

We performed the comparison for the DP solutions of the problems referred
below (for details see the corresponding references). The analysis was based
on the average run-time after 10 measurements (the brackets include the size
of the corresponding one- or bi-dimensional input array(s)):

� Longest Common Subsequence [23] ([1000], [500])



DP-solver 371

� Two Person Game ([1000])

� The Triangle [21] ([1000]x[1000])

� Little Shop of Flowers [22] ([750]x[1000])

As shown in Figure 5 DP-solver was 6.1 times faster than the Matlab®
implementations of the DP solutions.

8 Conclusions

In this paper we presented DP-solver, an easy to use software tool for those who
are familiar with the mathematical fundamentals of dynamic programming.
The application uses as intermediate representation the d-graph model of the
DP problem to be solved. Our experimental results shows that the tool can
provide the optimal solution more than six times faster than the corresponding
Matlab implementation. The application also includes a visualization module.
Consequently, DP-solver is both a scientific and educational software tool.

References

[1] R. Bellman, Dynamic Programming, Princeton University Press, New Jersey,
1957. ⇒362

[2] I. Chadès, G. Chapron, M. J. Cros, F. Garcia, R. Sabbadin, MDPtoolbox:
a multi-platform toolbox to solve stochastic dynamic programming problems,
Ecography, 37, 9 (2014) 916–920. ⇒363

[3] D. Ferone, P. Festa, S. Fugaro, T. Pastore, A dynamic programming algorithm
for solving the k-color shortest path problem, Optimization Letters, (2020) 1–20.⇒362

[4] M. Holger, DP2PN2Solver: A flexible dynamic programming solver software tool,
Control and Cybernetics, 35 (2002) 687–702. ⇒362

[5] Z. Kátai, Dynamic programming and d-graphs, Studia Universitatis Babes-
Bolyai, Informatic, 51, 2 (2006) 41–52. ⇒363

[6] Z. Kátai, Dynamic programming strategies on the decision tree hidden behind
the optimizing problems, Informatics in Education - An International Journal,
6, 1 (2007) 115–138. ⇒363

[7] Z. Kátai, The single-source shortest paths algorithms and the dynamic program-
ming, Teaching Mathematics and Computer Science, 6 (2008) 25–35. ⇒363, 365

[8] Z. Kátai, Dynamic programming as optimal path problem in weighted digraph,
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis, 24 (2008) 201–
208. ⇒363



372 Z. Katai, A. Elekes

[9] Z. Kátai, Á. Cśıki, Automated dynamic programming, Acta Universitatis Sapi-
entiae, Informatica, 1, 2 (2009) 149–164. ⇒363

[10] Z. Kátai, Modelling dynamic programming problems by generalized d-graphs,
Acta Universitatis Sapientiae, Informatica, 2, 2 (2010) 210–230. ⇒363, 365

[11] Z. Kátai, P. I. Fülöp, Modeling dynamic programming problems: Petri nets ver-
sus d-graphs, Proceedings of 8th International Conference on Applied Informatics
(ICAI), Eger, Hungary, 2010, pp. 217–226. ⇒363

[12] Z. Kátai, Solving Markov decision processes by d-graph algorithms, Control and
Cybernetics, 41, 3 (2012) 577–593. ⇒363

[13] Z. Lu, G. Tian, S. Onori, Multistage time-optimal control for synchronization
process in electric-driven mechanical transmission with angle alignment consid-
ering torque response process, Journal of Dynamic Systems, Measurement, and
Control, 143, 4 (2021) 041006. ⇒362

[14] B. C. Lubow, SDP: generalized software for solving stochastic dynamic opti-
mization problems, Wildlife Society Bulletin, (1995) 738–742. ⇒362

[15] M. Maiolo, S. Ulzega, M. Gil, M. Anisimova, Accelerating phylogeny-aware align-
ment with indel evolution using short time Fourier transform, NAR Genomics
and Bioinformatics, 2, 4 (2020) lqaa092. ⇒362

[16] O. De Moor, Dynamic programming as a software component, Proceedings of
IEEE Computer Society, Conference on Circuits, Systems, Computers and Com-
munications (CSCC), Athens, Greece, 1999. ⇒363

[17] C. Nop, R. M. Fadhil, K. Unami, A multi-state Markov chain model for rainfall
to be used in optimal operation of rainwater harvesting systems, Journal of
Cleaner Production, (2020) 124912. ⇒362

[18] E. Savku, G. W. Weber, A regime-switching model with applications to finance:
markovian and non-markovian cases, Dynamic Economic Problems with Regime
Switches, Springer, Cham, 2021, pp. 287–309. ⇒362

[19] P. Shang, L. Yang, Z. Zeng, L. C. Tong, Solving school bus routing problem with
mixed-load allowance for multiple schools, Computers & Industrial Engineering,
(2020) 106916. ⇒362

[20] ∗ ∗ ∗ exp4j, https://lallafa.objecthunter.net/exp4j ⇒365
[21] ∗ ∗ ∗ International Olympiad in Informatics (IOI), The Triangle, 1994. ⇒371
[22] ∗ ∗ ∗ International Olympiad in Informatics (IOI), Little Shop of Flower, 1999.⇒371
[23] ∗ ∗ ∗ Longest common subsequence problem ⇒370
[24] ∗ ∗ ∗ VisuAlgo, https://visualgo.net/en ⇒363

Received: December 10, 2021 • Revised: December 26, 2021

https://lallafa.objecthunter.net/exp4j/index.html
https://ioinformatics.org/files/ioi1994problem1.pdf
https://ioinformatics.org/files/ioi1999problem1.pdf
https://en.wikipedia.org/wiki/Longest_common_subsequence_problem
https://visualgo.net/en

	1 Introduction
	2 Literature review
	3 Mathematical part of the DP solving process
	4 The idea behind the software
	5 DP-solver
	6 The graphical interface
	7 Performance
	8 Conclusions

