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Abstract. In software, code is the only part that remains up to date, which shows
how important code is. Code readability is the capability of the code that makes it
readable and understandable for professionals. The readability of code has been a
great concern for programmers and other technical people in development team be-
cause it can have a great influence on software maintenance. A lot of research has been
done to measure the influence of program constructs on the code readability but none
has placed the highly influential constructs together to predict the readability of a
code snippet. In this article, we propose a novel framework using statistical modeling
that extracts important features from the code that can help in estimating its read-
ability. Besides that using multiple correlation analysis, our proposed approach can
measure dependencies among different program constructs. In addition, a multiple
regression equation is proposed to predict the code readability. We have automated
the proposals in a tool that can do the aforementioned estimations on the input code.
Using those tools we have conducted various experiments. The results show that
the calculated estimations match with the original values that show the effectiveness
of our proposed work. Finally, the results of the experiments are analyzed through
statistical analysis in SPSS tool to show their significance.
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1. Introduction

Source code readability is the capability of the code that makes it legible and compre-
hensible for its users including programmers, testers, and maintainers. Source code
readability is a fundamental notion related to the comprehension of text. Readable
code has many advantages to offer not only to the owner of the code (who actually
wrote it in the first place) but to the users of the code (other technical people like
co-programmers, testers who want to test it, and later on maintainers who want to
modify it). It is also related to other software quality attributes such as modifiability,
understandability, reusability, and maintainability. The readable code can be easily
modified by the programmers because it is easy to understand. Similarly a readable
code can be re-used in a different module or even in a similar new project.

Maintainability is the ability of a software to go through revision(s) with mini-
mum possible effort. Maintenance can be either corrective (fixing a logical bug) or
progressive (adding a new feature in the software). It is observed that software devel-
opers these days, spend more time maintaining and evolving existing software than
writing new code. Besides that research has proven that maintenance consumes ap-
proximately 75% of the software development cost [27]. In the study of Collar and
Ricardo [3] authors have shown with the help of experiments using procedural lan-
guage (Visual Basic.NET) that how readability can be analyzed and can affect the
maintenance phase. Keeping in mind the importance of maintainability, reading the
code is the first step towards maintenance. The researchers have distinguished the
act of reading a piece of code is the most prolonged activity among all maintenance
activities. There are many elements that affect readability in positive and negative
way but Hofmeister et. al [9] discuss in their research that the identifier names have
strong affect on code readability and understandability. Their findings reveal that
better readability saves a lot of time during maintenance that can help in reducing
maintenance and ultimately software development cost.

Code readability is gaining more and more attention of researchers [22, 27, 26,
18, 1] and specifically in [26] researchers are trying to identify the impact of different
program constructs on the code readability. For this purpose, authors have conducted
a survey from experienced programmers and used statistical techniques to determine,
which constructs influence the readability and by what factor. According to their
findings, meaningful identifiers, consistency, and comments are the most significant
and having positive impact on code readability. On the contrary, complex arithmetic
expressions and nested loops put negative impact on the same. Although literature
witnesses many software readability metrics; text readability metrics [8, 12, 7, 23] and
code readability metrics [18, 1] but still not a single comprehensive set of parameters
are there to compute the code readability. Well known natural language readability
indexes are Gunning’s Fog [7], Flesh Kincaid [12], Automated Readability Index (ARI)
[23] and SMOG [8]. These metrics use sentence length; characters per word, syllables
count and so on as parameters. Flesh-Kincaid readability index is also being used
in text editor (Microsoft Word) as standard readability metric [18]. Source code
readability metrics also include Halstead’s Product Metrics and Buse and Westley
readability metrics [1] and a new metric proposed by Namani1 and Kumar [18]. In
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these metrics features that are used for computing readability include lines of code,
number of identifiers, identifiers length, keywords frequency and so on.

Namani and Kumar [18] have used seven program constructs; Line of code, Line
length, Blank lines, Blank spaces after directive statements, Number of methods,
Comments, and Line breaks. Many authors considered natural language readability
indexes as code readability metrics [5]. Authors are also focusing on the textual fea-
tures and neural machine translation to improve the readability of programming code
[27, 21]. Various surveys have been conducted in the research studies on readabil-
ity and it is found that programmers mostly take help from stack overflow for small
programming tasks as it offers better code as far as readability is concerned [29]. In
another research, authors have investigated if for small programs, is it worth writing
comments in it and if it makes any negative or positive impact on the readability [19].

Although the existing research provides a lot of details on the program constructs
leaving good or bad impact on the code readability but it lacks with a standard
expression or an equation that puts all the most influential constructs together to
predicate the code readability. There is a need of a specific framework that can
relate the program constructs and their influence with human judgment to identify
the most influential ones. A specific approach is required to measure the dependency
of program constructs to estimate the readability. A particular code readability tool
is also required to estimate code and text readability of given text or code chunk. In
this research, all these issues have been handled and details are presented in coming
sections.

The rest of the paper is organized as follow: Section 2 describes literature review.
Section 3 provides the description of the proposed scheme. The analysis and results
are provided in Section 4. The conclusion is specified in Section 5.

2. Literature Review

This section presents review on the survey literature on code readability and code
readability metrics. The following text presents all the related information on it.

Software understandability becomes a critical challenge when the developers try
to improve the source code written by other developers. The ”integral if understand-
ability” model is proposed to discuss the factors which affect the understandability
of software [14]. These factors include software documentation, software structure,
program components, source code, and the input data. Conventionally, readability
metrics extract features from textual documents and do not consider the conceptual
contents and writing styles. The authors in [24] have proposed a readability estima-
tion model that is based on the combination of traditional features and the statistical
estimation methods. The proposed model uses unigram language models to deter-
mine the probability values for readability estimation. In addition, the authors have
articulated that the combination of surface linguistic features and content informa-
tion is better than using these methods alone. The proposed estimation model helps
in combining the surface linguistic features and content-based features for a single
classifier. However, the proposed methods are used for textual classification and do
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not covers the readability aspects of the source codes.
Machine learning algorithms can help in the prediction of readability of textual

documents. The authors in [11] have used diverse linguistic features based learning
model for readability prediction. To this end, an analysis of 540 textual documents
were made, which they had collected from various online sources including Wikipedia
articles, newspapers, manual transcripts, web blogs, and machine translated data.
The proper naming of identifiers in the source code enhances the readability. A specific
tool is designed to assist programmers in dynamically naming identifiers [20]. The
tool is based on heuristic-based dynamic reporting methods whereby the programmers
can choose from suggested identifiers. The authors have conducted study with two
groups of programmers called controlled group and experimental group. A study to
find the cohesion and difficulty at various levels of textual documents was presented
by authors in [16]. The authors presented Coh-Metrix, which is a computational tool
for measurement of cohesion and text difficulty. The study was made over a corpus
of 32 textual documents, which also include the readability score manually annotated
by researchers previously. The analysis of results show that variables in Coh-Mextrix
are highly correlated with each other, which accounts about 91% of the variance of
base dataset that was manually annotated by Burmuth. However, the researchers
were unable to conclusively determine the effectiveness of each variable.

Another study has been conducted by researchers in order to validate the Coh-
Metrix for textual documents [17]. The authors selected 34 articles initially, that
performed similar experiments, and selected 13 of them which met their selection
criteria. Two of the selected studies were redundant so authors selected 19 pairs
of text from remaining 12 studies. However, the study overall validates the causal
and co-reference indexes by successfully detecting the texts which were intentionally
manipulated by the researchers. Code readability becomes a critical challenge when
the source code is shared among many programmers in different teams, sometimes in
different countries. An extensive study has been conducted by the researchers in order
to assess the impact of different program constructs on the code readability [16, 17].
To propose the source code readability measure [2], the authors have performed a
thorough study. First of all, they selected 100 code snippets of Java programming
language from five open source projects. After that the authors conducted a survey
from 120 participants from University of Virginia and instructed them to annotate
and assign the score to each code snippet according to their own understanding. The
experiment was performed using GUI based code ranking tool.

The authors in [4] have improved the work of Buse and Westley [2]. They use
entropy based predictive modeling approach in order to improve code readability.
The main contributions of the article are that proposed model that looks simple and
demonstrates the improved performance. The authors first perform the correlation
analysis to find the impact of code size on the code readability. To this end, the
authors consider six features namely average mathematical equations, average num-
ber of comments, maximum indentations in the code, maximum number of words,
maximum length of code lines, and maximum occurrence of a specific character in the
code snippets. Coding conventions are devised to ensure the consistency in coding
and improving code readability and maintenance at later stages. The authors in [25]
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conduct a study to find whether the violations of coding conventions impact the code
readability. In addition they study the types of coding violations that impact the
readability. A specific empirical study of the associations between software complex-
ity and code readability is also presented [6]. Program repair ingredients are also
repaired using via deep learning similarities of code [28].

3. Proposed Work

In this section we present our proposed work related to the source code readability,
effects of program constructs on readability, and predicting the code readability with
the help of program constructs. The details are presented as follows.

The main objective of our work is to estimate the relevant contribution of every
program construct in readability and to express code readability by a formula using
small number of features. Figure 1 highlights our proposed approach with the help of
a simple model. The code snippets of C# programming language in the form of ques-
tionnaire are distributed among programming experts to get the human judgments
about code readability. Snippet selection is a bit restricted that it must be as small as
annotators can easily read and also contain some of the readability concerned features.
A CRT (Code Readability Tool) is developed to extract the readability parameters
and to automate the code readability metrics (see Section 3.4 for details). A rank
correlation is calculated between code features and human judgments. These ranks
are analyzed and significant features are included for regression analysis. Now these
significant features are used in regression analysis, and required regression equation
is formed. This regression equation is used to predict the readability values of each
snippet and finally the human judgments and predicted values are compared.

Results show that original and predicted values are almost same with a minor
error; therefore, we propose this equation to be used for the prediction of source
code readability. An application is developed using C# for the calculation of soft-
ware readability. Software readability includes source code as well as documentation
readability. Therefore, application is able to calculate Automated Readability Index,
Flesh-Kincaid and Gunning Fog index for documentation readability. The detail of
proposed scheme is given in sub sections.

3.1. Human Readability Judgment

Formally the readability is a mapping of finite rank (in the form of a value) to a sample
of code or text. Similarly estimation of code readability requires having a set of code
snippets assigned with readability ranking by human (most likely programmers). For
this purpose, a set of code samples were selected and given to annotators (program-
mers who can understand those codes, have knowledge about program constructs used
in them and can rank them as per their knowledge and skill).
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Figure 1. Model of Proposed Work
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3.1.1. Selection of Code Snippets

For the purpose of human judgment, we selected code snippets of C# programming
language. While selection of the code samples, we made sure that they are neither
too short or too long. Also code snippets contain program constructs that we want
to compute significance for. We selected around 100 such snippets and organized
20 questionnaires that we distributed among programmers. Some code samples have
been made public for the researchers and students and they can be downloaded from
the online source https://github.com/bilalbezar/csharp. The code snippets are
of different length ranging from 11 to 216 lines of code. The average lines of code per
file is 41.

3.1.2. Ranking of Code Snippets

The annotators were asked to evaluate the code as per their knowledge and experience.
The rank was decided to be from 1 to 5 where 1 means the lowest level of readability
and 5 means the highest. It is also shown in the figure 2. After the annotators finished
ranking code samples, they were collected back. The results of ranking were stored
in SPSS tool for further statistical analysis.

Figure 2. Ranking Criteria

3.2. Significance Measurement of Program Constructs

Source code is a highly organized set of statements written to achieve a specific pur-
pose; logical statements, declarations, documentation in the form of comments and
many more. Therefore, natural language readability and source code readability pa-
rameters are quite different. Code readability is concerned with its size, comments,
naming style, keywords, and so on. Authors in [26] propose a model that contains 22
different program constructs that impact the readability of code. They are presented
in Table 1 and we have also used them in this study to estimate the significance of
these constructs on code readability.
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Table 1. Program Constructs that Effect Code Readability

No. Program Constructs Description
1 Meaningful Names Human understandable identifiers
2 Comments Comments added for documentation
3 Spacing White spaces
4 Indents Indentations
5 Short Scopes Scopes
6 Line Length Distribution Distribution of the code
7 Identifier Name Length Length of names used in declarations
8 Arithmetic Formulas Complexity of arithmetic expressions
9 Identifier Frequency Number of times an identifier is used
10 If-else

Conditional Statements11 Nested If
12 Switch
13 For Loop

Iterative Statements14 While Loop
15 Do-while
16 Nested Loop Iteration(s) within Iteration
17 Recursive Repetition through recursion
18 Arrays Array declarations and referencing
19 Classes Distribution

Object-oriented features20 Inheritance
21 Overriding
22 Consistency Consistency in the coding style

3.2.1. Frequency of Program Constructs

To design a code readability metric, first we need to extract frequency (occurrence)
of program constructs from the code snippets. But even for a single construct, just
counting its occurrence in a code snippet will not give us accurate information on
readability. It is because of the fact that every code snippet usually have different
lines of code (LoC) and this difference can also vary from small to large. To scale
the occurrences of a construct, we have used percentages and averages in most of the
cases. For remaining constructs including line of code, parenthesis, and characters, we
have just used their frequency by counting them. Next we present the formulas that
we have used to calculate the frequency of program constructs as per our proposed
technique.

• Frequency of Identifiers: It is calculated as the percentage of identifiers;

PercentageIdnt =
NOI ∗ 100

LoC
(1)

where NOI is total number of identifiers in the program & LoC is lines of code.
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• Length of Identifiers: It is calculated as the average of identifiers’ length;

AvgIdntL =
LOI

TOI
(2)

where LOI is total length of identifiers in the program & TOI is total identifiers.

• White Spaces: They are calculated as the average with lines of code;

AvgS =
TS

LoC
(3)

where TS is total number of white spaces.

• Blank Lines: They are calculated as the percentage of blank lines;

PercentageBL =
TBL ∗ 100

LoC
(4)

where TBL is total number of blank lines.

• Frequency of Keywords: It is calculated as the percentage of keywords;

AverageKW =
NOK

LoC
(5)

where NOK is total number of keywords occurrences in the program.

• Length of Code Line: It is calculated as the average number of characters in
each code line;

AvgLL =
TCC

LoC
(6)

where TCC is total number of characters in the source code.

• Frequency of Comments: It is calculated as the percentage of comments;

PercentageNOC =
NOC ∗ 100

LoC
(7)

where NOC is total number of lines covered by comments in the program.

• Frequency of Branches: It is calculated as the percentage of branches;

PercentageNOB =
NOB ∗ 100

LoC
(8)

where NOB is total number of branches in the program.

• Frequency of Loops: It is calculated as the percentage of loops;

PercentageLoops =
NOL ∗ 100

LoC
(9)

where NOL is total number of loops in the program excluding recursive function
calls.
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• Frequency of Operators: It is calculated as the percentage of operators;

PercentageOpr =
NOO ∗ 100

LoC
(10)

where NOO is total number of operators in the program.

All the calculated frequencies in the form of counts, averages, and percentages
from code snippets were stored in Excel sheets for further statistical analysis.

3.2.2. Rank Correlation Analysis

To compute effect of program constructs on code readability, we have performed
multiple correlation analysis between percentage values of selected constructs and
readability rank values of code snippets. Multiple correlation is used to find relation-
ship between two variables and the strength of their relation. The percentage values
for selected program constructs are computed using code readability tool (CRT) and
readability rank values for code snippets are obtained from human judgment. We
have used multiple correlation formula from the book on statistics by Richard [13].
The correlation value lies between 0 and 1 and to compute the strength of relation, we
have used Cohen’s standard. According to Cohen’s affect size, if the coefficient value
is between 0.10 and 0.29 it would represent weak relation. Coefficients, which are less
than 0.49 and greater than 0.30 represent medium association. And coefficient values
greater than 0.5 denotes strong correlation between both variables. After applying
multiple correlation analysis, we have obtained values shown in Table 2.

Table 2. Correlation Coefficient of Program Constructs

No. Program Construct Correlation Cofficient
1 Lines of Code 0.720
2 Blank Lines 0.561
3 Characters 0.560
4 Parenthesis 0.549
5 Identifiers Length 0.501
6 Spaces 0.497
7 Identifiers 0.281
8 Comments 0.220
9 Branches 0.189
10 Indentations 0.158
11 Operators 0.127
12 Keywords 0.102
13 Loops 0.101
14 Line Length 0.058
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3.3. Code Readability Predication

After finding correlation between program constructs and code readability, the sec-
ond and the most significant contribution of our research study is the prediction of
code readability. We have devised a multiple regression equation that can help us
predicting readability of a given code snippet. Multiple regression analysis is a statis-
tical technique designed to predict the value of one dependent variable based on the
2 or more independent variables. In our regression model, we use readability value
obtained from human judgments as dependent variable. While independent variables
are those program constructs that we find significant during correlation analysis. Af-
ter analyzing the results, we have come up with following regression equation, which
can predict readability of a code snippet;

CR = 4.317 +LoC ∗ (−0.037) +BL∗ (0.015) +NOP ∗ (−0.005) + IL∗ (−0.093) (11)

where: CR is code readability, LoC is lines of code, BL is number of blank lines, NOP
is number of parenthesis, and IL is length of identifiers.

3.4. Automation

The objective of our research is to automate the human readability judgments for
code snippets. For this purpose we have developed a code readability tool (CRT)
that can predict code readability of the code given as input to it. Figure 3 shows brief
architecture of the CRT tool. As shown in the figure, it has three sub-components;
feature extractor, frequency scaler, and readability predictor. The tool receives code
snippets of C# language as input and the very first sub-component extracts program
constructs from the input code as features. These features are then fed into frequency
scaler that computes the frequencies of all the program constructs and scales them
so they can be used to predict readability. Finally the scaled frequencies are sent to
readability predictor that makes the prediction using multiple regression equation that
we have proposed and presented in Section 3.3. The readability predictor generates
code’s readability value as its output.

4. Experiments and Results

Experiments for the evaluation of proposed technique are carried out using our im-
plemented CRT tool and results are analyzed using statistical techniques. Total one
hundred ranked code snippets of C# are used to verify the effectiveness of our pro-
posed approach. In this regard, code readability tool (CRT) is used to extract program
constructs and to predict readability value for input code snippets. Prediction accu-
racy is checked using two techniques where predicted and actual values are compared.
For experiments and analysis, we have used CRT, SPSS, and Microsoft Excel. SPSS
is used to perform multiple regression analysis, correlation analysis and many other
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Figure 3. CRT Architecture

tests. Testing of proposed metric is performed in two steps. Firstly we have tested
our proposed multiple regression model and secondly predicted values are tested for
accuracy in comparison to actual values.

4.1. Testing the Proposed Model

We have used three statistical techniques to test our proposed multiple regression
model and they are F-Test, t-Test, and distribution of residuals. These tests check
model for model fitness as a whole, significance of each explanatory variable, and
for any possible error respectively. The three tests and their results are described in
upcoming sub-sections.

4.1.1. The F-Test

The F-test is used to check whether code readability depends on all considered features
(program constructs) or has it happened by chance. We may also say that if the
proposed regression model as a whole is significant or not? In SPSS, the output of
regression analysis, the F-value, is included in output. The table containing F-value
is also called ANOVA (Analysis Of Variance) table. Table 3 presents the ANOVA
table that we have obtained after performing regression analysis in SPSS.

The formula used to perform the F-test is as follows and have been obtained from
[13];

F =
SSR/k

SSE/(n− k − 1
(12)
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Table 3. Analysis of Variance

Model Sum of Squares df Mean Squares F Sig.
Regression 32.97 6 5.496 17.668 .000b

Residual 30.485 98 .311
Total 63.462 104

where SSR is regression sum of mean squares (5.496), SSE is error sum of squares
(0.311), k is the degree of freedom, and n is the total number of observations.

In the Table 3, we see that F-value is far greater than 1.97 that shows our regression
analysis is significant. We can reach to the same conclusion by noticing that p-value
is 0.000 that is less than the significant level 0.01.

4.1.2. The t-Test

In multiple regression analysis, we include some of the explanatory variables, which
are independent variables. These variables are supposed to be significant in terms
of relative change in dependent variable. The t-Test is a technique to check whether
independent variables are significant or not. In our proposed model, we have used
seven program constructs as independent or explanatory variables and one dependent
variable, which is code readability. We have performed the t-Test for every program
construct using following formula:

t =
bi −Bi

Sbi

(13)

where bi is slope of fitted regression, Bi is actual slope hypothesized for the population,
& Sbi is the standard error of the regression coefficient.

The t-value for each construct is calculated using SPSS, and Table 4 presents
t-ratios for all of them.

4.1.3. Distribution of Residuals

Most important part of regression analysis is looking at the residuals. We can say
that if residuals show any nonrandom pattern, it indicates there is something wrong
in the model. Our proposed model shows a random pattern in residuals as shown in
the Figure 4.

4.2. Measuring the Prediction Accuracy

It is not enough to have an accurate regression model. We also need to test the
accuracy of the prediction, which is, whether the actual and the predicted values
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Table 4. Analysis of Variance

No. Program Construct t-ratio Significance
1 Lines of code -9.684 0.000
2 Blank lines 5.704 0.000
3 Characters -6.423 0.000
4 Parenthesis -6.480 0.000
5 Identifiers length -5.912 0.000
6 Spaces -5.587 0.000
7 Identifiers 2.989 0.004
8 Comments -1.876 0.064
9 Branches -0.439 0.662
10 Indentations -1.623 0.108
11 Operators -0.652 0.516
12 Keywords 1.267 0.208
13 Loops -0.031 0.751
14 Line length 1.047 0.297

are similar or not. For prediction accuracy, we calculate two measures; mean ab-
solute percentage error and mean absolute deviation. Both of these measures show
percentage and average errors in the predicted values by a prediction model.

4.2.1. The Mean Absolute Percentage Error (MAPE)

Mean absolute percentage error (MAPE) [10] is a statistical measure, which is used
to evaluate a prediction model. This measure explains prediction error in the form
of percentage. It is also known as means absolute percentage deviation. Percentage
error of prediction is calculated using the following formula:

MAPE =

∑n
t=1 |At − Ft|

Ft
∗ 100 (14)

where At is actual values of code readability and Ft is predicted values of code read-
ability.

The percentage prediction error for our proposed technique is 12.08%, which shows
that 87.02% values are accurately predicted.

4.2.2. The Mean Absolute Deviation (MAD)

The mean absolute deviation (MAD) [15] is another statistical measure to evaluate
prediction models. This measure shows an average error of prediction. For mean
deviation error (MAD), we use following formula:

140 A. Batool, M. B. Bashir, M. B. A. Sohail, N. Ejaz



Figure 4. Random Pattern in Residuals

MAD =

∑n
i=1 |Ai − Fi|

n
(15)

where Ai is actual values of code readability and Fi is predicted values of code read-
ability, and n is total number of samples (code snippets).

The resultant value of mean absolute deviation (MAD) is calculated as 0.414,
which shows a minor error of prediction in the proposed model.

4.3. Comparative Analysis & Discussion

Proposed model is evaluated for fitness of model and prediction accuracy. Percentage
of prediction accuracy is 87.02% and average deviation from actual values is 0.414
that is too less. Original and predicted values are compared and shown in Figure
5 visually, where similar patterns commit high accuracy of prediction. Moreover we
also take descriptive statistics of predicted, original and error term values to show
the validity of proposed technique. The comparison of actual and predicated values
clearly show that our proposed regression model has performed well in predicting the
code readability and can help programmers to judge how readable is their code.

Threats to Validity Although a great care has been taken to ensure that the
research study is conducted without bias but there are some threats that can pose
challenge to this research. We have listed them below.
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Figure 5. Comparative Analysis of Actual and Predicted Values

4.3.1. Code Snippets Instances

The number of instances used in experiments and analysis can cause a validity threat.
For more confidence in the results, more code snippets should be added.

4.3.2. Number of Practitioners

The number of practitioners involved in the research to collect their judgment on code
readability can cause the results to variate.

4.3.3. Practitioners Skills

Mostly the students working in C# programming language were involved in this
research. The working experience and programming skill may cause the results to
variate.

5. Conclusion

The code readability is the ability of source code that makes it readable and un-
derstandable to everyone. In this article, a new metric for source code readability
prediction is proposed based on statistical modeling. The aim is to calculate the
effectiveness of each program constructs along with the code readability prediction
and automating this prediction process. Firstly, 100 snippets are examined by the
programmers and the obtained readability values are given as input to the SPSS for
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statistical analysis. Correlation between readability and program constructs is calcu-
lated using SPSS. Multiple regression models are tested for its fitness and significance
of explanatory variables using the F-Test, t-Test and Residual’s randomness. Results
show around 90% prediction accuracy. It shows that we can use multiple regression
equation to predict readability of any chunk of code. Moreover, a code readability
tool is developed that can estimate code readability of code snippets written in C#
language. Finally, predicted values and original values are compared using MAPE and
MAD measures, which highlights the effectiveness of the proposed prediction model
with minimum mean error.
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