Pappus's Hexagon Theorem in Real Projective Plane ${ }^{1}$

Roland Coghetto
cafr-MSA2P asbl
Rue de la Brasserie 5
7100 La Louvière, Belgium

Summary. In this article we prove, using Mizar 2, [1, the Pappus's hexagon theorem in the real projective plane: "Given one set of collinear points A, B, C, and another set of collinear points a, b, c, then the intersection points X, Y, Z of line pairs $A b$ and $a B, A c$ and $a C, B c$ and $b C$ are collinear, $\left\lfloor^{2}\right.$

More precisely, we prove that the structure ProjectiveSpace TOP-REAL3 [10] (where TOP-REAL3 is a metric space defined in [5) satisfies the Pappus's axiom defined in 11 by Wojciech Leończuk and Krzysztof Prażmowski. Eugeniusz Kusak and Wojciech Leończuk formalized the Hessenberg theorem early in the MML 99. With this result, the real projective plane is Desarguesian.

For proving the Pappus's theorem, two different proofs are given. First, we use the techniques developed in the section "Projective Proofs of Pappus's Theorem" in the chapter "Pappos's Theorem: Nine proofs and three variations" (12]. Secondly, Pascal's theorem (4) is used.

In both cases, to prove some lemmas, we use Prover 9^{3} the successor of the Otter prover and ott 2 miz by Josef Urbar ${ }^{4}$ [13], [8, [7].

In Coq, the Pappus's theorem is proved as the application of GrassmannCayley algebra [6] and more recently in Tarski's geometry [3].

MSC: 51N15 03B35 68V20

Keywords: Pappus's Hexagon Theorem; real projective plan; GrassmannPlücker relation; Prover9

MML identifier: PAPPUS, version: 8.1.11 5.66.1402

[^0]
1. Preliminaries

From now on $a, b, c, d, e, f, g, h, i$ denote real numbers and M denotes a square matrix over \mathbb{R} of dimension 3 .

Now we state the propositions:
(1) \quad Suppose $M=\langle\langle a, b, c\rangle,\langle d, e, f\rangle,\langle g, h, i\rangle\rangle$. Then $\operatorname{Det} M=a \cdot e \cdot i-c \cdot e$. $g-a \cdot f \cdot h+b \cdot f \cdot g-b \cdot d \cdot i+c \cdot d \cdot h$.
(2) Let us consider elements P_{1}, P_{4}, P_{5} of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$, and elements $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$ of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose p_{1} is not zero and $P_{1}=$ the direction of p_{1} and p_{4} is not zero and $P_{4}=$ the direction of p_{4} and p_{5} is not zero and $P_{5}=$ the direction of p_{5} and P_{1}, P_{4} and P_{5} are collinear. Then $\langle | p_{1}, p_{2}, p_{4}| \rangle \cdot\langle | p_{1}, p_{3}, p_{5}| \rangle=\langle | p_{1}, p_{2}, p_{5}| \rangle \cdot\langle | p_{1}, p_{3}, p_{4}| \rangle$.
(3) Let us consider non zero real numbers $r_{416}, r_{415}, r_{413}, r_{418}, r_{419}, r_{412}$, $r_{712}, r_{746}, r_{716}, r_{742}, r_{715}, r_{743}, r_{713}, r_{745}, r_{749}, r_{718}, r_{719}, r_{748}$. Suppose $\left(-r_{412}\right) \cdot\left(-r_{713}\right)=\left(-r_{413}\right) \cdot\left(-r_{712}\right)$ and $\left(-r_{415}\right) \cdot\left(-r_{719}\right)=\left(-r_{419}\right) \cdot\left(-r_{715}\right)$ and $\left(-r_{418}\right) \cdot\left(-r_{716}\right)=\left(-r_{416}\right) \cdot\left(-r_{718}\right)$ and $\left(-r_{745}\right) \cdot r_{416}=\left(-r_{746}\right) \cdot r_{415}$ and $\left(-r_{748}\right) \cdot r_{413}=\left(-r_{743}\right) \cdot r_{418}$ and $\left(-r_{742}\right) \cdot r_{419}=\left(-r_{749}\right) \cdot r_{412}$ and $r_{712} \cdot r_{746}=r_{716} \cdot r_{742}$ and $r_{715} \cdot r_{743}=r_{713} \cdot r_{745}$. Then $r_{718} \cdot r_{749}=r_{719} \cdot r_{748}$.

2. Some Technical Lemmas Proved by Prover9 and Translated with Help of ott2miz

From now on P_{2} denotes a projective space defined in terms of collinearity and $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}, c_{9}, c_{10}$ denote elements of P_{2}.

Now we state the propositions:
(4) Suppose $c_{2} \neq c_{1}$ and $c_{3} \neq c_{1}$ and $c_{3} \neq c_{2}$ and $c_{4} \neq c_{2}$ and $c_{4} \neq c_{3}$ and $c_{5} \neq c_{1}$ and $c_{6} \neq c_{1}$ and $c_{6} \neq c_{5}$ and $c_{7} \neq c_{5}$ and $c_{7} \neq c_{6}$ and c_{1}, c_{4} and c_{7} are not collinear and c_{1}, c_{4} and c_{2} are collinear and c_{1}, c_{4} and c_{3} are collinear and c_{1}, c_{7} and c_{5} are collinear and c_{1}, c_{7} and c_{6} are collinear and c_{4}, c_{5} and c_{8} are collinear and c_{7}, c_{2} and c_{8} are collinear and c_{4}, c_{6} and c_{9} are collinear and c_{3}, c_{7} and c_{9} are collinear and c_{2}, c_{6} and c_{10} are collinear and c_{3}, c_{5} and c_{10} are collinear. Then
(i) c_{4}, c_{7} and c_{2} are not collinear, and
(ii) c_{4}, c_{10} and c_{3} are not collinear, and
(iii) c_{4}, c_{7} and c_{3} are not collinear, and
(iv) c_{4}, c_{10} and c_{2} are not collinear, and
(v) c_{4}, c_{7} and c_{5} are not collinear, and
(vi) c_{4}, c_{10} and c_{8} are not collinear, and
(vii) c_{4}, c_{7} and c_{8} are not collinear, and
(viii) c_{4}, c_{10} and c_{5} are not collinear, and
(ix) c_{4}, c_{7} and c_{9} are not collinear, and
(x) c_{4}, c_{10} and c_{6} are not collinear, and
(xi) c_{4}, c_{7} and c_{6} are not collinear, and (xii) c_{4}, c_{10} and c_{9} are not collinear, and (xiii) c_{7}, c_{10} and c_{5} are not collinear, and (xiv) c_{7}, c_{4} and c_{6} are not collinear, and (xv) c_{7}, c_{10} and c_{9} are not collinear, and (xvi) c_{7}, c_{4} and c_{3} are not collinear, and (xvii) c_{7}, c_{10} and c_{3} are not collinear, and (xviii) c_{7}, c_{4} and c_{9} are not collinear, and (xix) c_{7}, c_{10} and c_{2} are not collinear, and $(\mathrm{xx}) c_{7}, c_{4}$ and c_{8} are not collinear, and (xxi) c_{10}, c_{4} and c_{2} are not collinear, and (xxii) c_{10}, c_{7} and c_{6} are not collinear, and (xxiii) c_{10}, c_{4} and c_{6} are not collinear, and (xxiv) c_{10}, c_{7} and c_{2} are not collinear, and (xxv) c_{10}, c_{4} and c_{5} are not collinear, and (xxvi) c_{10}, c_{7} and c_{3} are not collinear, and (xxvii) c_{10}, c_{4} and c_{3} are not collinear, and (xxviii) c_{10}, c_{7} and c_{5} are not collinear.
(5) Suppose $c_{2} \neq c_{1}$ and $c_{3} \neq c_{2}$ and $c_{5} \neq c_{1}$ and $c_{7} \neq c_{5}$ and $c_{7} \neq c_{6}$ and c_{1}, c_{4} and c_{7} are not collinear and c_{1}, c_{4} and c_{2} are collinear and c_{1}, c_{4} and c_{3} are collinear and c_{1}, c_{7} and c_{5} are collinear and c_{1}, c_{7} and c_{6} are collinear and c_{4}, c_{5} and c_{8} are collinear and c_{7}, c_{2} and c_{8} are collinear and c_{2}, c_{6} and c_{10} are collinear and c_{3}, c_{5} and c_{10} are collinear.
Then c_{10}, c_{7} and c_{8} are not collinear.
(6) Suppose c_{1}, c_{4} and c_{7} are not collinear and c_{1}, c_{4} and c_{2} are collinear and c_{1}, c_{4} and c_{3} are collinear and c_{1}, c_{7} and c_{5} are collinear and c_{1}, c_{7} and c_{6} are collinear and c_{4}, c_{5} and c_{8} are collinear and c_{7}, c_{2} and c_{8} are collinear and c_{4}, c_{6} and c_{9} are collinear and c_{3}, c_{7} and c_{9} are collinear and c_{2}, c_{6} and c_{10} are collinear and c_{3}, c_{5} and c_{10} are collinear. Then
(i) c_{4}, c_{2} and c_{3} are collinear, and
(ii) c_{4}, c_{5} and c_{8} are collinear, and
(iii) c_{4}, c_{9} and c_{6} are collinear, and
(iv) c_{7}, c_{5} and c_{6} are collinear, and
(v) c_{7}, c_{9} and c_{3} are collinear, and
(vi) c_{7}, c_{2} and c_{8} are collinear, and
(vii) c_{10}, c_{2} and c_{6} are collinear, and
(viii) c_{10}, c_{5} and c_{3} are collinear.
(7) Suppose $c_{3} \neq c_{1}$ and $c_{3} \neq c_{2}$ and $c_{6} \neq c_{1}$ and $c_{6} \neq c_{5}$ and c_{1}, c_{2} and c_{5} are not collinear and c_{1}, c_{2} and c_{3} are collinear and c_{1}, c_{5} and c_{6} are collinear. Then
(i) c_{2}, c_{3} and c_{5} are not collinear, and
(ii) c_{2}, c_{3} and c_{6} are not collinear, and
(iii) c_{2}, c_{5} and c_{6} are not collinear, and
(iv) c_{3}, c_{5} and c_{6} are not collinear.
(8) Suppose $c_{3} \neq c_{1}$ and $c_{4} \neq c_{1}$ and $c_{4} \neq c_{3}$ and $c_{3} \neq c_{2}$ and $c_{4} \neq c_{2}$ and $c_{6} \neq c_{1}$ and $c_{7} \neq c_{1}$ and $c_{7} \neq c_{6}$ and $c_{6} \neq c_{5}$ and $c_{7} \neq c_{5}$ and c_{1}, c_{2} and c_{5} are not collinear and c_{1}, c_{2} and c_{3} are collinear and c_{1}, c_{2} and c_{4} are collinear and c_{1}, c_{5} and c_{6} are collinear and c_{1}, c_{5} and c_{7} are collinear. Then
(i) c_{1}, c_{3} and c_{6} are not collinear, and
(ii) c_{1}, c_{3} and c_{4} are collinear, and
(iii) c_{1}, c_{6} and c_{7} are collinear, and
(iv) $c_{3} \neq c_{1}$, and
(v) $c_{2} \neq c_{1}$, and
(vi) $c_{3} \neq c_{2}$, and
(vii) $c_{4} \neq c_{3}$, and
(viii) $c_{4} \neq c_{2}$, and
(ix) $c_{6} \neq c_{1}$, and
(x) $c_{5} \neq c_{1}$, and
(xi) $c_{6} \neq c_{5}$, and
(xii) $c_{7} \neq c_{6}$, and
(xiii) $c_{7} \neq c_{5}$, and
(xiv) c_{1}, c_{4} and c_{7} are not collinear, and
$(\mathrm{xv}) c_{1}, c_{4}$ and c_{3} are collinear, and
(xvi) c_{1}, c_{4} and c_{2} are collinear, and
(xvii) c_{1}, c_{7} and c_{6} are collinear, and
(xviii) c_{1}, c_{7} and c_{5} are collinear.
(9) Suppose $c_{4} \neq c_{2}$ and $c_{4} \neq c_{3}$ and $c_{8} \neq c_{2}$ and c_{2}, c_{3} and c_{6} are not collinear. Then
(i) c_{2}, c_{3} and c_{4} are not collinear, or
(ii) c_{2}, c_{6} and c_{8} are not collinear, or
(iii) c_{3}, c_{4} and c_{8} are not collinear.
(10) Suppose $c_{4} \neq c_{1}$ and $c_{6} \neq c_{5}$ and c_{1}, c_{2} and c_{5} are not collinear. Then
(i) c_{1}, c_{2} and c_{4} are not collinear, or
(ii) c_{1}, c_{5} and c_{6} are not collinear, or
(iii) c_{4}, c_{6} and c_{8} are not collinear, or
(iv) $c_{8} \neq c_{5}$.
(11) Suppose $c_{4} \neq c_{2}$ and $c_{6} \neq c_{1}$ and c_{1}, c_{2} and c_{5} are not collinear and c_{1}, c_{2} and c_{4} are collinear and c_{1}, c_{5} and c_{6} are collinear and c_{4}, c_{6} and c_{8} are collinear. Then $c_{8} \neq c_{2}$.
(12) If c_{1}, c_{2} and c_{5} are not collinear and c_{1}, c_{2} and c_{3} are collinear and c_{1}, c_{2} and c_{4} are collinear, then c_{2}, c_{3} and c_{4} are collinear.
(13) If c_{1}, c_{2} and c_{5} are not collinear and c_{1}, c_{5} and c_{6} are collinear and c_{1}, c_{5} and c_{7} are collinear, then c_{5}, c_{6} and c_{7} are collinear.
(14) If $c_{3} \neq c_{1}$ and c_{1}, c_{2} and c_{5} are not collinear and c_{1}, c_{2} and c_{3} are collinear and c_{1}, c_{5} and c_{7} are collinear, then $c_{7} \neq c_{3}$.
(15) Suppose $c_{4} \neq c_{1}$ and $c_{4} \neq c_{3}$ and c_{1}, c_{2} and c_{5} are not collinear and c_{1}, c_{2} and c_{3} are collinear and c_{1}, c_{2} and c_{4} are collinear and c_{4}, c_{5} and c_{9} are collinear. Then $c_{9} \neq c_{3}$.
(16) Suppose $c_{4} \neq c_{1}$ and $c_{4} \neq c_{2}$ and $c_{6} \neq c_{1}$ and $c_{7} \neq c_{6}$ and $c_{7} \neq c_{5}$ and c_{1}, c_{2} and c_{5} are not collinear and c_{1}, c_{2} and c_{4} are collinear and c_{1}, c_{5} and c_{6} are collinear and c_{1}, c_{5} and c_{7} are collinear and c_{2}, c_{7} and c_{9} are collinear and c_{4}, c_{5} and c_{9} are collinear. Then c_{9}, c_{2} and c_{5} are not collinear.

3. The Real Projective Plane and Pappus's Theorem

From now on $o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ denote elements of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. Now we state the propositions:
(17) Pappus theorem as "Pappos's Theorem: Nine proofs and three variations" [12] VERSION:
Suppose $o \neq p_{2}$ and $o \neq p_{3}$ and $p_{2} \neq p_{3}$ and $p_{1} \neq p_{2}$ and $p_{1} \neq p_{3}$ and $o \neq q_{2}$ and $o \neq q_{3}$ and $q_{2} \neq q_{3}$ and $q_{1} \neq q_{2}$ and $q_{1} \neq q_{3}$ and o, p_{1} and q_{1} are not collinear and o, p_{1} and p_{2} are collinear and o, p_{1} and p_{3} are collinear and o, q_{1} and q_{2} are collinear and o, q_{1} and q_{3} are collinear and p_{1}, q_{2} and r_{3} are collinear and q_{1}, p_{2} and r_{3} are collinear and p_{1}, q_{3} and r_{2} are collinear and p_{3}, q_{1} and r_{2} are collinear and p_{2}, q_{3} and r_{1} are collinear and p_{3}, q_{2} and r_{1} are collinear.
Then r_{1}, r_{2} and r_{3} are collinear.
(18) The projective space over $\mathcal{E}_{\mathrm{T}}^{3}$ is a Pappian, Desarguesian projective plane defined in terms of collinearity.

4. Proof: Special Case of Pascal's Theorem

In the sequel $v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}, c_{9}, c_{10}, v_{100}$, $v_{101}, v_{102}, v_{103}$ denote elements of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. Now we state the propositions:
(19) Suppose $c_{1} \neq c_{2}$ and $c_{1} \neq c_{3}$ and $c_{2} \neq c_{3}$ and $c_{2} \neq c_{4}$ and $c_{3} \neq c_{4}$ and $c_{1} \neq c_{5}$ and $c_{1} \neq c_{6}$ and $c_{5} \neq c_{6}$ and $c_{5} \neq c_{7}$ and $c_{6} \neq c_{7}$ and c_{1}, c_{4} and c_{7} are not collinear and c_{1}, c_{4} and c_{2} are collinear and c_{1}, c_{4} and c_{3} are collinear and c_{1}, c_{7} and c_{5} are collinear and c_{1}, c_{7} and c_{6} are collinear and c_{4}, c_{5} and c_{8} are collinear and c_{7}, c_{2} and c_{8} are collinear and c_{4}, c_{6} and c_{9} are collinear and c_{3}, c_{7} and c_{9} are collinear and c_{2}, c_{6} and c_{10} are collinear and c_{3}, c_{5} and c_{10} are collinear.

Then it is not true that c_{4}, c_{2} and c_{7} are collinear or c_{4}, c_{3} and c_{7} are collinear or c_{2}, c_{3} and c_{7} are collinear or c_{4}, c_{2} and c_{5} are collinear or c_{4}, c_{2} and c_{6} are collinear or c_{4}, c_{3} and c_{5} are collinear or c_{4}, c_{3} and c_{6} are collinear or c_{2}, c_{7} and c_{5} are collinear or c_{2}, c_{7} and c_{6} are collinear or c_{3}, c_{7} and c_{5} are collinear or c_{3}, c_{7} and c_{6} are collinear or c_{2}, c_{3} and c_{5} are collinear or c_{2}, c_{3} and c_{6} are collinear or c_{7}, c_{5} and c_{4} are collinear or c_{7}, c_{6}.

And c_{4} are collinear or c_{5}, c_{6} and c_{4} are collinear or c_{5}, c_{6} and c_{2} are collinear or c_{4}, c_{5} and c_{8} are not collinear or c_{4}, c_{6} and c_{9} are not collinear or c_{2}, c_{7} and c_{8} are not collinear or c_{2}, c_{6} and c_{10} are not collinear or c_{3}, c_{7} and c_{9} are not collinear or c_{3}, c_{5} and c_{10} are not collinear.
(20) $\operatorname{conic}(0,0,0,0,0,0)=$ the carrier of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$.
(21) Suppose $o \neq p_{2}$ and $o \neq p_{3}$ and $p_{2} \neq p_{3}$ and $p_{1} \neq p_{2}$ and $p_{1} \neq p_{3}$ and $o \neq q_{2}$ and $o \neq q_{3}$ and $q_{2} \neq q_{3}$ and $q_{1} \neq q_{2}$ and $q_{1} \neq q_{3}$ and o, p_{1} and q_{1} are not collinear and o, p_{1} and p_{2} are collinear and o, p_{1} and p_{3} are collinear and o, q_{1} and q_{2} are collinear and o, q_{1} and q_{3} are collinear and p_{1}, q_{2} and r_{3} are collinear and q_{1}, p_{2} and r_{3} are collinear and p_{1}, q_{3} and r_{2} are collinear and p_{3}, q_{1} and r_{2} are collinear and p_{2}, q_{3} and r_{1} are collinear and p_{3}, q_{2} and r_{1} are collinear.
Then $p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ form the Pascal configuration.
(22) Pappus theorem as a special case of Pascal's theorem:

Suppose $o \neq p_{2}$ and $o \neq p_{3}$ and $p_{2} \neq p_{3}$ and $p_{1} \neq p_{2}$ and $p_{1} \neq p_{3}$ and $o \neq q_{2}$ and $o \neq q_{3}$ and $q_{2} \neq q_{3}$ and $q_{1} \neq q_{2}$ and $q_{1} \neq q_{3}$ and o, p_{1} and q_{1} are not collinear and o, p_{1} and p_{2} are collinear and o, p_{1} and p_{3} are collinear.

And o, q_{1} and q_{2} are collinear and o, q_{1} and q_{3} are collinear and p_{1}, q_{2} and r_{3} are collinear and q_{1}, p_{2} and r_{3} are collinear and p_{1}, q_{3} and r_{2} are collinear and p_{3}, q_{1} and r_{2} are collinear and p_{2}, q_{3} and r_{1} are collinear and p_{3}, q_{2} and r_{1} are collinear.
Then r_{1}, r_{2} and r_{3} are collinear.
Proof: p_{1}, p_{2} and p_{3} are collinear. Consider u_{1}, u_{2}, u_{3} being elements of $\mathcal{E}_{\mathrm{T}}^{3}$ such that $p_{1}=$ the direction of u_{1} and $p_{2}=$ the direction of u_{2} and $p_{3}=$ the direction of u_{3} and u_{1} is not zero and u_{2} is not zero and u_{3} is not zero and u_{1}, u_{2} and u_{3} are lineary dependent. Set $x_{1}=$ $\left(u_{2}\right)_{\mathbf{2}} \cdot\left(\left(u_{3}\right)_{\mathbf{3}}\right)-\left(u_{2}\right)_{\mathbf{3}} \cdot\left(\left(u_{3}\right)_{\mathbf{2}}\right)$. Set $x_{2}=\left(u_{2}\right)_{\mathbf{3}} \cdot\left(\left(u_{3}\right)_{\mathbf{1}}\right)-\left(u_{2}\right)_{\mathbf{1}} \cdot\left(\left(u_{3}\right)_{\mathbf{3}}\right)$. Set $x_{3}=\left(u_{2}\right)_{\mathbf{1}} \cdot\left(\left(u_{3}\right)_{\mathbf{2}}\right)-\left(u_{2}\right)_{\mathbf{2}} \cdot\left(\left(u_{3}\right)_{\mathbf{1}}\right) . q_{1}, q_{2}$ and q_{3} are collinear.

Consider v_{1}, v_{2}, v_{3} being elements of $\mathcal{E}_{\mathrm{T}}^{3}$ such that $q_{1}=$ the direction of v_{1} and $q_{2}=$ the direction of v_{2} and $q_{3}=$ the direction of v_{3} and v_{1} is not zero and v_{2} is not zero and v_{3} is not zero and v_{1}, v_{2} and v_{3} are lineary dependent. Set $y_{1}=\left(v_{2}\right)_{\mathbf{2}} \cdot\left(\left(v_{3}\right)_{\mathbf{3}}\right)-\left(v_{2}\right)_{\mathbf{3}} \cdot\left(\left(v_{3}\right)_{\mathbf{2}}\right)$. Set $y_{2}=$ $\left(v_{2}\right)_{\mathbf{3}} \cdot\left(\left(v_{3}\right)_{\mathbf{1}}\right)-\left(v_{2}\right)_{\mathbf{1}} \cdot\left(\left(v_{3}\right)_{\mathbf{3}}\right)$. Set $y_{3}=\left(v_{2}\right)_{\mathbf{1}} \cdot\left(\left(v_{3}\right)_{\mathbf{2}}\right)-\left(v_{2}\right)_{\mathbf{2}} \cdot\left(\left(v_{3}\right)_{\mathbf{1}}\right)$. Set $x_{4}=x_{1} \cdot y_{1}$. Set $x_{5}=x_{2} \cdot y_{2}$. Set $x_{6}=x_{3} \cdot y_{3}$. Set $x_{7}=x_{1} \cdot y_{2}+x_{2} \cdot y_{1}$. Set $x_{8}=x_{1} \cdot y_{3}+x_{3} \cdot y_{1}$. Set $x_{1}=x_{2} \cdot y_{3}+x_{3} \cdot y_{2}$. For every point u of $\mathcal{E}_{\mathrm{T}}^{3}, \operatorname{qfconic}\left(x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{1}, u\right)=\left|\left(u, u_{2} \times u_{3}\right)\right| \cdot\left|\left(u, v_{2} \times v_{3}\right)\right|$.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pą. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi 10.1007/s10817-017-9440-6
[3] Gabriel Braun and Julien Narboux. A synthetic proof of Pappus' theorem in Tarski's geometry. Journal of Automated Reasoning, 58(2):23, 2017. dol $10.1007 /$ S10817-016-9374-4.
[4] Roland Coghetto. Pascal's theorem in real projective plane. Formalized Mathematics, 25(2):107-119, 2017. doi 10.1515/forma-2017-0011.
[5] Agata Darmochwał. The Euclidean space Formalized Mathematics, 2(4):599-603, 1991.
[6] Laurent Fuchs and Laurent Thery. A formalization of Grassmann-Cayley algebra in Coq and its application to theorem proving in projective geometry. In Automated Deduction in Geometry, pages 51-67. Springer, 2010.
[7] Adam Grabowski. Mechanizing complemented lattices within Mizar system. Journal of Automated Reasoning, 55:211-221, 2015. doi 10.1007/s10817-015-9333-5.
[8] Adam Grabowski. Solving two problems in general topology via types In Types for Proofs and Programs, International Workshop, TYPES 2004, Jouy-en-Josas, France, December 15-18, 2004, Revised Selected Papers, pages 138153, 2004. doi 10.1007/11617990_9 http://dblp.uni-trier.de/rec/bib/conf/ types/Grabowski04.
[9] Eugeniusz Kusak and Wojciech Leończuk. Hessenberg theorem. Formalized Mathematics, 2(2):217-219, 1991.
[10] Woiciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. Formalized Mathematics, 1(4):761-766, 1990.
[11] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces - part I Formalized Mathematics, 1(4):767-776, 1990.
[12] Jürgen Richter-Gebert. Pappos's Theorem: Nine Proofs and Three Variations, pages 3-31. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-17286-1. doi 10.1007/978-3-642-17286-1_1
[13] Piotr Rudnicki and Josef Urban. Escape to ATP for Mizar. In First International Workshop on Proof eXchange for Theorem Proving-PxTP 2011, 2011.

Accepted June 30, 2021

[^0]: ${ }^{1}$ This work has been supported by the "Centre autonome de formation et de recherche en mathématiques et sciences avec assistants de preuve" ASBL (non-profit organization). Enterprise number: 0777.779.751. Belgium.
 ${ }^{2}$ https://en.wikipedia.org/wiki/Pappus's_hexagon_theorem
 3 https://www.cs.unm.edu/~mccune/prover9/
 ${ }^{4}$ See its homepage https://github.com/JUrban/ott2miz

