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Cloud-based services revolutionize how applications are designed and provisioned 
in more and more application domains. Operating a cloud application, however, 
requires careful choices of configuration settings so that the quality of service is 
acceptable at all times, while cloud costs remain reasonable. We propose an 
analytical queuing model for cloud resource provisioning that provides an 
approximation on end-to-end application latency and on cloud resource usage, and 
we evaluate its performance. We pick an emerging use case of cloud deployment 
for validation: sports analytics. We have created a low-cost, cloud-based soccer 
player tracking system. We present the optimization of the cloud-deployed data 
processing of this system: we set the parameters with the aim of sacrificing as least 
as possible on accuracy, i.e., quality of service, while keeping latency and cloud 
costs low. We demonstrate that the analytical model we propose to estimate the 
end-to-end latency of a microservice-type cloud native application falls within a 
close range of what the measurements of the real implementation show. The model 
is therefore suitable for the planning of the cloud deployment costs for 
microservice-type applications as well. 

KEYWORDS: CLOUD NATIVE, MICROSERVICE, DIMENSIONING, SOCCER PLAYER 
TRACKING 

Although clouds provide several advantages such as elasticity and a pay-as-you-go model, such 
characteristics come at a price. One important drawback of clouds is how to estimate the amount 
of resources to deploy. Depending on the type of application, it may not be simple to estimate 
the necessary amount of resources. However, determining the amount of resources to be 
provisioned for the execution of expected workflows is key to achieve cost-efficient resource 
management and good performance. 
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There are several related work that tackle the dimensioning of cloud applications via analytical 
models. In Pietri et al. (2014), a performance prediction model is presented to estimate execution 
time of scientific workflows for a number of resources. Their results show that the proposed 
model can predict execution time with an error of less than 20% for over 96.8% of the 
experiments. The authors of Salah et al. (2015) present an analytical model based on Markov 
chains to predict the number of cloud instances needed to satisfy a given Service Level Objective 
(SLO) performance requirement such as response time, throughput, or request loss probability. 
In order to avoid over-, or under-dimensioning, Coutinho et al. (2017) address the problem of 
dimensioning the amount of virtual machines in clouds for executing high performance 
computing scientific applications. In pursuit of faster development cycles, the preference has 
moved to small decoupled services over monoliths. Following this trend, distributed systems 
made of microservices have grown in scale and complexity. Creating models of services and 
systems for characterization and formal analysis can alleviate the issue of dimensioning. 
Response time is the main interest of Correia et al. (2018): the authors focus on bottleneck 
detection and propose a method for modeling production services as queuing systems from 
request traces. Their results show that a simple queuing system with a single queue and multiple 
homogeneous servers has a small parameter space that can be estimated in production. Jindal et 
al. (2019) addresses the challenge of identifying the maximal rate of requests that can be served 
without violating SLO, individually for each microservice. The authors argue that finding 
individual capacities of microservices ensures the flexibility of the capacity planning for the 
whole application. The evaluation of their microservice performance models show predictions 
with mean absolute percentage error less than 10%. 
Data analytics in sports has been gaining steam: with novel means of collecting data, applying 
creative data mining methods and the rise of cloud-deployed big data technologies, both the 
complexity and the importance of sports analytics, especially in team sports, are steeply 
increasing.  The predominant fraction of sports analytics findings, more complex than box score 
and play-by-play statistics, rely on the positional data of players throughout the game, whether 
the investigation targets a team or an individual sport. Hence, player tracking is important for 
data analysts, and the application scenarios of the positions measured serve technical goals of 
trainers, business goals of scouts, and entertainment of viewers. For several of the potential use 
cases it is important to provide tracking data as fast as possible, possibly in real-time, e.g., for 
on-screen statistics in TV broadcasts, real-time odds on betting portals. Those real-time scenarios 
would not work, if tracking computation takes too long. 
In this paper we propose a football player tracking system that grasps the vision of cheap sports 
analytics for the masses. The methodological details of the video processing has been published 
in our earlier paper Csanalosi et al. (2020). Our focus in this paper is to optimize the cloud native 
operation of the system in terms of accuracy, end-to-end processing latency and costs. Our 
contribution is three-fold: i) we propose a cloud native design for elastic scaling of the most 
resource-consuming components; ii) we demonstrate how to optimize the most important 
parameters of the system, e.g., video resolution, image segmentation (we find that a good quality 
video stream is essential for an accurate tracking); iii) we build and validate a theoretical queuing 
model of the system for planning the amount of resource provisioned for the processing of high 
resolution video streams. The model is then not only used to dimension the cloud application, 
but also to estimate the expected end-to-end processing latency. The latter is of the utmost 
importance for the potential application user, especially when real-time analytics is built on the 
positional data output. 
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In this section we discuss the cloud deployment design and the parallelization we have made for 
speeding up video processing. Furthermore, we present the components of our proposed system 
along with the most important system parameters, and we list the most recent results of the vast 
body of research on player tracking in sports and the most widely known commercial tracking 
products.

In order for our video processing system to meet the requirements to be portable, scalable and 
inexpensive to operate, we are deploying our system in the cloud. In the following, we describe 
our considerations and the available virtualization techniques. Then the components of the 
system, their tasks and the way of communication between them are described.
Our system is implemented using microservice architecture Pautasso et al. (2017). The essence 
of this pattern is that a complex application is built from independent, separately operated 
components, where the components communicate with each other through well-defined 
interfaces. It is also important that the individual components of the system are separately 
scalable. The resource requirements of various components are not the same, e.g., video 
processing is a CPU-intensive task, while ingesting the video stream is an I/O intensive task.
System components are implemented in Docker Docker (2021) containers, from which multiple 
instances can run, managed by Kubernetes Kubernetes (2021). 
The architecture of our system is shown in Figure1. The system is designed to be able to process 
a live video stream. This stream is buffered in the Streamer component for a specified period in 
preparation for possible slow processing and the fact that the image streams of the cameras may 
not be received at the same time. Addressing the latter problem, the Streamer is responsible for 
resolving the possible delay between the cameras from the first few seconds of the live image 
and concatenating the images from the cameras horizontally so that players can be seen 
throughout the pitch without distortion. Player detection and tracking are performed on the entire 
image. In addition, this module also defines a mapping between image and real-world 
coordinates so that later the detected players in the image can be positioned. In addition, the 
Streamer component includes an RTSP Schulzrinne et al. (1998) server that is responsible for 
making the concatenated image available after encoding. Encoding is lossless with H.264 codec
Richardson (2011).

Figure 1. The architecture of our system
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Our proposed detection algorithm is not capable of real-time operation, with current video 
settings and on a single CPU core. Therefore, the system is designed using separate detection 
and tracking components, and run multiple detection instances in parallel. A requirement on the 
part of the tracking component is to receive the detected players' positions in ordered sequence. 
Since the detection algorithm processes individual images as input, multiple detection 
algorithms can run in parallel to process multiple images in order to achieve the desired 
processing speed. We perform temporal fragmentation, e.g., if the video is recorded at 30 fps 
and 5 detection instances are running, each detection instance receives every 5th image, thus, it 
is as if each gets a video recorded at 6 fps. Thus a Dispatcher component is needed that splits 
the input video stream coming from the Streamer and a Merger component that queues the results 
of the detection instances. The actual Dispatcher logic also considers the video encoding 
characteristics, e.g., number of P frames after an I frame, while striving for minimal buffer time 
in order to keep end-to-end latency minimal. Once the Merge component has arranged the 
detection results, it writes the position of the players into a database. The Tracking component 
reads this database asynchronously and performs the player tracks. Our design choice was to 
keep the computer vision logic stateless, i.e., the Workers do not consider the previously detected 
positions of players when they are processing their current batch of frames. Although taking 
information about the previous frames into account during image processing, the detection 
algorithm could search players in the neighborhood of a past object, the cloud-native design of 
our application dictates that states should be externalized from functions as much as possible. 
Previously detected objects could be read by Workers from the database, but that would 
introduce a data access delay on par with the potential time saving in terms of detection. The 
Dispatcher component reads and decodes incoming frames from the Streamer via RTSP. 
Workers connect to the Dispatcher using message queues. The Dispatcher forwards the frames 
in a round-robin fashion, ensuring that each Worker receives the appropriate frames. Workers 
send detection results to Merger via a message queue. 

In order to produce the position of each player with fine time granularity and high accuracy, 
various high-precision player tracking solutions are used: systems that apply wearable devices 
on the players Catapult (2021); STATSports (2021); PLAYERTEK (2021) and optical tracking 
solutions that are based on multiple cameras' feeds and video processing techniques Linke et al. 
(2020); SportVU (2021); ChyronHego (2021); Sentio (2021). Nowadays both categories consist 
of relatively expensive machinery and expertise, which restricts the usage of those solutions 
solely in the top level competitions. 
We argue that camera-based tracking can be made cheaper by switching from expensive camera 
systems to fewer and low-cost cameras. Obviously this step results in poorer video quality, but 
we propose to leverage today's low prices of cloud computing for processing the video streams, 
and gaining back on the accuracy. Instead of installing high quality custom camera arrays 
ChyronHego (2021) and spidercams Spidercam (2021), one can install regular action cameras. 
Only a few of them might be enough, positioned as to get a bird's-eye view over the whole 
football pitch. The necessary elevation of the cameras allows to install them among the seats of 
a modest stadium, so the installation costs are negligible compared to what any currently 
available optical tracking product would cost. 
In this section we discuss the related work that propose optical tracking solutions similar to ours, 
then we provide details about the input video settings that we feed to our system, finally, the 
detection and tracking methods are described. 
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Several studies have proposed using image processing models for optical tracking of players, 
and producing input data for sports analytics. Point tracking was studied in Li and Flierl (2012) 
by proposing scale invariant feature transforms. The player is tracked by calculating the median 
of motion shifts. Players can be tracked by searching the optimal path in a graph, based on the 
proposal in Pallavi et al. (2008): a directed acyclic graph is constructed, whereas the nodes are 
probable player candidates and they are linked in the current frame with the next two consecutive 
frames. Then the problem of finding the longest path in the graph is formulated as dynamic 
programming. Another work Muthuraman et al. (2018) proposed detecting players based on the 
information on jersey color, and a tracker was used for robust tracking of the players. A more 
advanced solution for this problem is what Iwase and Saito (2004) used with a total number of 
15 cameras on both sides of the pitch and got over 50% of the players fully tracked without any 
errors. Our image processing module implements background/foreground separation, which was 
applied for the same problem in Baysal and Duygulu (2016), stating that the disengaged 
foreground can be distracted with the occluding players, however the method is a key step in 
motion detection. 

In our system, we get the input video from two basic sport cameras SJ7 (2021) and merge these 
two images together, so we could perform the object detection for the players on each frame on 
the merged image. The camera placement and alignment can be seen in Figure 2. The video 
resolution is 2560x1440 pixels for each camera, and its frame rate is 60 frames per second (fps). 
One important step is to get the points corresponding to players from the video, and another step 
is to transform these points to a coordinate system which represents the pitch with a width of of 
107m and a height of 68m. 

 

 
Figure 2. The camera system designed and used for this experiment Csanalosi et al. (2020) 

 

We use the Python library OpenCV OpenCV (2021) to process the video input, frame by frame. 
On each frame, we perform the object detection in the following steps. We crop the playfield 
from the image. Then we set up a background model, which helps us detect any kind of 
movement on the pitch by separating what is in the „foreground“ and what is in the 
„background“. Next, we remove the noise from the subtracted foreground by applying a 
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morphological transformation on the image. Finally we seek the exterior contours in this binary 
image. By the end of the detection procedure, proposed in Csanalosi et al. (2020), a decision is 
made whether a contour in a given point of the field is possibly a human, by the size of each 
contour, e.g., at a certain point in the image, the size of a human can be estimated in function of 
its distance from the cameras. After all, we transform the contours' points to birds-eye view with 
a perspective transformation method. We measure the color within the contour, and with the 
knowledge of the current jersey colors, we decide which team the player belongs to.
In Csanalosi et al. (2020) we compared the results of the player recognition algorithm with the 
original GPS coordinates from the players wearable sensors (from their Catapult vests Catapult 
(2021)). We tested the algorithm for 2 matches. We calculated the minimum distances between 
the two sets of points, i.e., between GPS coordinates and the tracked points. The high level 
statistics are: average distance is 11.6 meters, the median of distance values is 9.0 meters.

With the player detection method proposed above, we have a labeled dataset, with the team 
colors assigned to every player position. There might be missing positions for certain players, 
this is why we utilized Kalman filter Csanalosi et al. (2020) for tracking. Kalman filter Welch et 
al. (1995) was designed for navigation control systems, particularly for aircraft and ships. This 
means that the original application of this filter was on big objects that rarely had quick direction 
changes. Therefore, in our system, we might face difficulties with a rectilinear motion model for 
the players, since the human movement - in football, especially - is really altering in every second 
both in velocity and in direction. However, Kalman filter is one of the simplest methods for 
tracking multiple objects with a relatively large Gaussian noise rate. The way we approach the 
problem might produce less accurate results in some cases, but overall we can experience more 
of the positive effects of Kalman filter, the main steps of which are depicted in Figure 3.

Figure 3. Kalman filter steps in our system

The filter has two methods, predict and update. The prediction step predicts where the next 
positional coordinates should, or might be. The update step puts these new set of points on the 
tail of the existing tracks. Kalman filter is used to estimate states based on linear dynamical 
systems in state space format. Every k-th state comes from the following calculation:
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xk = Fxk-1 + Buk-1 + wk-1, 
where F is the state transition matrix, multiplied with the previous state vector, B is the control 
input matrix, multiplied with the control vector for the previous state, wk-1 is the noise vector, 
that is assumed to be zero-mean Gaussian distribution with a given covariance Q. The other part 
of the model is the measurement model which comes in the form of: 
zk = Hxk + vk, 
where zk is the measurement vector, H is the measurement matrix, and vk is the measurement 
noise vector, also assumed to be zero-mean Gaussian distribution with a covariance R. 
The goal is to provide x at time k. The initial values x0, z1, z2, ..., zk are the series of 
measurements, plus the system information is described by the matrices. Tuning the Q and R 
matrices may give the desired result for the system. Assuming the matrices are time invariant is 
key in this application. With these parameters given, the algorithm can start to execute the two 
steps: prediction, and update. The prediction step is guessing the next estimated state of the 
system, and predicting an error covariance. 
The update step is going to be executed with a calculated variable called Kalman gain, which 
means the error rate in the measurements. One can instruct the system either to rely on the 
predicted values, or to use the input data from the measurements with a larger weight. An optimal 
solution in our case is to adaptively change it, but we have to consider an average noise of 1 
meter for every measured point, because our transformation and detection system produces this 
1 meter (-0.5m/+0.5m range) error, with the distance from the camera having a large impact on 
the accuracy of the detection. 
This tracking method needs a certain amount of frames to identify the individual tracks, but if 
we leave it to run for too long, the computation time and the delay will increase. For this issue, 
we use segmented tracking, in which the algorithm runs for a specific number of consecutive 
frames, then stops. At this point, we need an association between the player tracks identified in 
consecutive segments. To solve this problem, we used the Hungarian method Kuhn (1954), 
which gives us a complete pairing between every single track from the i-th iteration and from 
the i+1-th. 
We chose 50 seconds for the length of a tracking segment as we measured the accuracy with 
longer intervals and found that points started oscillating when two or more players were in a 
close range, and although the produced points were correct position-wise, they usually belonged 
to the wrong player. 
In our prior work Csanalosi et al. (2020) we proposed a player detection and tracking system of 
which we examined the performance by a comparison to an R-CNN-based detection and 
DeepSort-based tracking on 2 matches worth of data. We created a histogram to illustrate the 
distribution of the number of recognized players in a video frame, shown in Figure 4. 
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Figure 4. Histogram of the number of detected players per frame yielded by our proposed method 

 
The metric for evaluation of the tracking part is the amount of tracks per frame.  The histogram 
of followed tracks can be seen in Figure 5. 
 

 

 
Figure 5. Histogram of the number of tracks per frame yielded by our tracking method 

 
We measured that the average of this metric is 9.8 for the 10 outfield players of a team in the 
observed 2 matches. We note that the missing recognition of players on the opposite side of the 
pitch may lead to oscillating tracks and bad results. However, the Kalman filter strives to fill in 
this missing information and predict where players could have been on the frames we could not 
detect them. The false-negative detection of R-CNN was high because distant players and 
players in unusual poses - such as while jumping - were not recognized. The average number of 
detected players per frame for the test videos was 5 per team, significantly poorer than our 
system's result, i.e., 7. The median distance between the players detected on the image and the 
GPS coordinates was 10.5 meters (to be compared to 9.0 meters of our solution). Our solution's 
results seemed to be slightly more precise in this evaluation aspect. The advantage became 
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obvious when we took a look at the third performance metric, the number of tracks per frame. 
While our tracking method continuously tracked all players, the deep learning followed only a 
fraction of those in many frames. The DeepSort tracking maintained 9.3 tracks on average per 
frame in the 2 match videos for the 2 teams, goalkeepers (and referees) included; on average a 
track ended after 42 seconds. 
The deep learning solution performed poorly in terms of ID switches as well. Even if the R-CNN 
model found players accurately, based on the GPS measurements we found that the tracking was 
not effective because the tracks were often swapped. Therefore despite the fact that a track lived 
for a long time, it was often associated with multiple players. The number of ID switches were 
much lower in our proposed method. We examined the performance of the deep learning 
approach on three manually annotated players. Our observation was that the closer the player to 
the camera, the better the tracking. During the tracking the three players suffered 44, 34 and 27 
ID switches, and an ID lasted on average only for 1.6, 2.1, 2.5 seconds, a much worse result than 
our proposed system's. 

In this section we provide the optimal system parameters for the best achievable accuracy and 
the shortest runtime of the applied methods. We also describe our model for the end-to-end 
latency of the video processing pipeline and we summarize the results of our proof-of-concept 
implementation in terms of accuracy, latency and costs. 

When it comes to processing a large amount of data with many parameters throughout the 
system, we might not be able to tell which combination of them is going to give the best possible 
outcome. Also, the system might be customized for various use cases. One might be able to 
compute a faster result with lower accuracy, or request slow runtime but with maximized 
accuracy. We used a grid-search to find the combination of input variables yielding the best 
results. 
Our optimization model consists of four parameters: 

• frame rate of the video input [fps], 

• video resolution, i.e., image width and height [pixels], 

• number of background models applied in the detection, 

• state/measurement variance in Kalman filter of tracking. 
Frame rate: the more frames we process the runtime naturally increases, but we have the ability 
of getting more players recognized. Since our Kalman filter predicts on every ``tick'', the results 
showed us that the accuracy may not benefit from a larger frame rate since we predict most of 
the coordinates when we have no detected positions. 
Image width: When lower resolution images, e.g., 1280x720, are transported and analyzed, the 
average time needed to process one frame is fairly smaller than with a larger (2560x1440) image. 
However there is a negative effect in the detection accuracy of the lower resolution, since we 
lose information. 
Grid size of background models: Our image processing contains a phase of background-
foreground separation which is processing heavy step. Since this might set a performance 
bottleneck for our system, we created smaller background models for different segments of the 
image. We used a grid of i x j in the horizontal and vertical dimensions of the image, where i 



IJCSS – Volume 20/2021/Issue 2              www.iacss.org 

39 

and j mean the number of segments in the given direction. Player contours were detected on each 
background model separately. Obviously processing them in parallel creates a significant 
performance boost in latency. 
State/measurement variance: is connected to the trustworthiness given to each detection by the 
Kalman filter. At a large parameter value, the filter takes the predictions with larger weight rather 
than the detected points, but setting it to a small value, the detections are believed to be mostly 
correct. 
The evaluated values of the parameters are the following: 

• frame rate: 6, 10, 15, 20 or 30 fps; 

• resolution: 1280 x 720, 1536 x 864, 1920 x 1080, 2048 x 1152 or 2560 x 1440; 

• grid size: 1, 2, 4, 8 or 16; 

• state / measurement variance: range from 0.9 to 1.6. 
When evaluating the results, we saw no significant changes in the accuracy when iterating 
through the domain of the state / measurement variance, so we used the value of 1m. 
Accuracy is defined by two aspects: i) detection accuracy, denoted by d in [0,1], ii) tracking 
inaccuracy, denoted by t in [0,1]. The total number of on-field players are usually 20 (without 
counting goalkeepers and referees), so we calculate d as the percentage of detected players 
compared to 20. The tracking inaccuracy t's worst possible value is 1 as this term reflects the 
average distance of the tracks from the their ground truth locations (scaled to [0,1]). We calculate 
t relative to the GPS coordinates of the player tracks, collected via wearable sensors Catapult 
(2021) on each frame. We treat 16-meter and beyond errors as extreme inaccuracies, hence we 
scale the errors by 16m, and distances above 16m are floored to 1 after scaling. 
Let alpha be a variable which sets the weights of d and t in the overall accuracy following the 
formula: 
a = alpha d - (1-alpha) t. 
A large alpha means that we expect the best possible detection, a small alpha will give us the 
closest possible results of the tracks. 
The evaluation of our system with various parameter settings were performed on 3x10 minutes 
of video input from a competitive soccer match. We executed the detection and the tracking for 
each parameter value combination. We illustrate the impact of parameter values on the accuracy: 
the results are shown in the left plot of Figure 6 where all parameters share the same x axis: the 
frame rate, resolution, and grid parameter values are all mapped to the range of [1,5] starting 
from the smallest value of each parameter, e.g: if the frame rate is 6, its mapped value is 1, if the 
grid size is 8, its x tick is 4, etc. Note that the steps between two values of a variables are not 
equal, this projection only gives us a visualization easy to grasp. 
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Figure 6. Accuracy and number of frames processed per second vs. parameters 

 

With larger resolution, the accuracy is better. Also, with an increased number of background 
models (respective to the grid size) used, the accuracy also improves. However, the accuracy is 
not strictly monotone increasing in function of the frame rate, interestingly we measured the 
frame rate of 20 to produce the most accurate results, and the larger frame rate did not help to 
improve the results. 
We have also made measurements regarding the runtime of the processing pipeline to 
complement our study on the accuracy. We looked at processing performance in function of the 
parameter values, i.e., the number of frames that can be processed in one second. Runtime has a 
monotone increasing trend in function of the resolution, the number of background models, and 
the frame rate, too. For depicting the runtime dependency, we use the same mappings and draw 
the trend in the processed frames in a second. The measurement results are presented in the right 
hand plot of Figure 6. 
To measure how the alpha parameter impacts the performance, we iterated through its 0-1 range 
with 0.1 steps. For the best accuracy with different alpha values, we got slightly different 
combinations for our variables, results are shown in Table 1. 
 

Table 1: Optimal parameter values 

alpha  0-0.2 0.3-0.6 0.7-1 

frame rate 6 10 20 

image width  2560 x 1440 2560 x 1440 2560 x 1440 

grid size 1 16 16 

accuracy ( , ) (0.61,0.44) (0.79,0.47) (0.86,0.53) 

throughput [fps] 12 7 9 

 

 
In summary, to achieve the best performance of the system in terms of accuracy, it is necessary 
to have a high quality video input, alternatively, one can use more background models to achieve 
better results on smaller image parts. The accuracy peaks at a frame rate of 20, indicating that a 
larger frame rate will not make any improvements on the performance of the Kalman filter based 
tracking algorithm, since every missed detection gives a chance for the Kalman filter to predict 
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the current coordinates - often not so precisely. The price we have to pay to make a successful 
detection is to stream high quality images which require more time to be processed. Next, we 
demonstrate how they can be processed so that the whole pipeline of the system becomes real-
time. 

Our proposed soccer player tracking solution is a particularly resource-intensive system: 
processing 2560p video streams from two cameras at 30 fps results in a data flow of 663MB per 
second. In order to estimate the resource requirements of our system, to define the end-to-end 
latency of the video stream processing, and the utilization of reserved resources, we created an 
analytical model of the system using queuing theory. Here we discuss the approximations needed 
to develop the model, we present the network model itself, and then compare the analytical 
results with the measurement outcomes in our proof-of-concept prototype. 
We model our cloud application with an open Jackson network Jackson (1957) of M/M/1 and 
M/M/c interconnected servers. Video frames are encoded according to the H.264 codec and these 
encoded frames reach the processing components via the Internet, so the frames can arrive in 
bursts as stated by ParandehGheibi et al. (2011). Therefore, our approximation that the arrival 
rate of the frames follow a Poisson distribution seems acceptable. We make a coarser 
approximation by modeling the service times with an exponential distribution: the service time 
of a frame rather follows a normal distribution according to our measurements. As the great 
benefit, after making these assumptions each performance metric can be obtained in closed form, 
as among the conditions for a network of several interconnected queues to form a Jackson-
network are that the arrival rate of frames from the outside must follow a Poisson distribution, 
and the service time of each server in the network must follow an exponential distribution. The 
queuing network of our cloud architecture can be seen in Figure 7, our model is similar to that 
of Vilaplana et al. (2014). We model the delay induced by the hectic Internet bandwidth by the 
Streamer Node M/M/1 queue. The Dispatcher receives the images to be processed from the 
Internet and passes them to the appropriate Worker. The selected Worker performs all resource 
intensive detection tasks. All Workers are identical having the same service rate and are modeled 
as M/M/c queuing systems. Each Worker then sends the result of the detection to Merger, which 
sorts them and then writes the results to a database. Both Dispatcher and Merger are modeled as 
M/M/1 queues. We use MongoDb MongoDB (2021), a source-available cross-platform 
document-oriented database server, as it is one of the most widely-used databases for cloud-
native applications. 

 
Figure 7. The queuing network of our cloud architecture 

The interconnection and behavior between the queues are ruled by Burke’s Burke (1956) and 
Jackson’s theorems Jackson (1957, 1963). One of Burke's important findings is that we may 
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connect many multiple-server nodes together in a feed-forward network and still preserve the 
node-by-node decomposition when arrival and service times are modeled by exponential density 
functions. Consequently, Kubernetes pods forming our cloud application can be analyzed 
independently. It follows that the arrival rate of each line in the network is the same as the arrival 
rate of the frames coming from the encoder. Therefore only the arrival rate of the frames coming 
from the encoder and the service time of each queue need to be measured.
The service time of the Streamer Node is defined as B/F, where B is the average Internet 
bandwidth speed between the cameras and the cloud, and F is the average size of transmitted 
frames. The average size can be calculated from I and P frames of the encoder: according to our 
settings, every 244th frame is an I-frame, and e.g., at 2560p resolution the average size of an I-
frame and of a P-frame are 8.66 MB and 3.92MB, respectively. For the other queues in the 
network, the service rate is calculated as the reciprocal of the mean service times. The arrival 
rate is approximated by a Poisson distribution fitted to the empirical distribution of the number 
of frames encoded per second.
We examined three main performance metrics of the queues in the queuing network: the 
response time (waiting and service time), the average number of frames in the system (both in 
the queue and being processed), and the average queue length. The response time of the entire 
queue network, as a result of being considered as an open Jackson network, is the sum of each 
queue's response time. These performance metrics can be obtained in closed form Sztrik (2016).
We implemented the cloud application, and we measured the arrival and service rate of each 
queue in several experiments. From these values, we calculated the performance metrics for the 
queues. Among our experiments, there were cases when the system was thrashing Denning 
(1968): in most of these cases the grid size parameter was 16 or 8. Thrashing occurs when the 
system is overloaded. In these cases, the measured response time of the system was over 5 
seconds, and based on our queuing model, the system was not stable, i.e., the stability condition 
of the Workers queue was not met. For the rest of the cases, the real response times and those 
yielded by our queuing model are shown in Figure 8 (left). As long as the Worker Queue 
utilization (lambda / (c mu)) is below 80%, our analytical model can correctly tell the expected 
response time of the system, with an average percentage error of 32%. Respectively, our model 
correctly describes the phenomenon of thrashing when the stability conditions are not satisfied. 
Based on these results, we state that despite our approximations, we can describe our system 
with the queuing model at an acceptable error rate.

Figure 8. Response times and queue length in function of Worker pod utilization
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Using our analytical model, we examined how the stability conditions can be met. Figure 9
shows the minimum number of Workers that are required so that the system becomes stable, 
given that the grid size is 16. The average queue length is an important metric when designing a 
system, as it shows how much memory the system will require. The queue length can grow in 
front of the potentially slowest component, the Workers. Obviously both the length of the queue 
and the number of frames in the system show similar increase with the response times. Figure 8
(right) shows how the average queue length changes with different frame rates in function of the 
Worker utilization. Beyond an average utilization of 80%, the queue length starts to increase 
rapidly in all cases.

Figure 9. Number of Workers required for stability with grid size of 16

There are three possible bottlenecks in our system: the encoder, the Internet bandwidth, and the 
number of parallel Worker pods. The arrival rate of the whole system depends on the encoder, 
as discussed above. We examine how the system responds when the encoding rate can be 
arbitrary while performing lossless compression and the sizes of the I and P frames do not 
change. In our measurements, the system was capable of Gbps order of magnitude of 
communication bandwidth, however, this is not always the case. We examine how the system 
performs at different bandwidths. The most resource-intensive part of the system is the detection, 
the fast processing was achieved by parallelization. We examine how the system responds to 
different numbers of working pods. In the following, we examine the change in system 
performance as a function of the value of these parameters.
The existence of a bottleneck can cause undesired phenomena, such as thrashing and running 
out of memory. This means that the frames to be processed are congested in one of the queues, 
because the given server cannot serve the requests at the same rate as they arrive, so the queue 
of the frames to be processed may grow to infinity. Since a frame is relatively large, the server 
can quickly run out of memory. Considering the queuing model, this occurs when the given 
queue is no longer stable. Stability condition in case M/M/1 is lambda < mu, and in case of 
M/M/c it is lambda < c mu.
We examine the bottlenecks for the most resource-intensive configuration: 2.5K@30fps. 
Changing the encoding speed, the frames arrive between the Streamer and the Dispatcher at such 
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a rate that the system cannot transmit at the given bandwidth thus the frames are congested in 
the queue. In Figure 10, we can observe this phenomenon for different bandwidths.At a given 
encoding rate, in order for the system to remain stable and the aforementioned phenomenon not 
to occur, the system must have more than a certain bandwidth, as can be seen in Figure 11.

Figure 10. Transfer time as a function of encoding rate at given bandwidths [MB/s]

Figure 11. Transfer time as a function of bandwidth at given encoding rates [fps]

Workers are a potential bottleneck, if there are too few processing units working in parallel, each 
frame will be processed more slowly than the rate it arrives with. Figure 12 shows the response 
time for different numbers of workers at a given encoding rate. Where no response time is 
indicated, the system is not stable. In the most resource-intensive configuration, i.e., 
2560p@30fps, the response time of the queue does not decrease significantly beyond 4 Workers, 
but below 3 Workers the system is thrashing.
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Figure 12 Worker queue response time as a function of the number of Workers at a given encoding rate [fps]

Based on our findings, we conclude that the most accurate tracking is obtained with the following 
parameters: 2560p@20fps when the grid size is 16. Based on our observations (see Figure 9) in 
the previous section, at least 8 Worker pods are required for this configuration. In this case, 
processing a complete 90-min match can be done real-time with a delay of 1.08 sec in the system 
based on the response times of the components. Thus, with Amazon Web Services, processing 
a full match would cost $1.2 (using the smallest available compute-optimized VM (c5.large) at 
$0.1 per hour Amazon (2021)).
Private and public cloud systems are increasingly becoming the leading execution environment 
of applications due to their configurability, robustness and elasticity. Providers are able to set 
and change the resources needed for their application dynamically thereby optimizing the 
operating cost. Indeed, one of the most important aspects of resource management in cloud 
environment is scaling, i.e., how one can change the amount of resources under the application. 
Horizontal scaling changes the number of instances (pods, virtual machines, etc.), while vertical 
scaling modifies the resources under a given instance (CPU, memory, etc.). This can be done 
manually by the provider, however several cloud systems provide auto-scaling functionality out 
of the box. Although our presented study assumes that the initial configuration of components 
fits the load produced by the incoming video streams, in case the input intensity becomes so 
dynamic that the initial capacity cannot process the increasing buffers, Kubernetes' autoscaler 
feature HPA (2021) can scale out the bootleneck components, e.g., Workers.
In this work we deliberately opted for CPU-based video processing, as we aimed for a cost-
efficient processing pipeline suited for the visual analysis of a single football match, recorded 
by a few cameras (2 cameras in the presented example). GPU-paired cloud instances are 
relatively expensive, e.g., compare the compute optimized c5.large AWS instance with 2 CPU 
cores 4 GiB of memory at $0.085 per hour with the cheapest GPU accelerated instance 
g4ad.xlarge at $0.379 per hour (4 CPU cores, 16 GiB of memory) Amazon (2021). For a large-
scale operation where a high number of video streams must be processed concurrently, the GPU-
based processing might be a better solution than scaling out CPU-based video processing units.
The application scenarios of our developed system are real-time use cases for one or a few 
football matches, e.g., real-time data analysis assisting coach decisions during a match.
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The evaluation of our system with various parameter settings were performed on 3x10 minutes 
of video input from a competitive soccer match. In our prior work Csanalosi et al. (2020) we 
evaluated the accuracy of player detection and tracking on video segments produced in 3 
different matches, and we found out that it is indeed problematic to evaluate the system quality 
on one match only, since the quality depends on the optical situation, e.g., light context. The 
cameras' distance from the pitch and the height of the camera position were fixed in all cases. In 
the current manuscript, however, we have not focused on the detection accuracy, rather on the 
cloud-native deployment design of the application. Consequently we have not experienced 
significantly differences on any of the metrics we focused on in this work depending on the 
match the input video was originated from.  
The application domain of our proposed system is limited to such tactical analysis where no ball 
tracking is required. 

As more and more applications are designed to be deployed in the public cloud, the application 
providers need to fine-tune the configuration parameters of the application with a great attention 
to the cloud-native design and its peculiarities. The configuration parameters not only define the 
quality of service, but the resource consumption as well. In this paper we demonstrated that a 
simple queuing theory-based analytical model is capable of pinpointing the potential bottlenecks 
of the microservice-type application by looking at the performance of the cloud native 
components separately. The result is somewhat surprising, as strong assumptions are made on 
arrival and service times so that important system performance indicators could be calculated 
easily with closed-form formulas. This modeling tool provides precious insights in the 
deployment planning phase and adds solid basis for the cost estimation of any real-time cloud 
native application. 
As a showcase of such an application, we presented a novel low-cost optical tracking system for 
soccer players, which is based on custom visual object detection methods, Kalman filter and 
Hungarian algorithm for tracking.We demonstrated how our optical tracking system can be 
optimized in accuracy, processing latency and resource consumption. Most importantly, we 
validated the proposed analytical model with an implementation of the system: the 
measurements we performed in the Kubernetes deployment proved that the analytical model's 
results are correct. 
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