
1

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS
Issue 1 | Vol. 15 (2022)Article | DOI: 10.2478/ijssis-2022-0002

☉ Open Access. Published by Sciendo. BY-NC-NDcc

© 2022 Authors. This work is licensed under the Creative Commons Attribution-Non-
Commercial-NoDerivs 4.0 License https://creativecommons.org/licenses/by-nc-nd/4.0/

A novel approach to capture the similarity in summarized
text using embedded model

Asha Rani Mishra* and
V.K. Panchal

Department of Computer Science,
Al Falah University, Faridabad,
Haryana, India.

*E-mail: asha1.mishra@gmail.com

The article was edited by
Ashutosh Sharma.

Received for publication
October 25, 2021.

Abstract
The presence of near duplicate textual content imposes great
challenges while extracting information from it. To handle these
challenges, detection of near duplicates is a prime research concern.
Existing research mostly uses text clustering, classification and retrieval
algorithms for detection of near duplicates. Text summarization, an
important tool of text mining, is not explored yet for the detection of
near duplicates. Instead of using the whole document, the proposed
method uses its summary as it saves both time and storage.
Experimental results show that traditional similarity algorithms were
able to capture similarity relatedness to a great extent even on the
summarized text with a similarity score of 44.685%. Moreover, degree
of similarity capture was greater (0.52%) in case of use of embedding
models with better text representation as compared to traditional
methods. Also, this paper highlights the research status of various
similarity measures in terms of concept involved, merits and demerits.

Keywords
Embedding models, Extractive text summarization, Near duplicate,
Similarity measures, Text representation.

Introduction

Near duplicate documents are similar but not having
identical content i.e., not identical bitwise (Xiao et al.,
2008). In order to make searching faster, there is a
need to remove duplication of content on the World
Wide Web (WWW). The presence of near duplicates
in text documents affects performance badly in the
performance while integrating data from different
sources. Several text extraction techniques—Topic
Modeling, Key Phrase extraction and Text Summari
zation (Mishra et al., 2019) are available to fetch relevant
information from unstructured text data. Different text
extraction techniques can show different results even
if applied in the same document. Text summarization
generates concise and coherent summary from large
pieces of text without any modification for preserving
key contents in the original text. For text documents,
the near duplicate detection task is more challenging.
Even though there exists a proportion of the same

words in two pairs of documents but in different order
will not be considered as identical. Synonyms can be
another important issue that needs to be addressed.

Traditional techniques like Bag of Words (BOW),
Shingling, Hashing (MinHash and SimHash) are good
to identify duplicate documents but not efficient for
detection of near duplicates. Commonly used appro
aches for duplicate detection include shown in Table 1.

Available research mostly relates the task of detec
tion of near duplicates as the detection of interme
diate level of similarity and mostly similarity estimation
is done by using statistical techniques like hashing,
singling and signature based. With the help of recent
Artificial Intelligence tools like Machine Learning, Deep
Learning and Natural Language Processing, text
embedding models can be used to generate vectors to
capture more semantic similarity during similarity es
timation. Text embedding models are used to capture
semantics which are not often detected by com
monly used approaches like shingling and hashing.

2

A novel approach to capture the similarity in summarized text using embedded model: Mishra and Panchal

Summary can be used to represent the whole docu
ment as it is generated by extracting relevant content,
so it can be used for capturing similarity instead of
working with the whole document which can save
both time and storage.

A text summarization-based near duplicate detec
tion approach with efficient text representation by using
text embedded models is presented in this research.
In the section “Text embedding in text representation
and text similarity”, the role of text embedding in text
representation and commonly used text similarity
techniques is discussed. In the section “Related
work”, related work about near duplicate detection,
text embedding models and text summarization is
elaborated. In the section “Proposed methodology”,
the proposed approach is discussed. In the section
“Experimental results and discussion” presents related
experimental results followed by conclusion and future
scope in the last section.

Text embedding in text representation
and text similarity

Text similarity or similarity estimation is one of the
active research trends nowadays that acts as a

basis of various Natural Language Processing (NLP)
tasks and play an important used in many research
domains including detection of near duplicates as it
plays important role in document matching (Wang
and Dong, 2020). In order to label two entities as near
duplicate in a quantitative manner, similarity function
can used to measure whose value can range between
the interval [0, 1]. Higher values of similarity score
indicates more similarity. Any text similarity technique
will first convert or map the input documents into
vectors which contain real valued numbers. Next,
suitable similarity measures can be applied on these
vectors. Performance of text similarity algorithms
considers two aspects—efficient text representation
and choice of similarity measure function. Objective of
text similarity algorithms is to determine commonness
between two input documents as similarity scores
are directly proportional to commonness. Traditional
similarity measurement methods like statistical, cor
pus and knowledge based considers only text re
presentation. In the traditional approach, the first way
is to divide text into overlapping groups of sequential
words called shingles. Similarity is considered or
measured by the proportion of identical shingles
found in the pair of text documents. In the second
way, the vector of words is defined for representing a

Table 1. Conventional near duplicate detection techniques.

Category Approach Characteristics Merits

Keyword based BOW (Bag of
Words)

Comparing words and frequency
of words with respect to other
documents

Used in large documents uses
Term Frequency -Inverse Document
Frequency (TF-IDF) to create
fingerprints. Reduces storage space

Fingerprint based Shingling Compares short phrases adding
context to the word

Fingerprints are created with tokenized
documents by using overlapped
substrings and consecutive words.
Statistical concepts are used to find
near duplicates

SimHash Generate fixed length hashes for
each document which are stored for
duplication detection

Obtain ‘f’ bit fingerprint for each
document. Used as dimension
reduction

Hash based MinHash Phrases are hashed into numbers
for comparison to identify duplication
and content hashes are stored

It stores a small amount of information
for each document for effective
comparison

Locality
Sensitive
Hashing (LSH)

Probabilistic approach to detect
similar documents. Hash function
generated similar hashes for similar
shingles

Search space contains only those
documents which tend to be similar
which maximizes the probability of
collision for similar content

3

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

Table 2. Text representation techniques.

Text
representation
method

Concept used Characteristics Merits Demerits

Vector Space
Model

Word count/BOW model It uses the concept
of linear algebra to
compute similarity

Simple to compute
based on the
frequency of words

Ignore the
importance of
rare words

Document
vectors

TF-IDF vectors It also computes the
count of documents in
which a particular word
is present along its
significance

It does not give
importance to most
frequent words in
the document which
does not contribute
much in similarity
computation

Does not
consider the
semantic aspect

Embedding
model

Word embedding These are the
high dimensional
representations of
words

Handle words having
similar meaning i.e.,
synonyms. Does not
require any feature
engineering

It cannot
be applied
directly in the
computation of
text similarity

Topic modeling Latent Dirichlet Allocation
(LDA)

Documents are
represented by inherent
latent topics where
each topic can be
drawn as probability of
distribution of words

Probabilistic
model, for defining
feature matrix of a
document based on
semantics

Requires prior
knowledge of
the number
of and it does
not capture
correlation

particular document and then similarity is computed
by comparing the vectors. With the growth of modern
Artificial Intelligence tools, semantic aspect integration
can increase the efficiency of text representation
techniques. Various text representation techniques
are shown in Table 2.

Text embedding models represent words in the form
of numeric values or vectors based on the context and
order in a document. These models are used for text
representation and can be utilized in finding similarity
between documents (Khattak et al., 2019). Text em
bedding models can detect similarity even when it is
mixed or modified. It maps each document to a low
dimension and dense vector in a continuous vector
space. While word embedding considers only the
world, text embedding considers phrases/paragrams.
It can be used in several ways while computing text
similarity (Tan and Phienthrakul, 2019). Related words
are closer in vector space. Various embedding models
are listed in Table 3. Commonly used text similarity
measurement techniques and various metrics whose

value lies in the range of [0, 1] used in this regard are
shown in Tables 4 and 5, respectively.

Related work

Pamulaparty et al. (2014): Research work involving
initial pre-processing of documents includes stop
word removal and stemming. Keywords generated
are passed as an input to the Near Duplicate
detection algorithm. Using a similar hash (SimHash)
function with respect to various thresholds (<60%,
60–70%, 70–80%, > 80%) near duplicate documents
are determined.

Pamulapartya et al. (2015): Proposed a framework
for near duplicate document detection using machine
learning models. In phase 1, fuzzy C means cluste
ring is performed on the document before putting
directly to the near duplicate which reduces the
scope of comparison of the document. In phase 2 a
discriminative function is used for classification exploi
ting the inherent features present in the documents

4

A novel approach to capture the similarity in summarized text using embedded model: Mishra and Panchal

Table 3. Different embedding models for text representation (Khattak et al., 2019;
Mishra et al., 2020).

Embedding
model

Characteristics Merits Demerits Variants

One hot encoding Maps each word
from vocabulary
to unique index in
vector space

Learn dense
representation of
words

Dependent on
corpus knowledge

–

Word2Vec Maps each word to a
point in vector space
E.g. Continuous Bag
of Words (CBOW),
Skip Gram

Used in Neural
networks for
predicting
focus words as
prediction-based
models

Dimension is
between 50 and
500.
Context window is
between 5 and 10

Doc2Vec
paragraph2vec
e.g., Distributed Memory
Model of Paragraph
Vectors (PV-DM),
Paragraph Vector
Continuous Bag of words
(PV-CBOW)

GloVe Term co-occurrence
matrix based on
vocabulary size is
used

Minimized
reconstruction error,
captures larger
dependency due
to larger context
window, Count
based model

Order of
dependencies are
not preserved;
performance
depends on data
type

GloVe with skip gram
window

FastText Sub words are also
considered

Extends the
functionality of
Word2Vec skip
gram to handle out
of vocabulary (OOV)
words

Longer time to
train

Probabilistic FastText

Embedding from
Language Models
(ELMo)

Captures context
at both word and
character level.
Same word can be
used for different
contexts

Performs sentence
level embedding by
using bidirectional
Recurrent Neural
Networks (RNN),
can be used in
transfer learning

Unable to use left
to right and right
to left context at
the same time

–

Bidirectional
Encoder
Representations
from Transformers
(BERT)

Considers n
bidirectional
representations in
unsupervised mode

It can be pre trained
using one extra
output layer

Random sentence
is replaced
by special
tokens(‘Mask’) to
consider both left
to right and right
to left information
at the same time

Robustly Optimized BERT
Pre Training Approach
(RoBERTa),
A lite version of
BERT(ALBERT),
Encoder that Classifies
Token Replacement
Accurately’(LECTRA),
Generalized Autoregressive
Pre Training for Language
Understanding (XLNet),
Distilled version of BERT
(DistilBERT), BERT
for Summarization
(BERTSUM)

5

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

Table 4. Categorization of Text similarity measurement techniques.

Text similarity
measure

Category
Considers
semantic?

Approach used Characteristics

String based Character based No Hamming Distance,
Levenshtein distance,
Damerau-Levenshtein,
Needleman-Wunsch, Longest
Common Subsequence,
Smith-Waterman, Jaro,
Jaro-Winkler and N-gram

Used to find typographical
mistakes but less
efficient text analytics
and computationally less
effective for large text
documents. Used in String
matching approximation

Token/term based No Jaccard similarity Dice’s
coefficient Cosine similarity
Manhattan distance and
Euclidean distance

Useful in case of
recognition of term
rearrangement

Statistics based Corpus/knowledge
base

Yes TF-IDF, (Latent Semantic
Indexing (LSI)word2Vec,
GloVe, Bidirectional Encoder
Representations from
Transformers (BERT), Latent
Semantic Analysis (LSA), LDA

It uses only text
representation and does
not consider distance
between texts

computed as weighted terms. A decision is made by
function verifying the similarity vector created from
features.

Yung-Shen et al. (2013): Proposed a method
for detecting duplicate documents using three key
components. First pre-processing on input document
for feature selection. Highly weighted features are
selected. Second similarity measure metrics are used
for finding similarity degree between input and set of
all pairs of documents. Third component is to learn
a discriminant function using the Support Vector
Machine (SVM) classifier.

Gali et al. (2016): Evaluated 21 measures to find
similarity between two titles. Damerau-Levenshtein
performed well by detecting changes in character/
token and real data. Smith-Waterman performed well
in case of character change while Bi-Jaccard worked
well for both character/token and real data.

Hassanian-esfahania and Karga (2018): Due to the
unordered nature of sets, the MinHash algorithm does
not cover all near duplication properties. Even though
the count of shared attributes in the documents is
more, position of attribute also matters. A MinHash
algorithm (min-wise) is proposed to enhance the data
structures of traditional MinHash algorithms for better
representation of near duplications. This approach
showed an unbiased estimate of Jaccard coefficient
with less variance.

Feng and Wu (2015): In this paper, authors improved
the work of Wang and Chang (2009) by using a suffix
tree for comparing two documents instead of using
fixed sized sliding windows. By using the suffix tree
all possible pairs of identical sentences were found.
Also, they add a validation step by comparing selected
terms at specified patterns in all matched sentences.
The algorithm “SL + ST” (sentence length +Suffix tree)
is compared with SpotSigs and 3 Shingles.

Rodier and Carter (2020): In this paper, authors
proposed an online system to detect near duplicate
documents on the dataset of web-based news
articles by adapting the shingling algorithm (Broder,
2000). Further they used this system in an application
where situational awareness tool to increase the
efficiency of human analysts. This system works in
two phases- In the first phase, it determines whether
a new document is near duplicate of previously
processed document. Each document is represented
as a sketch consisting of a set of 8-byte numbers. For
two similar documents, it will generate sets of 8-byte
numbers that overlap proportionality to their similarity.
This method results in very high precision scores with
increased recall and F1 scores.

Hajishirzi et al. (2010): In this paper, authors
proposed an algorithm for near duplicate document
detection in which each document is represented as a
k-gram (sparse) vector. Weight of the vector is learned

6

A novel approach to capture the similarity in summarized text using embedded model: Mishra and Panchal

Table 5. Popular Text similarity metrics (Pamulaparty et al., 2014, 2015; Gali et al.,
2016; Yung-Shen et al., 2013).

Similarity measurement
method

Highlights

Euclidean distance Consider the distance of text in vector form. Uses frequency of tokens to generate
feature vectors

Cosine Consider the angle between two vectors. Fails to capture variations of the
representation for unstructured/semi structured text

Manhattan Consider the distance between two real vectors

Hamming Consider the count of positions in which two bits are different. Binary strings must
be of the same length

Jaccard distance Compute’s length of two strings and then finds common characters to indicate
the presence in near locations. Transposition in reverse order is performed to find
matching characters between two strings

Jaro Winkler It extends the Jaro distance metric by a prefix value (p = 0.1). This provides a
higher value of weights to the strings having common prefix length whose value lies
in the range of (Xiao et al., 2008; Khattak et al., 2019)

Cosine similarity with
k shingles/k gram

Shingling the document means considering consecutive words and grouping as
a single entity. A more general approach is to shingle the document. This takes
consecutive words and groups them as a single object. In general, the set of all
1-shingles represents the’ bag of words’ model

TF-IDF Based on the concept of term frequency (TF) which is the count of occurrence of
a token in a document. The inverse document frequency (IDF) is the way to find
the relevance of unique or odd words. Cosine similarity with TF-IDF is used to find
similarity scores

Normalized Levenshtein Based on the minimum number of edit operations

Soft-TFIDF TF-IDF and Jaro Winkler are combined to measure similarity. First Jaro Winkler
finds pairs of tokens common to both strings and then TF-IDF is used to find
similarity scores exceeding the suitable value of threshold set in Jaro Winkler

to optimize for similarity functions (cosine or Jaccard
coefficient) which are further mapped to hash values
by using the technique of locality sensitive hashing.
These hash values are used as document signatures
and contribute to calculating similarity. News articles
and email messages are used as target domains.
This method was found to be more accurate than
Shingles and I match.

Arun and Sumesh (2015): In this paper, four phase
sentence level features, word mapping technique, term
document weighting scheme and modified similarity
technique is used which gives improved precision and
recall.

Yandrapally et al. (2020): A study of near duplicate
algorithms based on state pairs is presented for web

app model inference. Webpages were divided into
three categories-clone, near duplicate and distinct.
Threshold values were systematically computed and
used by 10 near duplicate detection techniques for
three different domains.

Pamulaparty et al. (2017): Proposed random forest
method random forest- Streaming Random Forest
(SRF) and Oblique Random Forest (ORF) showed
better accuracy as compared to other algorithms while
detecting near duplicates in context of web crawling.
Keyword extraction, URL indexing and similarity com
putation were the three phases to distinguish between
near duplicate and non-duplicate web pages.

Do and LongVan (2015): Proposed an algorithm for
detection of near duplicates in articles by extracting key

7

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

phrases based on ontology and matching signatures.
Similarity is calculated between extracted key phrases.
A set of characteristic key phrases present in the
articles were used to find near duplicates. Proposed
algorithm showed good precision and recall.

Al-Subaihin et al. (2019): Analysed different text
representation techniques for mobile application
in order to describe textual content, Vector Space
Model (VSM) using TF-IDF with frequency weighting
combined with Latent semantic Indexing (LSI) were
used. This was compared with other text feature
extraction techniques like topic modeling. Results
showed that cluster quality by topic modelling
approach were more favourable as it captures more
similarity.

Jain et al. (2017): Proposed a text summarization
approach in which extractive text summary is generated
by calculating similarity score between the abstractive
summary and original sentences of text data using
neural network approach for feature extraction.

El-Kassas et al. (2021): Explained different app
lications, approaches (Extractive, Abstractive and
Hybrid), methods used in these approaches, building
blocks—text summarization operations, text represen
tation models and statistical and linguistic features.
Also, it discusses various datasets, automatic eva
luation tools.

Hendre et al. (2021): Highlights the relevance of
semantic similarity while analysing text data by using
the approach of a neural embedding model for text
data representation. Sentence embedding models-
Elmo, Glove and Google Sentence Encoder were
used to combine with TF-IDF and Jaccard similarity
for experimental purpose. ELMO and Google Sen
tence Encoder showed best results by capturing
maximum similarity.

Albalawi et al. (2020): Provides a detailed des
cription of applications, methodology and tools for
topic modelling which is used for finding important
topics present in the short text like comments, reviews
and short length text messages. A comparison of five
topic modelling methods-Latent Semantic Analysis
(LSA), LDA, Non-Matrix Factorization (NMF), Principal
Component Analysis (PCA) and Random projection
on the basis of standard statistical evaluation metrics
-Precision, Recall, F Score and topic coherent were
established on two textual datasets. LDA and NMF
topic modelling methods produced valuable output
by extracting more meaningful topics.

Alqahtani et al. (2021): In order to generate
patterns from text efficiently several processes like
text mining, clustering, natural language processing
and text similarity are involved. String based tools are
suitable for lexical similarity. LCS, Jaro, and N-gram,

Damerau Levenshtein (character-based algorithm)
and the Cosine similarity, Euclidean Distance, Jaccard
similarity, Block Distance, and Matching Coefficient
(term-based algorithm) are popular techniques to
measure lexical similarity. LSA is a popular corpus-
based technique which is not suitable for nonlinear
text distribution. WordNet is based on a semantic
network and is based on a knowledge tool.

Chandrasekaran and Mago (2021): Semantic
textual similarity is one of the most challenged NLP
tasks. Measuring semantic similarity techniques can
be knowledge, corpus, and deep neural network
or can use hybrid-based techniques. Knowledge
based include Edge counting methods (LCS), Feature
based method (WordNet), Information content, Word
embedding based (GloVe, FastText, BERT, word2vec),
corpus based include LSA, Hyperspace Analogue to
Language (HAL), Explicit Semantic Analysis (ESA),
Word-Alignment models, Latent Dirichlet Allocation
(LDA), Normalised Google Distance (NGD), Dependency-
based models, Kernel-based models, In addition to
this methods, deep learning based model includes
Convolutional Neural Networks (CNN), Long Short
Term Memory (LSTM), Bidirectional Long Short Term
Memory (Bi-LSTM), and Recursive Tree LSTM which
can be used to measure semantic similarity.

Roul and Sahoo (2020): Semantic content based
near duplicate detection is one of the relevant research
aspects in information retrieval as it avoids redundancy
in the search results during query processing and
removal of near duplicate pages improves page
ranking. Authors proposed a novel method for the
detection of near duplicate documents in a corpus
on the semantic similarity score. A heuristic based
method is used to rank the documents according
to their semantic similarity scores. This has been
achieved by applying an averaging method on DUC
datasets which associates a similarity score to each
individual document in the corpus based on semantic
content. Effectiveness of the proposed method was
concluded based on the empirical results performed.
To achieve this, Word2Vec, WordNet, Normalized
Google Distance, and Latent Dirichlet Allocation (LDA))
are used for computing the similarity scores between
pairs of documents in the corpus. The computed score
is used as features for training classifiers to generate
document semantic similarity scores for document
pairs. Experiments showed improved performance on
DUC datasets.

Mansoor et al. (2020): Proposed a deep learning-
based method to compute semantic similarity by using
Long Term Short Memory (LSTM) which is an explicit
type of Recurrent Neural Networks (RNN) to capture
sequence among different elements in a sentence

8

A novel approach to capture the similarity in summarized text using embedded model: Mishra and Panchal

Table 6. Recent research studies on text similarity and representation.

Concept/algorithm/
method used

Author(s) Usage

Text similarity (SimHash,
MinHash), Text clustering

Pamulaparty et al., 2014,
2015, 2017)
Hassanian-esfahania and
Karga (2018)

Near Duplicate detection on the basis of keywords
generated from text, Fuzzy C means clustering
with discriminant function, Random forest method
for classification of near duplicates

Text similarity Yung-Shen et al. (2013)
Gali et al. (2016)

Near Duplicate detection on the basis of 21
similarity metrics computation between a pair of
documents or two titles

Signature based text
similarity measurement

Mohammadi and Khasteh,
2020 (Hajishirzi et al., 2010)

Reference texts are generated using genetic
algorithms to obtain signatures for text
documents as a sequence of 3 grams for
detection of duplicate and near duplicate
documents. For generating signature cosine text
similarity measure is used on the datasets on
CiteseerX, Enron and Gold Set of Near-duplicate
News Articles

Text similarity Do and LongVan (2015) Near Duplicate detection by applying signatures
generated based on ontology on extracted key
phrases

Text representation methods Al-Subaihin et al. (2019),
Mishra (2019)

TF-IDF combined with LSI for topic modeling,
spam classification

Text mining, clustering,
natural language processing
and text similarity

Alqahtani et al. (2021) Text matching methods

Semantic similarity Chandrasekaran and
Mago (2021)

Any NLP task which involves semantic textual
similarity

Semantic similarity Roul and Sahoo (2020) Near Duplicate detection of web pages on DUC
dataset

Deep learning based
semantic similarity

Mansoor et al. (2020) Sentence similarity using LSTM and CNN per
trained with word2vec on Quora dataset

Text representation using
ELMo model

Peters et al. (2018) Question answering, Textual entailment, semantic
role labelling, Named entity extraction, sentiment
analysis

Text representation using
FastText model

Shashavali et al. (2019) In goal oriented conversational agents (Chabot)

Text similarity based on
distance

Stefanovič et al. (2019) Plagiarism detection

Semantic similarity for short
text based on corpus,
knowledge and deep learning
model

Han et al. (2021) Text classification and text clustering, sentiment
analysis, information retrieval, social networks
plagiarism detection on the dataset

Text classification based on
text embedding method

Li and Gong (2021) Deep Learning Text classification on the dataset
Sohu news dataset

Text Similarity based on
text distance and text
representation

Wang and Dong (2020) Information retrieval, Machine translation, question
answering, machine, document matching

9

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

Text representation using
BERT model

Wang et al. (2019) Extractive-Abstractive Text summarization with
BERT embedding model with Reinforcement
Learning on CNN/Daily Mail dataset and DUC2002

Word Embedding Model,
Text classification, Word
tagging

Ajees et al. (2021)
Alqrainy and Alawairdhi
(2021)

SVM classification to classify animate nouns for
Malayalam text, comprehensive tag for Arabic
language

Lexical Taxonomy Nazar et al. (2021) Elimination of incorrect hypernym links, taxonomy
with new relations in Spanish, English and French

combined with Convolutional Neural Networks (CNN)
for extracting local features. Proposed model used
word2vec for text representation. Experiments car
ried out in Quora dataset showed better F score,
precision and recall as compared to traditional text
similarity methods (Naïve Bayes, Decision Tree, CNN,
LSTM with word2vec and LSTM with GloVe).

Peters et al. (2018): Introduced a deep context-
based learning model for word representation. Word
vectors are internal states of a deep bidirectional
model. In this model, each token acts as a function for
the entire input sentence with the help of bidirectional
LSTM and ELMo model. Word representation using
ELMo model where higher-level LSTM states capture
context aspects of words while lower-level state model
aspects of syntax Performance of the model was
analysed across six NLP challenging tasks including
question answering, which showed reduction of
relative error in a range of 6–20% over other models.

Shashavali et al. (2019): Proposed a method for
measuring sentence similarity score using weighted
N-gram, sliding window, cosine similarity and FastText
embedding techniques. Improved results with accu
racy, precision and recall by 6%, 2% and 80%, res
pectively, were obtained as compared to Universal
Sentence encoder technique. Proposed work per
forms well for small training dataset. Concept of sliding
windows were used as cosine similarity with weighted
average word embedding does not perform well while
computing sentence similarity between short and long
sentences.

Stefanovič et al. (2019): Proposed a method to
calculate similarity between two texts using word level
n-gram to form a bag of n-gram combined with self-
organising map (SOM). For evaluation Dice, Cosine,
Overlap and extended Jaccard similarity measures
were considered. N gram frequency is used to generate
a frequency matrix of a dataset (A corpus of plagiarized
short answers). Highest similarity was captured by
using overlap measure.

Han et al. (2021): Presented a survey based on
semantic similarity measurement for short text. The
study categorizes the techniques into three categories–

Corpus based (LSA, LDA, word2Vec, para2Vec, VSM),
knowledge based (shortest path, Resnik, ESA) and
deep learning based (CNN, LSTM, BERT).

Li and Gong, (2021): Used four embedding models
i.e., word2Vec, doc2Vec, TF-IDF and embedding layer
for text classification on Chinese news dataset. Deep
Learning models (CNN, LSTM, GRU, MLP, 2 layer GRU,
CNNGRU and CNNGRU_Merge, TextCNN) are used
for classification purposes. The 2-layer GRU model
with word2Vec embedding showed highest accuracy.

Wang et al. (2019): Proposed text summarization
technique combining both extractive and abstractive
approaches. In order to capture semantic features, a
BERT text embedding model is used. Important sen-
tences are selected from the input sentences (cor-
pus). Next abstractive based summary is used for
generating summary. For this, two sub models (both
extractive and abstractive) and for updating in end-
to-end training, reinforce learning. Proposed method
achieved better accuracy.

Ajees et al. (2021): A machine learning based
deep level tagging is used to provide more context to
each noun and verb words for any Malayalam words.
Two methods are combined for this-word embedding
which uses word2Vec with skip gram variant and
suffix stripping SVM classification to identify animate
noun identification. This method exploits morpho
logical features of the input text document.

Table 6 highlights various recent research studies
for text mining tasks including near duplicate detection
which uses text similarity measurement techniques
and text embedding models for text representation.

A critical look at the available literature reveals that
the following issues need to address:

1.	 Need to reduce the summarized latency in text
summarization tasks.

2.	 Need to generate an open summarized frame-
work since existing work is mostly domain
specific.

3.	 Need to increase the accuracy of framework
for capturing similarity with the help of emerg-
ing AI tools.

10

A novel approach to capture the similarity in summarized text using embedded model: Mishra and Panchal

Figure 1: Block diagram for proposed approach.

4.	 Since efficient summary can be generated
with proper feature representation and better
semantic understanding with the help of ad-
vanced AI tools, it can play an important role
for detection of near duplicates by taking sum-
marized text as input with an objective of re-
ducing both time and storage.

Proposed methodology

In the proposed approach, similarity metrics are applied
to find the degree of relatedness on summarization.
For generating text summary, the LSA method as
an extractive text summarizer is considered. For
better semantic aspect, text embedding models are
used for better vector representation. Extractive text
summarization is a technique used in various domains
of text analytics to extract meaningful textual content
by keeping only important sentences without any
modification in the original content. Figure 1 shows
a generic approach for detecting near duplicates
in two input pairs of text. For better utilization of
time and storage while performing near duplicate
detection the first summary of original content is
generated. Moreover, to capture semantic similarity,
a text embedding model is applied on a summary
generated before applying a suitable text similarity
algorithm for calculating similarity scores on the vector
representation of text. Detailed working approach is
shown with the help flowchart in Figure 2.

Algorithm 1, Algorithm 2, Algorithm 3 and Algorithm
4 presents complete details about the various phases
and sequence of concepts involved in the proposed
method.

Algorithm 1: Near duplicate detection using
summarized text

1. � document_set := {Text 1, Text 2}, threshold := ø //
Initialize

2.  function Near_Duplicate_Detection(document_set)

    Input: Pair of text documents

   � returns labeled documents as near duplicate or
non-duplicate

3. � output_set=Generate_ Summary(document_set) ;
// Phase 1: Generation of summary

4. � vector_set = Generate_ vector(output_set) ; //
Phase 2: Text representation

5. � similarity_score=calculate_similarity_score(vector_
set; // Similarity score calculation

6. � if similarity_score > ø then // comparison with
threshold

7.   label ‘Near Duplicate’

8.  else

9.   label ‘ Non Duplicate’

10. end function

Algorithm 2: Generation of summary for the
input documents present in document_set using
Extractive approach

1.  function Generate_ Summary(document_set)

    Input: pair of text documents

    returns generated summary

2.  forall text document in document_set do

3. � Pre-processing: Block level breaking of text
into key phrases or sentences, Tokenization
(sentences), Lemmatization, stemming, stop word
removal, POS tagging, Named Entity Recognition

4. � Identification of interrelated sentences: Similarity
measuring functions are used to find related
sentences to be included in the summary

5. � Weighting and ranking of selected sentences:
Numeric values are assigned to find important
features. Higher ranked sentences are selected
for summary

6.  output_set:= {text 1_summary, text 2_summary};

7.  return output_set // pair of summarized text

11

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

Algorithm 3: Text representation using embedding
model to generate vectors

1.  function Generate_ vector(output_set)

    Input: Pair of summarized text documents

   � returns vector representation for input
document pairs

2. � forall summarized text document in output_set do

3.  vector_set = embedding_model(output_set);

4.  vector_set={VText1, VText2};

5.  return vector_set // pair of vectors

Algorithm 4: Similarity score calculation for
summarized text vectors

1.  function calculate_similarity_score (vector_set)

  Input: pair of vectors

  �returns similarity scores of the summarized text
documents

2.  similarity_score = similarity_function(vector_set)

3.  return similarity_score

Figure 2: Workflow of proposed approach of near duplicate detection.

12

A novel approach to capture the similarity in summarized text using embedded model: Mishra and Panchal

Table 7. Input texts.

Input Original text

Text 1 “Everyday large volume of data is gathered from different sources and are stored since they contain
valuable piece of information. The storage of data must be done in efficient manner since it leads in
difficulty during retrieval. Text data are available in the form of large documents. Understanding large text
documents and extracting meaningful information out of it is time-consuming tasks. To overcome these
challenges, text documents are summarized in with an objective to getrelated information from a large
document or a collection of documents. Text mining can be used for this purpose. Summarized text will
have reduced size as compare to original one. In this review, we have tried to evaluate and compare
different techniques of Text summarization.”

Text 2 “In the view of a significant increase in the burden of information over and over the limit by the amount of
information available on the internet, there is a huge increase in the amount of information overloading and
redundancy contained in each document Extracting important information in a summarized format would help
a number of users. It is therefore necessary to have proper and properly prepared summaries. Subsequently,
many research papers are proposed continuously to develop new approaches to automatically summarize
the text. ''Automatic Text Summarization" is a process to create a shorter version of the original text (one or
more documents) which conveys information present in the documents. In general, the summary of the text
can be categorized into two types: Extractive-based and Abstractive-based. Abstractive-based methods are
very complicated as they need to address a huge-scale natural language. Therefore, research communities
are focusing on extractive summaries, attempting to achieve more consistent, non-recurring and meaningful
summaries. This review provides an elaborative survey of extractive text summarization techniques.
Specifically, it focuses on unsupervised techniques, providing recent efforts and advances on them and list
their strengths and weaknesses points in a comparative tabular manner. In addition, this review highlights
efforts made in the evaluation techniques of the summaries and finally deduces some possible”

Table 8. Text summarization on original text.

Text summarization
(using LSA method) on

Generated summary

Text 1 “Everyday large volume of data is gathered from different sources and are stored
since they contain valuable piece of information. The storage of data must be done
in efficient manner since it leads in difficulty during retrieval. To overcome these
challenges, text documents are summarized in with an objective to get related
information from a large document or a collection of documents.”

Text 2 “In the view of a significant increase in the burden of information over and over the
limit by the amount of information available on the internet, there is a huge increase in
the amount of information overloading and redundancy contained in each document.
Specifically, it focuses on unsupervised techniques, providing recent efforts and
advances on them and list their strengths and weaknesses points in a comparative
tabular manner. In addition, this review highlights efforts made in the evaluation
techniques of the summaries and finally dedtices some possible future trends.”

Experimental results and discussion

For experimental purposes, abstracts of research
articles (Elrefaiy et al., 2018; Mishra et al., 2019) as

Text 1 and Text 2 are considered as shown in Table 7.
Table 8 shows the result of text summarization
technique which is applied for generation of text
summary of input documents, LSA which is based

13

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

Table 9. Topic modeling on original text.

Topic modelling (using
LDA method) on

Topics with weights

Text 1 Topic #1 [(‘different’, 1.06), (‘since’, 1.03), (‘data’, 0.97), (‘try’, 0.88), (‘evaluate’,
0.88), (‘technique’, 0.88), (‘review’, 0.88), (‘summarization’, 0.88)]

Topic #2 (‘text’, 1.42), (‘document’, 1.39), (‘large’, 1.16), (‘form’, 1.01), (‘available’,
1.01), (‘summarize’, 0.91), (‘information’, 0.9), (‘meaningful’, 0.85)]

Text 2 Topic #1 [(‘information’, 1.24), (‘summary’, 1.1), (‘summarize’, 1.05), (‘research’,
1.0), (‘amount’, 0.9), (‘increase’, 0.9), (‘help’, 0.84), (‘would’, 0.84)]

Topic #2 [(‘text’, 1.36), (‘based’, 1.34), (‘provide’, 1.08), (‘extractive’, 1.07),
(‘summarization’, 1.07), (‘abstractive’, 1.06), (‘technique’, 1.02), (‘summary’, 1.01)]

on extractive text summarization is used. For better
vector representation of text, text embedding models
are used which act as function parameters for
similarity calculation. For analysing the performance
of text similarity functions with embedding models,
we have considered 6 models—Word2Vec,Universal
Sentence Encoder, FastText, ELMo, GloVe and
BERT. Similarity score is calculated using various
similarity functions on both original and summarized
text with and without embedding models. To get
detailed insights more, similarity functions are applied
on both original and summarized text on other text
extraction strategies like topic modelling and key

phrase extraction. Table 9 and Table 10 show topics
generated when LDA method is applied on both
original and summarized text pair respectively. It can
be easily interpreted that high weighted topics from
original text are included as topics in the summary
also. Table 11 shows key phrases generated using
TF-IDF method.

Table 12 shows values of similarity scores
generated when various text similarity functions
based on various traditional distance based metrics
are applied on original pair of text, topics modelling,
key phrase extraction and summary. Figure 3 shows
similarity values generated by extractive approaches

Table 10. Topic modeling on summary of original text.

Topic modelling (using
LDA method) applied on

Topics with weights

Text 1 Summary Topic #1 [(‘document’,0.091),(‘data’,0.065),(‘information’,0.065), (‘piece’,0.
039)’,’(‘contain’,0.039), (’summarize’,0.039), (’manner’, 0.039), (‘do’,0.039),
(‘must’,0.039), (‘large’, 0.039)]

Topic #2 [(‘document’,0.044), (‘information’, 0.044), (‘data’,0.044), (‘source’,
0.044), (‘different,’0.043), (‘valuable’,0.043), (‘lead’, 0.043), (‘challenge’, 0.043),
(‘collection’, 0.043), (‘relate’, 0.043]

Text 2 Summary Topic #1 [(‘information’,0.056),(‘increase’,0.040),(‘effort’,0.040), (‘amount’,0.040),
(‘technique’,0.040),(‘specifically‘,0.024), (‘unsupervised‘,0.024),(‘future’,0.024),
(‘overload’,0.024),(‘comparative’, 0.024)]

Topic #2 [(‘information’,0.027), (‘technique’, 0.027), (‘amount’,0.027), (‘effort’,
0.026), (‘increase’,026), (‘possible’, 0.026), (‘redundancy’,0.026), (‘make’,0.026),
(‘summary’,0.026), (‘strength’, 0.026)]

14

A novel approach to capture the similarity in summarized text using embedded model: Mishra and Panchal

Table 12. Similarity scores using traditional similarity metrics on original texts, topics,
keyword extracted and summary.

Text similarity measure

Similarity
score (in %)

between Text
1 and Text 2

Similarity score
(in %) between
topics of Text
1 and Text 2

Similarity score
(in %) between key
word extracted of
Text 1 and Text 2

Similarity score
(in %) between
Text 1 and Text

2 Summary

Euclidean distance [ED] 23.70 22.40 20.03 15.36

Normalized Levenshtein [NL] 27.80 26.43 33.69 29.08

Hamming Distance [HD] 40.0 7.14 10.8 27.0

Term Frequency-Inverse
Document Frequency [TF-IDF]

53.71 55.90 38.86 41.11

Jaccard Distance [JD] 56.23 38.2 42.75 48.97

Cosine Similarity [CS] 63.0 29.46 30.15 41.86

Jaro Winkler [JW] 68.0 76.8 70.0 72.80

Cosine similarity with k
shingles [CS_kshingles]

89.0 62.5 61.92 81.30

Table 11. Key phrase extraction on Text 1 and Text 2 using weighted TF-IDF method.

Key phrase extraction
method applied on

Key phrases with weights

Text 1 [(‘form’, 0.57699999999999996), (‘large documents’, 0.57699999999999996), (‘text
data’, 0.57699999999999996),(‘large text documents’, 0.57699999999999996),
(‘meaningful information’, 0.57699999999999996), (‘time-consuming tasks’,
0.57699999999999996), (‘different techniques’, 0.57699999999999996), (‘review’,
0.57699999999999996), (‘text summarization’, 0.57699999999999996), (‘different
sources’, 0.47599999999999998)]

Text 2 [(‘prepared summaries’, 1.0), (‘abstractive-based methods’, 0.70699999999999996),
(‘huge-scale natural language’, 0.70699999999999996), (‘documents’,
0.66700000000000004), (‘summary’, 0.63200000000000001), (‘types’,
0.63200000000000001), (‘elaborative survey’, 0.57699999999999996),
(‘extractive text summarization techniques’, 0.57699999999999996), (‘review’,
0.57699999999999996), (‘many research papers’, 0.53400000000000003)]

almost matches the scores when same algorithm is
applied in original text.

Table 13 shows results generated when text em
bedding models are used to generate vectors for
similarity calculation. Figure 4 shows better text
representations resulting in better similarity score even
when it is applied on summarized text. Figures 5 and 6

show graphical comparison and similarity distribution
based on similarity scores using both traditional and
embedding model approaches respectively on both
original text pair and its summary.

From the above experimental details, it can be
seen that in traditional similarity measures Jaro
Winkler performs best in all three-text extraction

15

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

Figure 3: Similarity scores for the various text extraction methods.

Table 13. Similarity scores using text embedding models on original and summarized
document.

Embedding model
Similarity score (in %)
between Text 1 and

Text 2

Similarity score (in %)
between Text 1 summary

and Text 2 summary

Word2Vec 5.28 14.26

Universal Sentence Encoder [USE] 81.36 69.39

FastText with soft cosine similarity [FT_SoftCS] 81.76 92.40

ELMo with cosine similarity (ELMo_CS) 88.59 76.32

Glove with cosine similarity (GloVe_CS) 97.89 95.60

BERT with cosine similarity (BERT_CS) 72.28 82.29

Figure 4: Impact of text representation on similarity calculation.

16

A novel approach to capture the similarity in summarized text using embedded model: Mishra and Panchal

Figure 5: Graphical representation of similarity scores using various similarity measure
techniques.

Figure 6: Similarity Score distribution using Various Similarity Search Techniques on original and
summarized text.

approaches i.e., topic modelling, keyword extraction
and text summary generation as compared to other
approaches shown in Table 12. Use of embedding
models provides efficient text representation which
leads to enhancing the performance of similarity

algorithms as shown in Table 13. Soft cosine similarity
using FastText [SoftCS_FT] performs best as text
representation technique summarized text, while GloVe
with cosine similarity captures the highest degree of
similarity in both original and summarized text shown

17

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

Table 14. Result analysis.

Similarity function Original text Summarized text

Without embedding model Jaro Winkler [JW] 68 72.80

Cosine similarity with k shingles
[CS_kshingles]

89.0 81.30

With embedding model Soft cosine similarity using FastText
[FT_SoftCS]

81.76 92.40

Cosine similarity with GloVe (GloVe_CS) 97.89 95.60

Table 15. Analysis of impact of embedding models on Text similarity measurement.

No. of Text
similarity
algorithms

Approach
used

Average similarity
score (in %) between

Text 1 and Text 2

Average similarity score
(in %) between Text 1
summary and Text 2

summary

Difference
(in %)

8 Without text embedding
models

52.68 44.685 7.995

6 With text embedding
models

71.19 71.71 0.52

Figure 7: Heat map (GloVe) using both approaches.

18

A novel approach to capture the similarity in summarized text using embedded model: Mishra and Panchal

in Table 14. Heat map for GloVe embedding model is
graphically represented in Figure 7. Table 15 highlights
overall analysis for the proposed methodology. Figure
8 shows a graphical comparison of similarity scores for
both original and summarized text combined with and
without text embedding model.

Conclusion and future scope

Extractive approach of text summary generation is
used to make the proposed approach independent of
domain knowledge. So, in this paper an attempt has
been made to use this concept to design and develop
a near duplicate detection algorithm. Proposed app
roach performs reasonably well even for a higher
value of threshold (>50%). Based on results obtained
by the proposed method, it is possible to consider
summary instead of whole document along with text
embedding’s to capture better similarity, as results
shows average similarity score of 6 summarized
embedded text results in an increase of 0.52%. By
using a suitable embedding model this percentage
can increase by considerable value as word2Vec
performance was poor.

The functionality of the text summarization algorithm
can be increased by adding other coherent elements
such as synonym, antonymy, collocation, calculation,
similarity and the element of transformation. In terms
of results, the syntax of sentences to work more
efficiently should be more mathematical and linguistic.
The integration method consists of Grammatical and
Lexical Linking within the text as well as a sentence
containing a sentence and provides important details.
In future operations alternatives may be used in an
invisible way which creates an internal semantic

representation and use of native language generation
strategies for making a summary. In the future, Deep
Learning can be used for developing generalized text
embedding models to handle insufficient data and
adding a deeper level context to POS tagging. Also
abstractive text summarization can be used which
generates summary on the basis of hidden text.

Literature Cited
Ajees, A. P., Abrar, K. J., Sumam, M. I. and

Sreenathan, M. 2021. A deep level tagger for malayalam,
a morphologically rich language. Journal of Intelligent
Systems 30(1): 115–129.

Albalawi, R., Yeap, T. H. and Benyoucef, M. 2020.
Using topic modeling methods for short-text data: a
comparative analysis. Frontiers in Artificial Intelligence
3. Available at: https://doi.org/10.3389/frai.2020.00042.

Alqahtani, A., Alhakami, H., Alsubait, T. and
Baz, A. 2021. A survey of text matching techniques.
Engineering, Technology & Applied Science Research
11(1): 6656–6661. doi: 10.48084/etasr.3968.[1].

Alqrainy, S. and Alawairdhi, M. 2021. Towards
developing a comprehensive tag set for the arabic
language. Journal of Intelligent Systems 30(1): 287–296.

Al-Subaihin, A., Sarro, F. and Black, S. 2019.
Empirical comparison of text-based mobile apps
similarity measurement techniques. Empirical Software
Engineering 24: 3290–3315.

Arun, P. R. and Sumesh, M. S. 2015. Near-duplicate
web page detection by enhanced TDW and simHash
technique. 2015 International Conference on Computing
and Network Communications (CoCoNet'15), December
16–19, Trivandrum.

Figure 8: Comparison of similarity score of original vs. summarized text.

19

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

Broder, A. 2000. Identifying and Filtering Near-
Duplicate Documents. In Proceedings of the 11th Annual
Symposium on Combinatorial Pattern Matching, Montreal,
Canada, pp. 1–10.

Chandrasekaran, D. and Mago, V. 2021. Evolution
of semantic similarity—a survey. ACM Computing
Surveys 54(2): 1–37, doi: 10.1145/3440755.[2].

Do, N. and LongVan, H. 2015. Domain-specific key-
phrase extraction and near-duplicate article detection
based on ontology. The 2015 IEEE RIVF International
Conference on Computing & Communication Technolo-
gies—Research, Innovation, and Vision for Future (RIVF),
pp. 123–126, doi: 10.1109/RIVF.2015.7049886.

El-Kassas, W. S., Salama, C. R., Rafea, A. A. and
Mohamed, H. K. 2021. Automatic text summarization: a
comprehensive survey. Expert Systems with Applications
165: 113679.

Elrefaiy, A., Abas, A. R. and Elhenawy, I. 2018. Review
of recent techniques for extractive text summarization.
Journal of Theoretical and Applied Information Tech
nology 96(23): 7739–7759.

Feng, J. and Wu, S. 2015. “Detecting near-duplicate
documents using sentence level features”, In Chen, Q.,
et al. (Eds), DEXA 2015, Part II, LNCS 9262 Switzerland:
Springer International Publishing; pp. 195–204, doi:
10.1007/978-3-319-22852-5_17.

Gali, N., Mariescu-Istodor, R. and Fränti, P. 2016.
Similarity measures for title matching. 2016 23rd Inte
rnational Conference on Pattern Recognition (ICPR)
Cancún Centre, Cancún, December 4–8.

Han, M., Zhang, X., Yuan, X., Jiang, J., Yun,
W. and Gao, C. 2021. A survey on the techniques,
applications, and performance of short text semantic
similarity. Concurrency and Computation: Practice and
Experience 33(5), doi: 10.1002/cpe.5971.

Hajishirzi, H., Yih, W. and Kołcz, A. 2010. Adaptive
near-duplicate detection via similarity learning. SIGIR’10,
Geneva, July 19–23.

Hassanian-esfahania, R. and Kargar, M. -J. 2018.
Sectional MinHash for near-duplicate detection. Expert
Systems with Applications 99: 203–212.

Hendre, M., Mukherjee, P., Godse, M. 2021. Utility of
neural embeddings in semantic similarity of text data. In
Bhateja, V., Peng, S. L., Satapathy, S. C. and Zhang, Y. D.
(Eds), Evolution in Computational Intelligence. Advances
in Intelligent Systems and Computing 1176. Springer,
Singapore, Available at: https://doi.org/10.1007/978-981-
15-5788-0_21.

Jain, A., Bhatia, D. and Thakur, M. K. 2017. Extractive
text summarization using word vector embedding.
2017 International Conference on Machine Learning
and Data Science (MLDS), pp. 51–55, doi: 10.1109/
MLDS.2017.12.

Khattak, F. K., Jeblee, S., Pou-Prom, C., Abdalla,
M., Meaney, C. and Rudzicz, F. 2019. A survey of word
embeddings for clinical text. Journal of Biomedical
Informatics X 4:100057.

Li, S. and Gong, B. 2021. Word embedding and
text classification based on deep learning methods.
MATEC Web of Conferences 336(3): 06022, doi:
10.1051/matecconf/202133606022.

Mansoor, M., Ur Rehman, Z., Shaheen, M., Khan,
M. A. and Habib, M. 2020. Deep learning based
semantic similarity detection using text data. Information
Technology and Control 49(4): 495–510, doi: 10.5755/j01.
itc.49.4.27118.

Mishra, A. R. 2019. Impact of feature representa
tion on supervised classifiers—A comparative analysis.
Global Sci-Tech 11(2): 69–74.

Mishra, A. R., Panchal, V. K. and Kumar, P. 2019. Ex-
tractive text summarization—an effective approach to ex-
tract information from Text. 2019 International Conference
on contemporary Computing and Informatics (IC3I), Singa-
pore, pp. 252–255, doi: 10.1109/IC3I46837.2019.9055636.

Mishra, A. R., Panchal, V. K. and Kumar, P. 2020.
“Similarity Search based on Text Embedding Model for
detection of Near Duplicates”. International Journal of
Grid and Distributed Computing 13(2): 1871–1881.

Mohammadi, H. and Khasteh, S. H. 2020. A fast
text similarity measure for large document collections
using multireference cosine and genetic algorithm.
Turkish Journal of Electrical Engineering Computer
Sciences 28(2): 999–1013.

Nazar, R., Balvet, A., Ferraro, G., Marín, R. and
Renau, I. 2021. Pruning and repopulating a lexical
taxonomy: experiments in Spanish, English and French.
Journal of Intelligent Systems 30(1): 376–394.

Pamulaparty, L., Rao, C. V. G. and Rao, M. S.
2014. A near duplicate detection algorithm to facilitate
document clustering. International Journal of Data
Mining & Knowledge Management Process (IJDKP)
4(6): 39–49, doi: 10.5121/ijdkp.2014.4604 39.

Pamulapartya, L., Rao, C. V. G. and Rao, M. S.
2015. XNDDF: towards a framework for flexible near-
duplicate document detection using supervised and
unsupervised learning. International Conference on
Intelligent Computing, Communication & Convergence
(ICCC-2014), Procedia Computer Science 48: 228–235.

Pamulaparty, L., Rao, C. V. G. and Rao, M. S.
2017. Critical review of various near-duplicate detection
methods in web crawl and their prospective application
in drug discovery. International Journal of Biomedical
Engineering and Technology 25(2/3/4): 212–226.

Peters, M. E., Neumann, M., Iyyer, M., Gardner,
M., Clark, C., Lee, K. and Zettlemoyer, L. 2018. Deep
contextualized word representations. arXiv:1802.05365.

Rodier, S. and Carter, D. 2020. Online near-duplicate
detection of news article. Proceedings of the 12th Con-
ference on Language Resources and Evaluation (LREC
2020), Marseille, 11–16 c European Language Resources
Association (ELRA), Marseille, May 11–16, pp. 1242–1249,
licensed under CC-BY-NC.

Roul, R. K. and Sahoo, J. K. 2020. Near-duplicate
document detection using semantic-based similarity

20

A novel approach to capture the similarity in summarized text using embedded model: Mishra and Panchal

measure: a novel approach. Advances in Intelligent
Systems and Computing 990: 543–558.

Shashavali, D., Vishwjeet, V., Kumar, R., Mathur, G.,
Nihal, N., Mukherjee, S. and Patil, S. V. 2019. Sentence
similarity techniques for short vs variable length text us-
ing word embeddings. Computación y Sistemas 23(3):
999–1004.

Stefanovič, P., Kurasova, O. and Štrimaitis, R. 2019.
The N-grams based text similarity detection approach
using self-organizing maps and similarity measures. Ap-
plied Sciences (Switzerland) 9(9): 1870, doi: 10.3390/
app9091870.

Tan, T. and Phienthrakul, T. 2019. Sentiment classi
fication using document embeddings trained with cosine
similarity. Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics: Student
Research Workshop, pp. 407–414.

Wang, J. H. and Chang, H. C. 2009. Exploiting
Sentence-level Features for Near-duplicate Document
Detection. In Proceedings of the 5th Asia Information Re
trieval Symposium on Information Retrieval Technology

(AIRS09), Sapporo, Japan, Springer: Berlin/Heidelberg,
Germany, pp. 205–217.

Wang, J. and Dong, Y. 2020. Measurement of text
similarity: a survey. Information 11(9): 421.

Wang, Q., Liu, P., Zhu, Z., Yin, H., Zhang, Q. and
Zhang, L. 2019. A text abstraction summary model
based on BERT word embedding and reinforcement
learning. Applied Sciences (Switzerland) 9(21): 4701,
doi: 10.3390/app9214701.

Xiao, C., Wang, W., Lin, X. and Yu, J. X. 2008. Efficient
Similarity Joins for Near DuplicateDetection” WWW2008,
April 21–25, Beijing, ACM 78-1-60558-085-2/08.

Yandrapally, R. K., Stocco, A. and Mesbah, A. 2020.
Near-duplicate detection in web app model inference.
ICSE ’20, May 23–29, Seoul, Republic of Korea, ACM,
New York, NY, May 23–29, 12pp. Available at: https://
doi.org/10.1145/3377811.3380416.

Yung-Shen, L., Ting-Yi, L. and Shie-Jue, L. 2013.
Detecting near-duplicate documents using sentence-
level features and supervised learning. Expert Systems
with Applications 40(5): 1467–1476.

