
1

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS
Issue 1 | Vol. 15 (2022)Article | DOI: 10.2478/ijssis-2022-0002

☉ Open Access. Published by Sciendo.  BY-NC-NDcc

© 2022 Authors. This work is licensed under the Creative Commons Attribution-Non-
Commercial-NoDerivs 4.0 License https://creativecommons.org/licenses/by-nc-nd/4.0/

A novel approach to capture the similarity in summarized 
text using embedded model

Asha Rani Mishra* and  
V.K. Panchal

Department of Computer Science, 
Al Falah University, Faridabad, 
Haryana, India.

*E-mail: asha1.mishra@gmail.com

The article was edited by  
Ashutosh Sharma.

Received for publication 
October 25, 2021.

Abstract
The presence of near duplicate textual content imposes great 
challenges while extracting information from it. To handle these 
challenges, detection of near duplicates is a prime research concern. 
Existing research mostly uses text clustering, classification and retrieval 
algorithms for detection of near duplicates. Text summarization, an 
important tool of text mining, is not explored yet for the detection of 
near duplicates. Instead of using the whole document, the proposed 
method uses its summary as it saves both time and storage. 
Experimental results show that traditional similarity algorithms were 
able to capture similarity relatedness to a great extent even on the 
summarized text with a similarity score of 44.685%. Moreover, degree 
of similarity capture was greater (0.52%) in case of use of embedding 
models with better text representation as compared to traditional 
methods. Also, this paper highlights the research status of various 
similarity measures in terms of concept involved, merits and demerits.
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Introduction

Near duplicate documents are similar but not having 
identical content i.e., not identical bitwise (Xiao et al., 
2008). In order to make searching faster, there is a 
need to remove duplication of content on the World 
Wide Web (WWW). The presence of near duplicates 
in text documents affects performance badly in the 
performance while integrating data from different 
sources. Several text extraction techniques—Topic  
Modeling, Key Phrase extraction and Text Summari
zation (Mishra et al., 2019) are available to fetch relevant 
information from unstructured text data. Different text 
extraction techniques can show different results even 
if applied in the same document. Text summarization 
generates concise and coherent summary from large 
pieces of text without any modification for preserving 
key contents in the original text. For text documents, 
the near duplicate detection task is more challenging. 
Even though there exists a proportion of the same 

words in two pairs of documents but in different order 
will not be considered as identical. Synonyms can be 
another important issue that needs to be addressed.

Traditional techniques like Bag of Words (BOW), 
Shingling, Hashing (MinHash and SimHash) are good 
to identify duplicate documents but not efficient for 
detection of near duplicates. Commonly used appro
aches for duplicate detection include shown in Table 1.

Available research mostly relates the task of detec
tion of near duplicates as the detection of interme
diate level of similarity and mostly similarity estimation 
is done by using statistical techniques like hashing, 
singling and signature based. With the help of recent 
Artificial Intelligence tools like Machine Learning, Deep 
Learning and Natural Language Processing, text 
embedding models can be used to generate vectors to 
capture more semantic similarity during similarity es
timation. Text embedding models are used to capture 
semantics which are not often detected by com
monly used approaches like shingling and hashing.  
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Summary can be used to represent the whole docu
ment as it is generated by extracting relevant content, 
so it can be used for capturing similarity instead of 
working with the whole document which can save 
both time and storage.

A text summarization-based near duplicate detec
tion approach with efficient text representation by using 
text embedded models is presented in this research. 
In the section “Text embedding in text representation 
and text similarity”, the role of text embedding in text 
representation and commonly used text similarity 
techniques is discussed. In the section “Related 
work”, related work about near duplicate detection, 
text embedding models and text summarization is 
elaborated. In the section “Proposed methodology”, 
the proposed approach is discussed. In the section 
“Experimental results and discussion” presents related 
experimental results followed by conclusion and future 
scope in the last section.

Text embedding in text representation 
and text similarity

Text similarity or similarity estimation is one of the 
active research trends nowadays that acts as a 

basis of various Natural Language Processing (NLP) 
tasks and play an important used in many research 
domains including detection of near duplicates as it 
plays important role in document matching (Wang 
and Dong, 2020). In order to label two entities as near 
duplicate in a quantitative manner, similarity function 
can used to measure whose value can range between 
the interval [0, 1]. Higher values of similarity score 
indicates more similarity. Any text similarity technique 
will first convert or map the input documents into 
vectors which contain real valued numbers. Next, 
suitable similarity measures can be applied on these 
vectors. Performance of text similarity algorithms 
considers two aspects—efficient text representation 
and choice of similarity measure function. Objective of 
text similarity algorithms is to determine commonness 
between two input documents as similarity scores 
are directly proportional to commonness. Traditional 
similarity measurement methods like statistical, cor
pus and knowledge based considers only text re
presentation. In the traditional approach, the first way 
is to divide text into overlapping groups of sequential 
words called shingles. Similarity is considered or 
measured by the proportion of identical shingles 
found in the pair of text documents. In the second 
way, the vector of words is defined for representing a 

Table 1. Conventional near duplicate detection techniques.

Category Approach Characteristics Merits

Keyword based BOW (Bag of 
Words)

Comparing words and frequency 
of words with respect to other 
documents

Used in large documents uses 
Term Frequency -Inverse Document 
Frequency (TF-IDF) to create 
fingerprints. Reduces storage space

Fingerprint based Shingling Compares short phrases adding 
context to the word

Fingerprints are created with tokenized 
documents by using overlapped 
substrings and consecutive words. 
Statistical concepts are used to find 
near duplicates

SimHash Generate fixed length hashes for 
each document which are stored for 
duplication detection

Obtain ‘f’ bit fingerprint for each 
document. Used as dimension 
reduction

Hash based MinHash Phrases are hashed into numbers 
for comparison to identify duplication 
and content hashes are stored

It stores a small amount of information 
for each document for effective 
comparison

Locality 
Sensitive 
Hashing (LSH)

Probabilistic approach to detect 
similar documents. Hash function 
generated similar hashes for similar 
shingles

Search space contains only those 
documents which tend to be similar 
which maximizes the probability of 
collision for similar content
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Table 2. Text representation techniques.

Text 
representation 
method

Concept used Characteristics Merits Demerits

Vector Space 
Model

Word count/BOW model It uses the concept 
of linear algebra to 
compute similarity

Simple to compute 
based on the 
frequency of words

Ignore the 
importance of 
rare words

Document 
vectors

TF-IDF vectors It also computes the 
count of documents in 
which a particular word 
is present along its 
significance

It does not give 
importance to most 
frequent words in 
the document which 
does not contribute 
much in similarity 
computation

Does not 
consider the 
semantic aspect

Embedding 
model

Word embedding These are the 
high dimensional 
representations of 
words

Handle words having 
similar meaning i.e., 
synonyms. Does not 
require any feature 
engineering

It cannot 
be applied 
directly in the 
computation of 
text similarity

Topic modeling Latent Dirichlet Allocation
(LDA)

Documents are 
represented by inherent 
latent topics where 
each topic can be 
drawn as probability of 
distribution of words

Probabilistic 
model, for defining 
feature matrix of a 
document based on 
semantics

Requires prior 
knowledge of 
the number 
of and it does 
not capture 
correlation

particular document and then similarity is computed 
by comparing the vectors. With the growth of modern 
Artificial Intelligence tools, semantic aspect integration 
can increase the efficiency of text representation 
techniques. Various text representation techniques 
are shown in Table 2.

Text embedding models represent words in the form 
of numeric values or vectors based on the context and 
order in a document. These models are used for text 
representation and can be utilized in finding similarity 
between documents (Khattak et al., 2019). Text em
bedding models can detect similarity even when it is 
mixed or modified. It maps each document to a low 
dimension and dense vector in a continuous vector 
space. While word embedding considers only the 
world, text embedding considers phrases/paragrams. 
It can be used in several ways while computing text 
similarity (Tan and Phienthrakul, 2019). Related words 
are closer in vector space. Various embedding models 
are listed in Table 3. Commonly used text similarity 
measurement techniques and various metrics whose 

value lies in the range of [0, 1] used in this regard are 
shown in Tables 4 and 5, respectively.

Related work

Pamulaparty et al. (2014): Research work involving 
initial pre-processing of documents includes stop 
word removal and stemming. Keywords generated 
are passed as an input to the Near Duplicate 
detection algorithm. Using a similar hash (SimHash) 
function with respect to various thresholds (<60%, 
60–70%, 70–80%, > 80%) near duplicate documents 
are determined.

Pamulapartya et al. (2015): Proposed a framework 
for near duplicate document detection using machine 
learning models. In phase 1, fuzzy C means cluste
ring is performed on the document before putting 
directly to the near duplicate which reduces the 
scope of comparison of the document. In phase 2 a 
discriminative function is used for classification exploi
ting the inherent features present in the documents  
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Table 3. Different embedding models for text representation (Khattak et al., 2019; 
Mishra et al., 2020).

Embedding 
model

Characteristics Merits Demerits Variants

One hot encoding Maps each word 
from vocabulary 
to unique index in 
vector space

Learn dense 
representation of 
words

Dependent on 
corpus knowledge

–

Word2Vec Maps each word to a 
point in vector space 
E.g. Continuous Bag 
of Words (CBOW), 
Skip Gram

Used in Neural 
networks for 
predicting 
focus words as 
prediction-based 
models

Dimension is 
between 50 and 
500.
Context window is 
between 5 and 10

Doc2Vec
paragraph2vec
e.g., Distributed Memory 
Model of Paragraph 
Vectors (PV-DM), 
Paragraph Vector 
Continuous Bag of words 
(PV-CBOW)

GloVe Term co-occurrence 
matrix based on 
vocabulary size is 
used

Minimized 
reconstruction error, 
captures larger 
dependency due 
to larger context 
window, Count 
based model

Order of 
dependencies are 
not preserved; 
performance 
depends on data 
type

GloVe with skip gram 
window

FastText Sub words are also 
considered

Extends the 
functionality of 
Word2Vec skip 
gram to handle out 
of vocabulary (OOV) 
words

Longer time to 
train

Probabilistic FastText

Embedding from 
Language Models 
(ELMo)

Captures context 
at both word and 
character level.
Same word can be 
used for different 
contexts

Performs sentence 
level embedding by 
using bidirectional 
Recurrent Neural 
Networks (RNN), 
can be used in 
transfer learning

Unable to use left 
to right and right 
to left context at 
the same time

–

Bidirectional 
Encoder 
Representations 
from Transformers
(BERT)

Considers n 
bidirectional 
representations in 
unsupervised mode

It can be pre trained 
using one extra 
output layer

Random sentence 
is replaced 
by special 
tokens(‘Mask’) to
consider both left 
to right and right 
to left information 
at the same time

Robustly Optimized BERT 
Pre Training Approach 
(RoBERTa),
A lite version of 
BERT(ALBERT),
Encoder that Classifies 
Token Replacement 
Accurately’(LECTRA),
Generalized Autoregressive 
Pre Training for Language 
Understanding (XLNet), 
Distilled version of BERT 
(DistilBERT), BERT 
for Summarization 
(BERTSUM)
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Table 4. Categorization of Text similarity measurement techniques.

Text similarity 
measure

Category
Considers 
semantic?

Approach used Characteristics

String based Character based No Hamming Distance, 
Levenshtein distance, 
Damerau-Levenshtein, 
Needleman-Wunsch, Longest 
Common Subsequence, 
Smith-Waterman, Jaro,  
Jaro-Winkler and N-gram

Used to find typographical 
mistakes but less 
efficient text analytics 
and computationally less 
effective for large text 
documents. Used in String 
matching approximation

Token/term based No Jaccard similarity Dice’s 
coefficient Cosine similarity 
Manhattan distance and 
Euclidean distance

Useful in case of 
recognition of term 
rearrangement

Statistics based Corpus/knowledge 
base

Yes TF-IDF, (Latent Semantic 
Indexing (LSI)word2Vec, 
GloVe, Bidirectional Encoder 
Representations from 
Transformers (BERT), Latent 
Semantic Analysis (LSA), LDA

It uses only text 
representation and does 
not consider distance 
between texts

computed as weighted terms. A decision is made by 
function verifying the similarity vector created from 
features.

Yung-Shen et al. (2013): Proposed a method 
for detecting duplicate documents using three key 
components. First pre-processing on input document 
for feature selection. Highly weighted features are 
selected. Second similarity measure metrics are used 
for finding similarity degree between input and set of 
all pairs of documents. Third component is to learn 
a discriminant function using the Support Vector 
Machine (SVM) classifier.

Gali et al. (2016): Evaluated 21 measures to find 
similarity between two titles. Damerau-Levenshtein 
performed well by detecting changes in character/
token and real data. Smith-Waterman performed well 
in case of character change while Bi-Jaccard worked 
well for both character/token and real data.

Hassanian-esfahania and Karga (2018): Due to the 
unordered nature of sets, the MinHash algorithm does 
not cover all near duplication properties. Even though 
the count of shared attributes in the documents is 
more, position of attribute also matters. A MinHash 
algorithm (min-wise) is proposed to enhance the data 
structures of traditional MinHash algorithms for better 
representation of near duplications. This approach 
showed an unbiased estimate of Jaccard coefficient 
with less variance.

Feng and Wu (2015): In this paper, authors improved 
the work of Wang and Chang (2009) by using a suffix 
tree for comparing two documents instead of using 
fixed sized sliding windows. By using the suffix tree 
all possible pairs of identical sentences were found. 
Also, they add a validation step by comparing selected 
terms at specified patterns in all matched sentences. 
The algorithm “SL + ST” (sentence length +Suffix tree) 
is compared with SpotSigs and 3 Shingles.

Rodier and Carter (2020): In this paper, authors 
proposed an online system to detect near duplicate 
documents on the dataset of web-based news 
articles by adapting the shingling algorithm (Broder, 
2000). Further they used this system in an application 
where situational awareness tool to increase the 
efficiency of human analysts. This system works in 
two phases- In the first phase, it determines whether 
a new document is near duplicate of previously 
processed document. Each document is represented 
as a sketch consisting of a set of 8-byte numbers. For 
two similar documents, it will generate sets of 8-byte 
numbers that overlap proportionality to their similarity. 
This method results in very high precision scores with 
increased recall and F1 scores.

Hajishirzi et al. (2010): In this paper, authors 
proposed an algorithm for near duplicate document 
detection in which each document is represented as a 
k-gram (sparse) vector. Weight of the vector is learned 
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Table 5. Popular Text similarity metrics (Pamulaparty et al., 2014, 2015; Gali et al., 
2016; Yung-Shen et al., 2013).

Similarity measurement 
method

Highlights

Euclidean distance Consider the distance of text in vector form. Uses frequency of tokens to generate 
feature vectors

Cosine Consider the angle between two vectors. Fails to capture variations of the 
representation for unstructured/semi structured text

Manhattan Consider the distance between two real vectors

Hamming Consider the count of positions in which two bits are different. Binary strings must 
be of the same length

Jaccard distance Compute’s length of two strings and then finds common characters to indicate 
the presence in near locations. Transposition in reverse order is performed to find 
matching characters between two strings

Jaro Winkler It extends the Jaro distance metric by a prefix value (p = 0.1). This provides a 
higher value of weights to the strings having common prefix length whose value lies 
in the range of (Xiao et al., 2008; Khattak et al., 2019)

Cosine similarity with  
k shingles/k gram

Shingling the document means considering consecutive words and grouping as 
a single entity. A more general approach is to shingle the document. This takes 
consecutive words and groups them as a single object. In general, the set of all 
1-shingles represents the’ bag of words’ model

TF-IDF Based on the concept of term frequency (TF) which is the count of occurrence of 
a token in a document. The inverse document frequency (IDF) is the way to find 
the relevance of unique or odd words. Cosine similarity with TF-IDF is used to find 
similarity scores

Normalized Levenshtein Based on the minimum number of edit operations

Soft-TFIDF TF-IDF and Jaro Winkler are combined to measure similarity. First Jaro Winkler 
finds pairs of tokens common to both strings and then TF-IDF is used to find 
similarity scores exceeding the suitable value of threshold set in Jaro Winkler

to optimize for similarity functions (cosine or Jaccard 
coefficient) which are further mapped to hash values 
by using the technique of locality sensitive hashing. 
These hash values are used as document signatures 
and contribute to calculating similarity. News articles 
and email messages are used as target domains. 
This method was found to be more accurate than 
Shingles and I match.

Arun and Sumesh (2015): In this paper, four phase 
sentence level features, word mapping technique, term 
document weighting scheme and modified similarity 
technique is used which gives improved precision and 
recall.

Yandrapally et al. (2020): A study of near duplicate 
algorithms based on state pairs is presented for web 

app model inference. Webpages were divided into 
three categories-clone, near duplicate and distinct. 
Threshold values were systematically computed and 
used by 10 near duplicate detection techniques for 
three different domains.

Pamulaparty et al. (2017): Proposed random forest 
method random forest- Streaming Random Forest 
(SRF) and Oblique Random Forest (ORF) showed 
better accuracy as compared to other algorithms while 
detecting near duplicates in context of web crawling. 
Keyword extraction, URL indexing and similarity com
putation were the three phases to distinguish between 
near duplicate and non-duplicate web pages.

Do and LongVan (2015): Proposed an algorithm for 
detection of near duplicates in articles by extracting key 
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phrases based on ontology and matching signatures. 
Similarity is calculated between extracted key phrases. 
A set of characteristic key phrases present in the 
articles were used to find near duplicates. Proposed 
algorithm showed good precision and recall.

Al-Subaihin et al. (2019): Analysed different text 
representation techniques for mobile application 
in order to describe textual content, Vector Space 
Model (VSM) using TF-IDF with frequency weighting 
combined with Latent semantic Indexing (LSI) were 
used. This was compared with other text feature 
extraction techniques like topic modeling. Results 
showed that cluster quality by topic modelling 
approach were more favourable as it captures more 
similarity.

Jain et al. (2017): Proposed a text summarization 
approach in which extractive text summary is generated 
by calculating similarity score between the abstractive 
summary and original sentences of text data using 
neural network approach for feature extraction.

El-Kassas et al. (2021): Explained different app
lications, approaches (Extractive, Abstractive and 
Hybrid), methods used in these approaches, building 
blocks—text summarization operations, text represen
tation models and statistical and linguistic features. 
Also, it discusses various datasets, automatic eva
luation tools.

Hendre et al. (2021): Highlights the relevance of 
semantic similarity while analysing text data by using 
the approach of a neural embedding model for text 
data representation. Sentence embedding models-
Elmo, Glove and Google Sentence Encoder were 
used to combine with TF-IDF and Jaccard similarity 
for experimental purpose. ELMO and Google Sen
tence Encoder showed best results by capturing 
maximum similarity.

Albalawi et al. (2020): Provides a detailed des
cription of applications, methodology and tools for 
topic modelling which is used for finding important 
topics present in the short text like comments, reviews 
and short length text messages. A comparison of five 
topic modelling methods-Latent Semantic Analysis 
(LSA), LDA, Non-Matrix Factorization (NMF), Principal 
Component Analysis (PCA) and Random projection 
on the basis of standard statistical evaluation metrics 
-Precision, Recall, F Score and topic coherent were 
established on two textual datasets. LDA and NMF 
topic modelling methods produced valuable output 
by extracting more meaningful topics.

Alqahtani et al. (2021): In order to generate 
patterns from text efficiently several processes like 
text mining, clustering, natural language processing 
and text similarity are involved. String based tools are 
suitable for lexical similarity. LCS, Jaro, and N-gram, 

Damerau Levenshtein (character-based algorithm) 
and the Cosine similarity, Euclidean Distance, Jaccard 
similarity, Block Distance, and Matching Coefficient 
(term-based algorithm) are popular techniques to 
measure lexical similarity. LSA is a popular corpus-
based technique which is not suitable for nonlinear 
text distribution. WordNet is based on a semantic 
network and is based on a knowledge tool.

Chandrasekaran and Mago (2021): Semantic 
textual similarity is one of the most challenged NLP 
tasks. Measuring semantic similarity techniques can 
be knowledge, corpus, and deep neural network 
or can use hybrid-based techniques. Knowledge 
based include Edge counting methods (LCS), Feature 
based method (WordNet), Information content, Word 
embedding based (GloVe, FastText, BERT, word2vec), 
corpus based include LSA, Hyperspace Analogue to 
Language (HAL), Explicit Semantic Analysis (ESA),  
Word-Alignment models, Latent Dirichlet Allocation 
(LDA), Normalised Google Distance (NGD), Dependency- 
based models, Kernel-based models, In addition to 
this methods, deep learning based model includes 
Convolutional Neural Networks (CNN), Long Short 
Term Memory (LSTM), Bidirectional Long Short Term 
Memory (Bi-LSTM), and Recursive Tree LSTM which 
can be used to measure semantic similarity.

Roul and Sahoo (2020): Semantic content based 
near duplicate detection is one of the relevant research 
aspects in information retrieval as it avoids redundancy 
in the search results during query processing and 
removal of near duplicate pages improves page 
ranking. Authors proposed a novel method for the 
detection of near duplicate documents in a corpus 
on the semantic similarity score. A heuristic based 
method is used to rank the documents according 
to their semantic similarity scores. This has been 
achieved by applying an averaging method on DUC 
datasets which associates a similarity score to each 
individual document in the corpus based on semantic 
content. Effectiveness of the proposed method was 
concluded based on the empirical results performed. 
To achieve this, Word2Vec, WordNet, Normalized 
Google Distance, and Latent Dirichlet Allocation (LDA)) 
are used for computing the similarity scores between 
pairs of documents in the corpus. The computed score 
is used as features for training classifiers to generate 
document semantic similarity scores for document 
pairs. Experiments showed improved performance on 
DUC datasets.

Mansoor et al. (2020): Proposed a deep learning-
based method to compute semantic similarity by using 
Long Term Short Memory (LSTM) which is an explicit 
type of Recurrent Neural Networks (RNN) to capture 
sequence among different elements in a sentence 
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Table 6. Recent research studies on text similarity and representation.

Concept/algorithm/
method used

Author(s) Usage

Text similarity (SimHash, 
MinHash), Text clustering

Pamulaparty et al., 2014, 
2015, 2017)  
Hassanian-esfahania and 
Karga (2018)

Near Duplicate detection on the basis of keywords 
generated from text, Fuzzy C means clustering 
with discriminant function, Random forest method 
for classification of near duplicates

Text similarity Yung-Shen et al. (2013)
Gali et al. (2016)

Near Duplicate detection on the basis of 21 
similarity metrics computation between a pair of 
documents or two titles

Signature based text  
similarity measurement

Mohammadi and Khasteh, 
2020 (Hajishirzi et al., 2010)

Reference texts are generated using genetic 
algorithms to obtain signatures for text 
documents as a sequence of 3 grams for 
detection of duplicate and near duplicate 
documents. For generating signature cosine text 
similarity measure is used on the datasets on 
CiteseerX, Enron and Gold Set of Near-duplicate 
News Articles

Text similarity Do and LongVan (2015) Near Duplicate detection by applying signatures 
generated based on ontology on extracted key  
phrases

Text representation methods Al-Subaihin et al. (2019), 
Mishra (2019)

TF-IDF combined with LSI for topic modeling, 
spam classification

Text mining, clustering, 
natural language processing 
and text similarity

Alqahtani et al. (2021) Text matching methods

Semantic similarity Chandrasekaran and  
Mago (2021)

Any NLP task which involves semantic textual 
similarity

Semantic similarity Roul and Sahoo (2020) Near Duplicate detection of web pages on DUC 
dataset

Deep learning based 
semantic similarity

Mansoor et al. (2020) Sentence similarity using LSTM and CNN per 
trained with word2vec on Quora dataset

Text representation using 
ELMo model

Peters et al. (2018) Question answering, Textual entailment, semantic 
role labelling, Named entity extraction, sentiment 
analysis

Text representation using 
FastText model

Shashavali et al. (2019) In goal oriented conversational agents (Chabot)

Text similarity based on 
distance

Stefanovič et al. (2019) Plagiarism detection

Semantic similarity for short 
text based on corpus, 
knowledge and deep learning 
model

Han et al. (2021) Text classification and text clustering, sentiment 
analysis, information retrieval, social networks 
plagiarism detection on the dataset

Text classification based on 
text embedding method

Li and Gong (2021) Deep Learning Text classification on the dataset 
Sohu news dataset

Text Similarity based on 
text distance and text 
representation

Wang and Dong (2020) Information retrieval, Machine translation, question 
answering, machine, document matching
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Text representation using 
BERT model

Wang et al. (2019) Extractive-Abstractive Text summarization with 
BERT embedding model with Reinforcement 
Learning on CNN/Daily Mail dataset and DUC2002

Word Embedding Model, 
Text classification, Word 
tagging

Ajees et al. (2021)
Alqrainy and Alawairdhi 
(2021)

SVM classification to classify animate nouns for 
Malayalam text, comprehensive tag for Arabic 
language

Lexical Taxonomy Nazar et al. (2021) Elimination of incorrect hypernym links, taxonomy 
with new relations in Spanish, English and French

combined with Convolutional Neural Networks (CNN)  
for extracting local features. Proposed model used 
word2vec for text representation. Experiments car
ried out in Quora dataset showed better F score, 
precision and recall as compared to traditional text 
similarity methods (Naïve Bayes, Decision Tree, CNN, 
LSTM with word2vec and LSTM with GloVe).

Peters et al. (2018): Introduced a deep context-
based learning model for word representation. Word 
vectors are internal states of a deep bidirectional 
model. In this model, each token acts as a function for 
the entire input sentence with the help of bidirectional 
LSTM and ELMo model. Word representation using 
ELMo model where higher-level LSTM states capture 
context aspects of words while lower-level state model 
aspects of syntax Performance of the model was 
analysed across six NLP challenging tasks including 
question answering, which showed reduction of 
relative error in a range of 6–20% over other models.

Shashavali et al. (2019): Proposed a method for 
measuring sentence similarity score using weighted 
N-gram, sliding window, cosine similarity and FastText 
embedding techniques. Improved results with accu
racy, precision and recall by 6%, 2% and 80%, res
pectively, were obtained as compared to Universal 
Sentence encoder technique. Proposed work per
forms well for small training dataset. Concept of sliding 
windows were used as cosine similarity with weighted 
average word embedding does not perform well while 
computing sentence similarity between short and long 
sentences.

Stefanovič et al. (2019): Proposed a method to 
calculate similarity between two texts using word level 
n-gram to form a bag of n-gram combined with self-
organising map (SOM). For evaluation Dice, Cosine, 
Overlap and extended Jaccard similarity measures 
were considered. N gram frequency is used to generate 
a frequency matrix of a dataset (A corpus of plagiarized 
short answers). Highest similarity was captured by 
using overlap measure.

Han et al. (2021): Presented a survey based on 
semantic similarity measurement for short text. The 
study categorizes the techniques into three categories–

Corpus based (LSA, LDA, word2Vec, para2Vec, VSM), 
knowledge based (shortest path, Resnik, ESA) and 
deep learning based (CNN, LSTM, BERT).

Li and Gong, (2021): Used four embedding models 
i.e., word2Vec, doc2Vec, TF-IDF and embedding layer 
for text classification on Chinese news dataset. Deep 
Learning models (CNN, LSTM, GRU, MLP, 2 layer GRU, 
CNNGRU and CNNGRU_Merge, TextCNN) are used 
for classification purposes. The 2-layer GRU model 
with word2Vec embedding showed highest accuracy.

Wang et al. (2019): Proposed text summarization 
technique combining both extractive and abstractive 
approaches. In order to capture semantic features, a 
BERT text embedding model is used. Important sen-
tences are selected from the input sentences (cor-
pus). Next abstractive based summary is used for 
generating summary. For this, two sub models (both 
extractive and abstractive) and for updating in end-
to-end training, reinforce learning. Proposed method 
achieved better accuracy.

Ajees et al. (2021): A machine learning based 
deep level tagging is used to provide more context to 
each noun and verb words for any Malayalam words. 
Two methods are combined for this-word embedding 
which uses word2Vec with skip gram variant and 
suffix stripping SVM classification to identify animate 
noun identification. This method exploits morpho
logical features of the input text document.

Table 6 highlights various recent research studies 
for text mining tasks including near duplicate detection 
which uses text similarity measurement techniques 
and text embedding models for text representation.

A critical look at the available literature reveals that 
the following issues need to address:

1.	 Need to reduce the summarized latency in text 
summarization tasks.

2.	 Need to generate an open summarized frame-
work since existing work is mostly domain 
specific.

3.	 Need to increase the accuracy of framework 
for capturing similarity with the help of emerg-
ing AI tools.



10

A novel approach to capture the similarity in summarized text using embedded model: Mishra and Panchal

Figure 1: Block diagram for proposed approach.

4.	 Since efficient summary can be generated 
with proper feature representation and better 
semantic understanding with the help of ad-
vanced AI tools, it can play an important role 
for detection of near duplicates by taking sum-
marized text as input with an objective of re-
ducing both time and storage.

Proposed methodology

In the proposed approach, similarity metrics are applied 
to find the degree of relatedness on summarization. 
For generating text summary, the LSA method as 
an extractive text summarizer is considered. For 
better semantic aspect, text embedding models are 
used for better vector representation. Extractive text 
summarization is a technique used in various domains 
of text analytics to extract meaningful textual content 
by keeping only important sentences without any 
modification in the original content. Figure 1 shows 
a generic approach for detecting near duplicates 
in two input pairs of text. For better utilization of 
time and storage while performing near duplicate 
detection the first summary of original content is 
generated. Moreover, to capture semantic similarity, 
a text embedding model is applied on a summary 
generated before applying a suitable text similarity 
algorithm for calculating similarity scores on the vector 
representation of text. Detailed working approach is 
shown with the help flowchart in Figure 2.

Algorithm 1, Algorithm 2, Algorithm 3 and Algorithm 
4 presents complete details about the various phases 
and sequence of concepts involved in the proposed 
method.

Algorithm 1: Near duplicate detection using 
summarized text

1. � document_set := {Text 1, Text 2}, threshold := ø // 
Initialize

2.  function Near_Duplicate_Detection(document_set)

     Input: Pair of text documents

   �  returns labeled documents as near duplicate or 
non-duplicate

3. � output_set=Generate_ Summary(document_set) ; 
// Phase 1: Generation of summary

4. � vector_set = Generate_ vector(output_set) ; // 
Phase 2: Text representation

5. � similarity_score=calculate_similarity_score(vector_
set; // Similarity score calculation

6. � if similarity_score > ø then // comparison with 
threshold

7.    label ‘Near Duplicate’

8.  else

9.    label ‘ Non Duplicate’

10. end function

Algorithm 2: Generation of summary for the 
input documents present in document_set using 
Extractive approach

1.  function Generate_ Summary(document_set)

      Input: pair of text documents

      returns generated summary

2.  forall text document in document_set do

3. � Pre-processing: Block level breaking of text 
into key phrases or sentences, Tokenization 
(sentences), Lemmatization, stemming, stop word 
removal, POS tagging, Named Entity Recognition

4. � Identification of interrelated sentences: Similarity 
measuring functions are used to find related 
sentences to be included in the summary

5. � Weighting and ranking of selected sentences: 
Numeric values are assigned to find important 
features. Higher ranked sentences are selected  
for summary

6.  output_set:= {text 1_summary, text 2_summary};

7.  return output_set // pair of summarized text
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Algorithm 3: Text representation using embedding 
model to generate vectors

1.  function Generate_ vector(output_set)

      Input: Pair of summarized text documents

   �   returns vector representation for input 
document pairs

2. � forall summarized text document in output_set do

3.  vector_set = embedding_model(output_set);

4.  vector_set={VText1, VText2};

5.  return vector_set // pair of vectors

Algorithm 4: Similarity score calculation for 
summarized text vectors

1.  function calculate_similarity_score (vector_set)

   Input: pair of vectors

   �returns similarity scores of the summarized text 
documents

2.  similarity_score = similarity_function(vector_set)

3.  return similarity_score

Figure 2: Workflow of proposed approach of near duplicate detection.
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Table 7. Input texts.

Input Original text

Text 1 “Everyday large volume of data is gathered from different sources and are stored since they contain 
valuable piece of information. The storage of data must be done in efficient manner since it leads in 
difficulty during retrieval. Text data are available in the form of large documents. Understanding large text 
documents and extracting meaningful information out of it is time-consuming tasks. To overcome these 
challenges, text documents are summarized in with an objective to getrelated information from a large 
document or a collection of documents. Text mining can be used for this purpose. Summarized text will 
have reduced size as compare to original one. In this review, we have tried to evaluate and compare 
different techniques of Text summarization.”

Text 2 “In the view of a significant increase in the burden of information over and over the limit by the amount of 
information available on the internet, there is a huge increase in the amount of information overloading and 
redundancy contained in each document Extracting important information in a summarized format would help 
a number of users. It is therefore necessary to have proper and properly prepared summaries. Subsequently, 
many research papers are proposed continuously to develop new approaches to automatically summarize 
the text. ''Automatic Text Summarization" is a process to create a shorter version of the original text (one or 
more documents) which conveys information present in the documents. In general, the summary of the text 
can be categorized into two types: Extractive-based and Abstractive-based. Abstractive-based methods are 
very complicated as they need to address a huge-scale natural language. Therefore, research communities 
are focusing on extractive summaries, attempting to achieve more consistent, non-recurring and meaningful 
summaries. This review provides an elaborative survey of extractive text summarization techniques. 
Specifically, it focuses on unsupervised techniques, providing recent efforts and advances on them and list 
their strengths and weaknesses points in a comparative tabular manner. In addition, this review highlights 
efforts made in the evaluation techniques of the summaries and finally deduces some possible”

Table 8. Text summarization on original text.

Text summarization 
(using LSA method) on

Generated summary

Text 1 “Everyday large volume of data is gathered from different sources and are stored 
since they contain valuable piece of information. The storage of data must be done 
in efficient manner since it leads in difficulty during retrieval. To overcome these 
challenges, text documents are summarized in with an objective to get related 
information from a large document or a collection of documents.”

Text 2 “In the view of a significant increase in the burden of information over and over the 
limit by the amount of information available on the internet, there is a huge increase in 
the amount of information overloading and redundancy contained in each document. 
Specifically, it focuses on unsupervised techniques, providing recent efforts and 
advances on them and list their strengths and weaknesses points in a comparative 
tabular manner. In addition, this review highlights efforts made in the evaluation 
techniques of the summaries and finally dedtices some possible future trends.”

Experimental results and discussion

For experimental purposes, abstracts of research 
articles (Elrefaiy et al., 2018; Mishra et al., 2019) as 

Text 1 and Text 2 are considered as shown in Table 7.  
Table 8 shows the result of text summarization 
technique which is applied for generation of text 
summary of input documents, LSA which is based 
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Table 9. Topic modeling on original text.

Topic modelling (using 
LDA method) on

Topics with weights

Text 1 Topic #1 [(‘different’, 1.06), (‘since’, 1.03), (‘data’, 0.97), (‘try’, 0.88), (‘evaluate’, 
0.88), (‘technique’, 0.88), (‘review’, 0.88), (‘summarization’, 0.88)]

Topic #2 (‘text’, 1.42), (‘document’, 1.39), (‘large’, 1.16), (‘form’, 1.01), (‘available’, 
1.01), (‘summarize’, 0.91), (‘information’, 0.9), (‘meaningful’, 0.85)]

Text 2 Topic #1 [(‘information’, 1.24), (‘summary’, 1.1), (‘summarize’, 1.05), (‘research’, 
1.0), (‘amount’, 0.9), (‘increase’, 0.9), (‘help’, 0.84), (‘would’, 0.84)]

Topic #2 [(‘text’, 1.36), (‘based’, 1.34), (‘provide’, 1.08), (‘extractive’, 1.07), 
(‘summarization’, 1.07), (‘abstractive’, 1.06), (‘technique’, 1.02), (‘summary’, 1.01)]

on extractive text summarization is used. For better 
vector representation of text, text embedding models 
are used which act as function parameters for 
similarity calculation. For analysing the performance 
of text similarity functions with embedding models, 
we have considered 6 models—Word2Vec,Universal 
Sentence Encoder, FastText, ELMo, GloVe and 
BERT. Similarity score is calculated using various 
similarity functions on both original and summarized 
text with and without embedding models. To get 
detailed insights more, similarity functions are applied 
on both original and summarized text on other text 
extraction strategies like topic modelling and key 

phrase extraction. Table 9 and Table 10 show topics 
generated when LDA method is applied on both 
original and summarized text pair respectively. It can 
be easily interpreted that high weighted topics from 
original text are included as topics in the summary 
also. Table 11 shows key phrases generated using 
TF-IDF method.

Table 12 shows values of similarity scores 
generated when various text similarity functions 
based on various traditional distance based metrics 
are applied on original pair of text, topics modelling, 
key phrase extraction and summary. Figure 3 shows 
similarity values generated by extractive approaches 

Table 10. Topic modeling on summary of original text.

Topic modelling (using 
LDA method) applied on

Topics with weights

Text 1 Summary Topic #1 [(‘document’,0.091),(‘data’,0.065),(‘information’,0.065), (‘piece’,0.
039)’,’(‘contain’,0.039), (’summarize’,0.039), (’manner’, 0.039), (‘do’,0.039), 
(‘must’,0.039), (‘large’, 0.039)]

Topic #2 [(‘document’,0.044), (‘information’, 0.044), (‘data’,0.044), (‘source’, 
0.044), (‘different,’0.043), (‘valuable’,0.043), (‘lead’, 0.043), (‘challenge’, 0.043), 
(‘collection’, 0.043), (‘relate’, 0.043]

Text 2 Summary Topic #1 [(‘information’,0.056),(‘increase’,0.040),(‘effort’,0.040), (‘amount’,0.040),  
(‘technique’,0.040),(‘specifically‘,0.024), (‘unsupervised‘,0.024),(‘future’,0.024), 
(‘overload’,0.024),(‘comparative’, 0.024)]

Topic #2 [(‘information’,0.027), (‘technique’, 0.027), (‘amount’,0.027), (‘effort’, 
0.026), (‘increase’,026), (‘possible’, 0.026), (‘redundancy’,0.026), (‘make’,0.026), 
(‘summary’,0.026), (‘strength’, 0.026)]



14

A novel approach to capture the similarity in summarized text using embedded model: Mishra and Panchal

Table 12. Similarity scores using traditional similarity metrics on original texts, topics, 
keyword extracted and summary.

Text similarity measure

Similarity 
score (in %) 

between Text 
1 and Text 2

Similarity score 
(in %) between 
topics of Text 
1 and Text 2

Similarity score  
(in %) between key 
word extracted of 
Text 1 and Text 2

Similarity score 
(in %) between 
Text 1 and Text 

2 Summary

Euclidean distance [ED] 23.70 22.40 20.03 15.36

Normalized Levenshtein [NL] 27.80 26.43 33.69 29.08

Hamming Distance [HD] 40.0 7.14 10.8 27.0

Term Frequency-Inverse 
Document Frequency [TF-IDF]

53.71 55.90 38.86 41.11

Jaccard Distance [JD] 56.23 38.2 42.75 48.97

Cosine Similarity [CS] 63.0 29.46 30.15 41.86

Jaro Winkler [JW] 68.0 76.8 70.0 72.80

Cosine similarity with k 
shingles [CS_kshingles]

89.0 62.5 61.92 81.30

Table 11. Key phrase extraction on Text 1 and Text 2 using weighted TF-IDF method.

Key phrase extraction 
method applied on

Key phrases with weights

Text 1 [(‘form’, 0.57699999999999996), (‘large documents’, 0.57699999999999996), (‘text 
data’, 0.57699999999999996),(‘large text documents’, 0.57699999999999996), 
(‘meaningful information’, 0.57699999999999996), (‘time-consuming tasks’, 
0.57699999999999996), (‘different techniques’, 0.57699999999999996), (‘review’, 
0.57699999999999996), (‘text summarization’, 0.57699999999999996), (‘different 
sources’, 0.47599999999999998)]

Text 2 [(‘prepared summaries’, 1.0), (‘abstractive-based methods’, 0.70699999999999996), 
(‘huge-scale natural language’, 0.70699999999999996), (‘documents’, 
0.66700000000000004), (‘summary’, 0.63200000000000001), (‘types’, 
0.63200000000000001), (‘elaborative survey’, 0.57699999999999996), 
(‘extractive text summarization techniques’, 0.57699999999999996), (‘review’, 
0.57699999999999996), (‘many research papers’, 0.53400000000000003)]

almost matches the scores when same algorithm is 
applied in original text.

Table 13 shows results generated when text em
bedding models are used to generate vectors for 
similarity calculation. Figure 4 shows better text 
representations resulting in better similarity score even 
when it is applied on summarized text. Figures 5 and 6 

show graphical comparison and similarity distribution 
based on similarity scores using both traditional and 
embedding model approaches respectively on both 
original text pair and its summary.

From the above experimental details, it can be 
seen that in traditional similarity measures Jaro 
Winkler performs best in all three-text extraction 
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Figure 3: Similarity scores for the various text extraction methods.

Table 13. Similarity scores using text embedding models on original and summarized 
document.

Embedding model
Similarity score (in %) 
between Text 1 and 

Text 2

Similarity score (in %) 
between Text 1 summary 

and Text 2 summary

Word2Vec 5.28 14.26

Universal Sentence Encoder [USE] 81.36 69.39

FastText with soft cosine similarity [FT_SoftCS] 81.76 92.40

ELMo with cosine similarity (ELMo_CS) 88.59 76.32

Glove with cosine similarity (GloVe_CS) 97.89 95.60

BERT with cosine similarity (BERT_CS) 72.28 82.29

Figure 4: Impact of text representation on similarity calculation.
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Figure 5: Graphical representation of similarity scores using various similarity measure 
techniques.

Figure 6: Similarity Score distribution using Various Similarity Search Techniques on original and 
summarized text.

approaches i.e., topic modelling, keyword extraction 
and text summary generation as compared to other 
approaches shown in Table 12. Use of embedding 
models provides efficient text representation which 
leads to enhancing the performance of similarity 

algorithms as shown in Table 13. Soft cosine similarity 
using FastText [SoftCS_FT] performs best as text 
representation technique summarized text, while GloVe 
with cosine similarity captures the highest degree of 
similarity in both original and summarized text shown 
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Table 14. Result analysis.

Similarity function Original text Summarized text

Without embedding model Jaro Winkler [JW] 68 72.80

Cosine similarity with k shingles 
[CS_kshingles]

89.0 81.30

With embedding model Soft cosine similarity using FastText 
[FT_SoftCS]

81.76 92.40

Cosine similarity with GloVe (GloVe_CS) 97.89 95.60

Table 15. Analysis of impact of embedding models on Text similarity measurement.

No. of Text 
similarity 
algorithms

Approach  
used

Average similarity 
score (in %) between 

Text 1 and Text 2

Average similarity score  
(in %) between Text 1 
summary and Text 2 

summary

Difference  
(in %)

8 Without text embedding 
models

52.68 44.685 7.995

6 With text embedding 
models

71.19 71.71 0.52

Figure 7: Heat map (GloVe) using both approaches.
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in Table 14. Heat map for GloVe embedding model is 
graphically represented in Figure 7. Table 15 highlights 
overall analysis for the proposed methodology. Figure 
8 shows a graphical comparison of similarity scores for 
both original and summarized text combined with and 
without text embedding model.

Conclusion and future scope

Extractive approach of text summary generation is 
used to make the proposed approach independent of 
domain knowledge. So, in this paper an attempt has 
been made to use this concept to design and develop 
a near duplicate detection algorithm. Proposed app
roach performs reasonably well even for a higher 
value of threshold (>50%). Based on results obtained 
by the proposed method, it is possible to consider 
summary instead of whole document along with text 
embedding’s to capture better similarity, as results 
shows average similarity score of 6 summarized 
embedded text results in an increase of 0.52%. By 
using a suitable embedding model this percentage 
can increase by considerable value as word2Vec 
performance was poor.

The functionality of the text summarization algorithm 
can be increased by adding other coherent elements 
such as synonym, antonymy, collocation, calculation, 
similarity and the element of transformation. In terms 
of results, the syntax of sentences to work more 
efficiently should be more mathematical and linguistic. 
The integration method consists of Grammatical and 
Lexical Linking within the text as well as a sentence 
containing a sentence and provides important details. 
In future operations alternatives may be used in an 
invisible way which creates an internal semantic 

representation and use of native language generation 
strategies for making a summary. In the future, Deep 
Learning can be used for developing generalized text 
embedding models to handle insufficient data and 
adding a deeper level context to POS tagging. Also 
abstractive text summarization can be used which 
generates summary on the basis of hidden text.
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