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Some fractional derivatives of A-function of
multivariable
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Abstract

In the present paper, we study and develop Fractional derivatives of multivariable A — function. We derive
two theorems which will act as the key formulas from which can obtain their special cases.
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1. INTRODUCTION

A number of earlier works on the subject of fractional calculus give interesting
account of the theory and application of fractional calculus operators in many different
areas of mathematical analysis. In this paper, we define the Fractional Derivatives
involving A — function of multivariable and derive two main theorems involving
Fractional Derivative of the product of A — function of multivariable and the Horn’s
function. Some new and known results are also established as special cases of our
main results. The Fractional Derivative of the product of the multivariable A —
function and Horn’s function has not been established so far, and some new
Fractional Derivative formulae for the product of the multivariable A — function
and Horn’s function are derived by making use of generalized Leibnitz rule.
Recently, Berndt and Bowman [1], Chaurasia and Godika [2], Saxena [3], Tripathi et

al [4] gives some integrals and series.

Gautam and Asgar [5, 6], Ram and Kumar [7], Srivastava and Panda [8] and several
other authors have evaluated some definite and indefinite integrals involving the

A — function of one, two and multivariables.
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2. DEFINITION OF FRACTIONAL DERIVATIVE

Following Oldham and Spainer [9], we define the (Riemann Liouville) fractional
derivatives of a function f(x) of complex order ¥ or alternatively (a — 9)** by the

following

1

55 da = O ()dy  Re (9) <0,
aD{f @Y= T
—aD?7*{f(x)},0 < Re (V) <n,

dx™

(2.1)

where n is a positive integer .
For simplicity, the special case of the Fractional Derivative Operator aD? when a =
0 will be written as aD¥. Thus, we have

op? =D?. (2.2)

3. MAIN RESULTS

THEOREM 1. If min{p, 0,} > 0,|arg(x/¢) | < m, Re (m) +p, min {Re (b; ;)}>
—1(G=1,...,0))|z:xP | < 1, |(x+ &) z,.| <71y, 71 +71,=1; then
DY {x™(x +
z1xP1(x + &)

A 400X
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0 Wr 5(5)5—7(5)’r— — P ¢ /OR
=57 Lt O s (1 iy 2y 00) 2, £ iy 2
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0.1n,+2;X .

(=A=025,01,07),(—R=TM= P21, 01,0 Pr) eyereene
Pr+2,r+2:y ) (3 1)

: v R=A=028,01,...07) (O —M—R—025,01, s Pr)
ero_rxpr T T

PROOF. We first replace the A — function of multivariable occurring on the left
—hand - side by its Mellin —Barnes type contour integral and Horn’s function G, and
changing the order of integration and differentiation, which is readily justified in view

of conditions stated above and collecting the powers of x and (x+&), we get

N (]/)r+5(5)s_r(6),‘r—3 T, S 1 - S
L 1 )] z," 73 2wy le"""fL,@(Sl‘ .....,sr)L_l[@i (s)z;

{DEXMHPIS TP o (x + )MtV s, ds, (3.2)
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Now, applying well known binomial expansion , we have

¢ Dras(@)s—r(6), 1 -
. ((r))! (s)(! : e e Cote] [ LR e
i=1

7,5=0

R
D;xm‘FPlS*‘PzT Z;)zozo(l+01;+az‘f) <§) dsl, ) dSr . (33)

Making use of the formula [the result Oldham and Spanier [9]], we get

o3}

Z Nr+s(8)s—(8)',_; 1 |
(GHEO! Crw)r "L

o M1 —(—2—0y5) + 035, ...,0.8] [[1 = (=m — R — po1) + p1S, ..., prS]
RN T[M=(R—-2—0,5) +0:S,...,0.5] [[1 = (O —m —R — por) + p1S, ..., prS]

X (2pxP2)" (23802)SxMHP1SHP2T4R=D 2 s | 7 Sdsy, ..., ds, (3.4)
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If we interpret the resulting Mellin—Barnes contour integral as an A- function of

multivariable, we shall arrive (3.1).
THEOREM 2. If min{p,0,}>0,|arg(—x/¢) | < m,Re (m) +p, min {Re

then

Giy)y> —1(G=12,...,1), |22(x =P <1, (N =X Zp| <1py i+ 41, =1;
7z (x — 5)0'1(77 %
2% = )P — )
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(3.5)
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Pr+2,qr+2:y

PROOF. we first replace the A-function of several variable occurring on the left
— hand side by its Mellin —Barnes type contour integral and Horn’s function G, by its
definition and changing the order of integration and differentiation, which is readily
justified in view of conditions stated above and collecting the powers of (x-&) and (n-

X), we get
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- r+s 5 s-r § ’-r—s 1 )
Z = ((r))! (s)(! ) z," z3° 2rw)" le' ""'fLrQ)(Sl‘ e Sr) 1_[ 0 ()7,
i=1

7,5=0

{DR(x — §)mHPrstPr x (i — )M sy, ..., sy (36)

Now, applying well known Binomial expansion, we have

O Dras@r () 1 ;
Dres OO vs s [ S, 015 | [0 sz (—pymmsstons
i=1

L O T @y W
7,5=0
—x\Rz
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215, 25 dsq, o, dsy 3.7

Making the use of the formula [the result Oldham and Spanier [9]], we get
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(RD!(R)!

' Pras () (8)',_,
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1= (R, —m—pyr)+ piS, ., prs] T[1 = (R, — 025) + 035, ..., 05]

715, ., 2.5 dsq, ., dsy (3.8)
If we interpret the resulting Mellin —Barnes contour integral as an A- function of

multivariable, we shall arrive (3.5).

4. SPECIAL CASES OF (3.1) AND (3.5)

(1) Putting o, —» 0 another four Fractional Derivative formulae corresponding
to (3.1) and (3.5):

0ng X
D}? X (xf) AA Dr, ‘;r:Y

l%(—f)”ln‘“
z (=Pl
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minfp, } > 0, arg(x/§) | < m,
Re (m) +p. min {Re (§;y;)}> -1 (G =1,...,7),
|ZpxPr| < 1r, |[(x + )z | <1y F 1, 1 =15
[21 (x =8P
2=l

X G(y,6,6":Zy (X-E)Pr, (x — )23, .,.., Z)}
(V)r+s(5)s—r(5),r_s

D{(x — O — ) Ay

= 5 POt [, () )" [2217)° (D" (0)*
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Ry =0 &R,=0 (RDI(R,)! [(Ry+R,—9+1) ~ [(1+0,5—Ry)
2 (—§)P
0n,+1;X : | (=M= P2, 01, e Py ) severevens (4.2)
Dr+1,9r+1y : P cveees(Ry =M= P271,01,0000.Pr) (R2—025,01,000p00,07) | '
zp (=§)Pr

min{p, } > 0,|arg(—x/§) | < m,

Re (m) +p. min {Re (§;y;)}> -1 (G =12,...,7),

|Zo(x =P < 1, |[(M—x)T z3| <1+ T+ =15
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