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Abstract

Purpose: Automatic keyphrase extraction (AKE) is an important task for grasping the main 
points of the text. In this paper, we aim to combine the benefits of sequence labeling formulation 
and pretrained language model to propose an automatic keyphrase extraction model for 
Chinese scientific research.

Design/methodology/approach: We regard AKE from Chinese text as a character-level 
sequence labeling task to avoid segmentation errors of Chinese tokenizer and initialize our 
model with pretrained language model BERT, which was released by Google in 2018. We 
collect data from Chinese Science Citation Database and construct a large-scale dataset 
from medical domain, which contains 100,000 abstracts as training set, 6,000 abstracts as 
development set and 3,094 abstracts as test set. We use unsupervised keyphrase extraction 
methods including term frequency (TF), TF-IDF, TextRank and supervised machine learning 
methods including Conditional Random Field (CRF), Bidirectional Long Short Term Memory 
Network (BiLSTM), and BiLSTM-CRF as baselines. Experiments are designed to compare 
word-level and character-level sequence labeling approaches on supervised machine learning 
models and BERT-based models.

Findings: Compared with character-level BiLSTM-CRF, the best baseline model with F1 
score of 50.16%, our character-level sequence labeling model based on BERT obtains F1 
score of 59.80%, getting 9.64% absolute improvement.

Research limitations: We just consider automatic keyphrase extraction task rather than 
keyphrase generation task, so only keyphrases that are occurred in the given text can be 
extracted. In addition, our proposed dataset is not suitable for dealing with nested keyphrases. 

Practical implications: We make our character-level IOB format dataset of Chinese 
Automatic Keyphrase Extraction from scientific Chinese medical abstracts (CAKE) publicly 
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available for the benefits of research community, which is available at: https://github.com/
possible1402/Dataset-For-Chinese-Medical-Keyphrase-Extraction.

Originality/value: By designing comparative experiments, our study demonstrates that 
character-level formulation is more suitable for Chinese automatic keyphrase extraction task 
under the general trend of pretrained language models. And our proposed dataset provides a 
unified method for model evaluation and  can promote the development of Chinese automatic 
keyphrase extraction to some extent.

Keywords Automatic keyphrase extraction; Character-level sequence labeling; Pretrained 
language model; Scientific chinese medical abstracts

1 Introduction

Automatic keyphrase extraction (AKE) is a task to extract important and topical 
phrases from the body of a document (Turney, 2000), which is the basis of information 
retrieval (Jones & Staveley, 1999), text summarization (Zhang, Zincir-Heywood, & 
Milios, 2004), text categorization (Hulth & Megyesi, 2006), opinion mining (Berend, 
2011), and document indexing (Frank et al., 1999). It can help us quickly go through 
large amounts of textual information to find out the main stating point of the text. 
Appropriate keyphrases can serve as a highly concise summarization of the text and 
are beneficial to retrieve text.

Classic keyphrase extraction algorithms usually contain two steps (Hasan & Ng, 
2014). The first step is to generate candidate keyphrases, in which plenty of manually 
designed heuristics are combined to select potential candidate keyphrases. And the 
second step is to determine which of these candidate keyphrases are correct. One 
of the shared disadvantages in above-mentioned two-step approaches is that the 
model performance in second step is based on the quality of candidate keyphrases 
generated in the first step. So some researchers reformulate keyphrase extraction as 
a sequence labeling task and validate the effectiveness of this formulation.

Zhang et al. (2008) firstly reformulated keyphrase extraction as a sequence 
labeling task and constructed a CRF model to extract keyphrases from Chinese text, 
which skips the step of candidate keyphrase generation. They used 600 documents 
to train the model and designed lots of features manually. Moreover, they used 
word-level sequence labeling instead of character-level, tagging the words rather 
than characters. In Chinese, word is the minimal unit to express semantics. The 
advantage of word-level formulation is that we can model the relationship among 
words directly while the disadvantage is that it still depends on the word segmentation 
results of Chinese tokenizer.

By virtue of automatic extracting features, deep learning methods exceed machine 
learning methods and gradually become the mainstream in many natural language 
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processing (NLP) tasks. Transformer (Vaswani et al., 2017), an emerging model 
architecture for handling long-term dependencies, is a substitute to classic neural 
networks such as Long Short-Term Memory network. In 2018, Google released 
BERT (Devlin et al., 2019), which is a language model pretrained on large-scale 
unannotated text and used Transformer to capture deep semantic and syntactic 
features in text. In 2019, Sahrawat et al. (2019) regarded AKE as a sequence labeling 
task and applied lots of pretrained language models including BERT to English 
automatic keyphrase extraction task, showing the effectiveness of pretrained 
language model.

Compared to English keyphrase extraction, Chinese keyphrase extraction is 
facing two challenges: lacking of publicly available annotated dataset and relying 
on Chinese word segmentation tool. Firstly, supervised methods need ground-truth 
keyphrases of the text to train the model, while there are few Chinese publicly 
annotated keyphrase extraction datasets, which makes it difficult to do objective 
evaluation among different researches. Secondly, English tokens are split by white 
space while there is no delimiter among Chinese words.

To address the above-mentioned challenges, in this paper, we constructed a high 
quality dataset for Chinese automatic keyphrase extraction. We formulated keyphrase 
extraction from scientific Chinese medical abstracts as a character-level sequence 
labeling task which doesn’t rely on Chinese tokenizer. And also we designed 
experiments to compare the model performance under word-level and character-
level sequence labeling formulations, which has not been explored. In addition, for 
scientific Chinese medical abstracts, English words are interspersed with Chinese 
words, which increases the difficulty of data preprocessing. So we used Unicode 
Coding to distinguish English and Chinese, which regards each English word as the 
elementary unit and each Chinese character as the elementary unit.

Our key contributions are summarized as follows:

1.  We regarded AKE from scientific Chinese medical abstracts as a character-
level sequence labeling task and fine-tuned the parameters of BERT (Devlin 
et al., 2019) to make it adapt to our large-scale keyphrase extraction dataset. 
Our approach skips the step of candidate keyphrase extraction and is 
independent of Chinese tokenizer. And also we transfered the pretrained 
language model BERT to downstream Chinese AKE task without complicated 
manually-designed features.

2.  We designed comparative experiments against word-level and character-level 
sequence labeling formulation for Chinese keyphrase extraction to verify the 
effectiveness of character-level formulation, especially under the general trend 
of pretrained language model. The comparative experiments were conducted 
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on machine learning baseline models and BERT-based model. We found that 
the performance of character-level formulation is comparable to word-level 
formulation or even higher for traditional machine learning algorithms while 
has overwhelming advantages for pretrained language model.

3.  We processed data from Chinese Science Citation Database and constructed 
a large-scale character-level dataset for AKE from scientific Chinese medical 
abstracts. The dataset was labeled using Inside–Outside–Beginning tagging 
scheme (IOB format), which is a common tagging format in chunking tasks 
such as named entity recognition task. Our proposed dataset contains 100,000 
abstracts in training set, 6,000 abstracts in development set and 3,094 abstracts 
in test set. We made our processed large-scale dataset (CAKE) publicly 
available for the benefits of the research community.

2 Related work

2.1 Automatic keyphrase extraction

Automatic keyphrase extraction has received lots of attention for more than 20 
years. Over this time, existing classic methods usually contain two steps: generating 
candidate keyphrases and determining which of these candidate keyphrases match 
ground-truth keyphrases. In the first step, candidate keyphrases generation relies 
on some heuristics such as extracting n-grams that appear in external knowledge 
base (Grineva et al., 2009; Medelyan et al., 2009), extracting phrases that satisfy 
pre-defined lexical patterns (Barker & Cornacchia, 2000; Hulth, 2003; Le et al., 
2016; Wang et al., 2016). The classic approaches in the second step can be divided 
into two categories: unsupervised approaches and supervised approaches. 

Unsupervised approaches can be divided into four types: statistics-based approaches 
(Campos et al., 2018), graph-based approaches(Grineva et al., 2009; Mihalcea & 
Tarau, 2004), embedding-based approaches (Liu et al., 2009, 2010), and language 
model-based approaches (Tomokiyo & Hurst, 2003). Graph-based methods are the 
most popular ones while statistics-based methods still hold the attention of the 
research community (Papagiannopoulou & Tsoumakas, 2019).

As for Statistics-based approaches, these approaches don’t need any training 
corpus and they are based on statistical features of the given text such as word 
frequency (Luhn, 1957), TF*IDF (Salton et al., 1975), PAT-tree (Chien, 1997), and 
word co-occurrences (Matsuo & Ishizuka, 2004). And it’s suitable for one single 
document because no prior information is needed. In 1995, Cohen (1995) used 
N-gram statistical information to automatically index the document. It didn’t use 
any stop list, stemmer or domain-specific external information, allowing for easy 
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application in any language or domain with slight modification. In 1997, Chien 
(1997) used PAT-tree and mutual information between words to extract Chinese 
keyphrases. In 2009, Carpena et al. (2009) considered word frequency and spatial 
distribution features that keywords are clustered whereas irrelevant words distribute 
randomly in text. These statistical approaches are usually easy to transfer to a new 
domain because no prior information is applied.

As for graph-based approaches, keyphrase extraction is a ranking problem 
substantially. The model scores each candidate for its likelihood of being a ground-
truth keyphrase and returns top-ranked keyphrases by setting a threshold. There are 
lots of popular unsupervised learning algorithms for keyphrases extraction, such as 
TextRank (Mihalcea & Tarau, 2004), LexRank (Erkan & Radev, 2004), TopicRank 
(Bougouin et al., 2013), SGRank (Danesh et al., 2015), and SingleRank (Wan & 
Xiao, 2008).

As for supervised approaches, classic keyphrase extraction is formulated as a 
binary classification problem (Frank et al., 1999; Turney, 2002) to determine whether 
the potential candidate keyphrases match ground-truth keyphrases for the text or 
not. Traditional machine learning algorithms such as Naïve Bayes (Witten et al., 
2005), maximum entropy (Li et al., 2004), decision trees (Turney, 2000), SVM 
(Zhao et al., 2011), bagging (Hulth, 2003), and boosting (Hulth et al., 2001) rely 
heavily on complicated manually-designed features which can be broadly divided 
into two categories: within collection features and external resource-bases features 
(Hasan & Ng, 2014). Within collection features use textual features within training 
data and can be further divided into statistical features such as term frequency 
(Hulth, 2003), TF*IDF (Salton & Buckley, 1988), syntactic features such as some 
linguistic patterns (Kim & Kan, 2009), and structural features such as location that 
keyphrases occur in (Wang et al., 2016). External resource-based features consist 
of lexical knowledge bases such as Wikipedia (Grineva et al., 2009; Medelyan 
et al., 2009), document citations (Caragea et al., 2014), hyperlinks (Kelleher & Luz, 
2005). These methods have some weaknesses. The prediction for each candidate 
keyphrase is independent to that of others, which means that the model can’t capture 
the connection among keyphrases. 

These two-step keyphrase extraction approaches have some drawbacks. Firstly, 
error propagation. The candidate keyphrases generation errors occurring in the first 
step will be passed to the second step and influence the performance of the 
downstream methods. Secondly, the model performance relies heavily on some 
heuristic settings such as threshold, external resources (Wikipedia, domain ontology, 
lexicon dictionary etc.), and filtration patterns of POS tags, which make it difficult 
to transfer to a new domain. Thirdly, it’s not able to find an optimal N value (number 



Special Issue on “Extraction and Evaluation of Knowledge Entities from Scientific Documents” Vol. 6 No. 3, 2021

40

Research Paper

Journal of Data and 
Information Science

of keyphrases to extract for the text) based on article contents so it is usually set to 
a fixed parameter which results in keyphrase extraction performance varying with 
the value for N. Fourthly, the number of keyphrases is same among text, ignoring 
the physical truth and bringing lots of redundant keyphrases or losing lots of 
important keyphrases. Finally, in the second step, the model just analyzes the 
semantic and syntactic properties of candidate keyphrases separately while losing 
the meaning of the whole text.

Zhang et al. (2008) first reformulated keyphrase extraction to a sequence labeling 
task, and utilized user-defined tagging scheme to annotate each word in Chinese 
text and indicated its chunk belonging. And they used Conditional Random Field 
model, which shows great performance in sequence labeling task. They designed 
lots of manually-designed features such as POS tagging, TF*IDF, and other location 
features. Li et al. (2013) also used word-level sequence labeling model to extract 
keyphrases in automotive field for Chinese text. Casting keyphrase extraction as 
a sequence labeling task bypasses the step of candidate keyphrases generation 
and provides a unified method for automatic keyphrase extraction. Moreover, in 
sequence labeling, keyphrases are correlated to each other instead of being 
independent units. 

Supervised machine learning methods require precise feature engineering and 
they rely heavily on manually-designed features, which are time-consuming. Using 
deep learning method to automatically extract features has become the mainstream 
of many natural language processing tasks. There are some practices for English 
AKE. In 2016, Zhang et al. (2016) cast keyphrase extraction as a sequence labeling 
task and proposed a joint-layer recurrent neural network model to extract keyphrases 
from tweets, which doesn’t need complicated feature engineering. In 2019, Sahrawat 
et al. (2019) constructed a BiLSTM-CRF model and used contextualized word 
embedding from pretrained language models to initialize the embedding layer. They 
evaluated model performance on three English benchmark datasets: Inspec (Hulth, 
2003), SemEval-2010 (Kim et al., 2010), SemEval-2017 (Augenstein et al., 2017) 
and their model achieved state-of-the-art results on these three benchmark datasets.

Compared with English AKE, Chinese AKE is more complicated owing to the 
characteristic that there is no delimiter among Chinese words. So there is an 
additional step in most Chinese AKE models: using Chinese tokenizer to segment 
words. For traditional two-step keyphrase extraction models, generating Chinese 
candidate keyphrases needs to use Chinese tokenizer to segment words first. For 
Chinese AKE models based on sequence labeling, existing methods still use word-
level tagging, restricted by the segmentation results of Chinese tokenizer.
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2.2 Sequence labeling based on BERT

With the improvement of computer hardware and the increase of available data, 
deep learning based methods gradually occupy the dominant position in the field 
of natural language processing. Although deep neural networks can learn highly 
nonlinear features, they are prone to over-fitting without large amount of annotated 
data. And the objective functions of almost all deep learning architectures are highly 
non-convex function of the parameters, with the potential for many distinct local 
minima in the model parameter space(Erhan et al., 2010). Thus, how to initialize 
parameters has been a problem that puzzles researchers. The breakthrough came in 
2006 with the algorithms for deep belief networks (Hinton, Osindero, & Teh, 2006) 
and stacked auto-encoders (Bengio et al., 2007), which are all based on a similar 
approach: greedy layer-wise unsupervised pre-training followed by supervised 
fine-tuning.

Compared with traditional supervised learning tasks that randomly initialize 
parameters then learn language representations directly from annotated text, 
pretraining-finetuning mode not only capture the syntactic and semantic features 
of tokens from large-scale unannotated text but also provide a good initial point 
for the downstream task, improving the generalization ability of the downstream 
supervised learning task.

Recently, BERT (Devlin et al., 2019), short for Bidirectional Encoder 
Representations from Transformers, which is a pretrained language model receiving 
widespread concern and is believed to be a milestone in NLP. BERT was pretrained 
on large-scale unlabeled data from BooksCorpus and English Wikipedia, containing 
more than 3.3 billion tokens in total. Using BERT to fine-tune the downstream 
supervised tasks breaks the record for 11 NLP tasks including sentence classification, 
named entity recognition, natural language inference etc., which proves the feasibility 
of pretraining-finetuning mode. Using pretrained language models (Howard & 
Ruder, 2018; Peters et al., 2018; Radford et al., 2018) has become a standard 
component of SOTA (state-of-the-art) model architecture in many natural language 
processing tasks.

Most previous works for sequence labeling are built upon different combinations 
of LSTM and CRF (Giorgi & Bader, 2018; Habibi et al., 2017; Wang et al., 2019), 
Since the release of BERT, some researchers have shown the effectiveness of 
applying BERT or BERT-based models to sequence labeling task such as named 
entity recognition task. The underlying architecture of BERT is Transformer, which 
performs strongly on various tasks depending on its capability to capture long term 
frequency. Lee et al. (2019) introduced BioBERT, which was pretrained on largescale 
biomedical corpora using the model architecture same with BERT. They tested 
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BioBERT on several publicly datasets for named entity recognition such as NCBI 
disease, BC5CDR. The results showed that BioBERT outperforms the state-of-the-
art models on six of nine datasets.

In this paper, we combined the benefits of formulating keyphrase extraction from 
Chinese medical abstracts as a character-level sequence labeling task and the 
advantage of pretraining-finetuning mode, which can not only avoid errors occurring 
in Chinese tokenizer, but also extract features automatically rather than using 
complicated manually-designed features.

3 Methodology
3.1 Task definition

We cast Chinese keyphrase extraction as a character-level sequence labeling task 
and used IOB format as the input format to the model. This task can be formally 
stated as:

Let d = {w1, w2, …, wn} be an input text, where wt represents the ith element. If 
the input text is mixed up with Chinese and English, the element is a character for 
Chinese and a word for English. Assign each wt in the text one of the three class 
labels Y = {KB, KI, KO}, where KB denotes that wt locates at the beginning of a 
keyphrase, KI denotes that wt locates in the inside or end of a keyphrase, and KO 
denotes that wt is not a part of all keyphrases. For example, there is a sentence 
“X 连锁先天性肾上腺发育不良患儿的临床及 NR0B1 基因突变分析 (Clinical 
and NR0B1 gene mutation analysis in children with X-linked congenital adrenal 
dysplasia)” and the keyphrases in this sentence are “X 连锁先天性肾上腺发育

不良 (X-linked congenital adrenal dysplasia)” and “NR0B1基因 (NR0B1 gene).”
After IOB format transformation, the character-level tagging result of this 

sentence is shown in Figure 1. As we can see, we split the sentence according to 
the language which regarded each English word as the elementary unit and each 
Chinese character as the elementary unit. This character-level formulation avoids 
errors of Chinese tokenizer, which has been a troublesome problem in Chinese 
keyphrase extraction. 

Figure 1. An example of character-level sequence labeli  ng.

3.2 Keyphrase extraction evaluation measures

Although there is a suit of evaluation measures for sequence labeling task, in 
automatic keyphrase extraction, what we really care about is whether we can extract 
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correct keyphrases of the provided text. So we used precision, recall, and F1-score 
based on actual matching keyphrases against the ground-truth keyphrases for 
evaluation as used by previous studies (Kim et al., 2010).

Traditionally, automatic keyphrase extraction system have been assessed by using 
the proportion of Top-N candidates that exactly match the ground-truth keyphrases. 
For keyphrase extraction based on sequence labeling, there is no need for N value 
and so we just used the keyphrases predicted by the model to evaluate the AKE 
performance. But we needed to firstly recognize the keyphrases from IOB format 
before evaluation. We concatenated characters between label “B” and the last 
adjacent label “I” behind label “B” as predicted keyphrase.

We denoted the total number of predicted keyphrases as r, the number of predicted 
keyphrases matching with ground-truth keyphrases as c, the number of ground-truth 
keyphrases as s. The evaluation measures were defined as follows:

: = c
Precision P

r

: = c
Recall R

s

2
1 :

× ×− =
+
P R

F score F
P R

3.3 Dataset construction

We collected data from Chinese Science Citation Database, which is a database 
contains more than 1,000 kinds of excellent journals published in mathematics, 
physics, chemistry, biology, medicine, and health etc. We set some constraints to 
restrict data to Chinese medical data as well as no incomplete and duplicated records 
included to ensure the quality of data. The constraints were listed as follows:

(1)  According to Chinese Library Classification (CLC), the CLC code of medical 
data starts with the capital letter “R”. So we restricted data to records that the 
metadata field of CLC code starts with the capital letter “R”.

(2) The metadata field of language was set to Chinese.
(3)  The metadata fields of title, abstract, and keyphrases were not null. Here, 

keyphrases refer to author-assigned keyphrases.

Statistics showed that there were 757,277 records meeting the above-mentioned 
constraints in total. The title and the abstract of each article were concatenated as 
the source input text. Furthermore, there are two types of keyphrases: extractive 
keyphrases and abstractive keyphrases. Extractive keyphrases refer to keyphrases 
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that are present in the source input text while abstractive keyphrases refer to 
keyphrases that are absent in the source input text. Because we formulated keyphrase 
extraction as a character-level sequence labeling task and can only extract keyphrases 
that are present in the source input text, we just considered the extractive keyphrases.

For a given text, we expected that all author-assigned keyphrases are extractive 
keyphrases, so we can annotate as many extractive keyphrases as possible. To 
achieve that, we firstly matched each author-assigned keyphrase with the given text 
to see if all author-assigned keyphrases can be found in the text. Then we limited 
our dataset to records that all author-assigned keyphrases are extractive keyphrases. 
After filtration, there were 169,094 records in total. We aim to construct a large-
scale dataset for our deep neural network model because although deep neural 
networks can learn highly non-linear features, they are prone to over-fitting compared 
with traditional machine learning methods.

We chose 100,000 records as our training set, 6,000 records as our development 
set and 3,094 records as our test set. Training set was used for training the keyphrase 
extraction model. Development set was used in the training process to monitor the 
generalization error of the model and to tune hyper-parameters. Test set was used 
to test the performance of the model. Note that there was no overlap among data 
sets. Next, we processed these three data sets using IOB format to make them 
suitable for modeling sequence labeling task.

In this paper, we are going to compare word-level and character-level formulation 
for Chinese keyphrase extraction. So we constructed datasets for character-level and 
word-level sequence labeling separately. For the generation of word-level dataset, 
we used Chinese tokenizer Jieba to segment words. And the tagging process was 
almost the same with that of character-level dataset construction except that we 
tagged the words rather than characters. An example of word-level sequence labeling 
is shown in Figure 2.

Figure 2. An example of word-level sequence labeling.

For character-level IOB format generation, we did some preprocessing steps:

(1)  Using Unicode Coding to distinguish Chinese and English. To address the 
problem that English words and Chinese words are mixed together in Chinese 
medical abstracts, we used Unicode Coding to distinguish English and 

 https://github.com/fxsjy/jieba
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Chinese. Our proposed data sets can greatly deal with the split of English 
words and Chinese characters, in which English word and Chinese character 
is the minimal unit respectively.

(2)  Converting from all half width to full half width. Punctuations in Chinese 
medical text include two format: full width and half width. Authors may 
neglect the format of punctuations, which causes the problem that keyphrases 
can’t match with the abstract. For example, the authors might provide the 
keyphrase “er:yag 激光” (er:yag laser), but they used “er:yag 激光” (er:yag 
laser) in the abstract in which the colon was in full width format. So we 
transformed all half width punctuations to full width punctuations except 
full stop.

(3)  Dealing with special characters. There are lots of special characters in 
scientific Chinese medical abstracts and sometimes there are space characters 
next to these special characters while sometimes not. To unify the format, we 
dropped all space characters next to special characters.

(4) Lowercase. We transformed all English words to their lowercase format.

After preprocessing, we did the tagging process, in which we matched keyphrases 
with the source input text to find the locations of keyphrases present in the text and 
tagged the characters within the locations with either label “B” or label “I” and 
characters not within the locations with label “O”. For the first character in the 
keyphrase, tag it with label “B” and for the characters other than the first character 
in the keyphrase, tag them with label “I”.

Figure 3. An example of character-level iob format generation.

Figure 3 is an example of character-level IOB format generation. In this example, 
the keyphrase is “X 连锁先天性肾上腺发育不良” (X-linked congenital adrenal 
dysplasia). We matched the keyphrase and returned the location between 0 and 12. 
So we tagged the character in location 0 with label “B” and the characters located 
between 1 and 12 with label “I”. Other characters not within the location were 
tagged with label “O”.

Note that there were two special occasions in our tagging process and we applied 
some tricks:
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(1) Given two author-assigned keyphrases of the input text, if there is a containment 
relationship between the location span of two keyphrases, we use Maximum 
Matching Rule to tag the longest keyphrase. For example:

Text: “穴位注射罗哌卡因分娩镇痛对产妇产程的影响” (Effect of acupoint 
injection of ropivacaine labor analgesia on maternal labor)

This text has two author-assigned keyphrases: “分娩” (Childbirth) and “分娩镇

痛” (Labor analgesia). The location span of “分娩” (Childbirth) is between 8 and 
9 while the location span of “分娩镇痛” (Labor analgesia) is between 8 and 11. So 
we tagged the characters within the longest keyphrase “分娩镇痛” (Labor analgesia) 
with label “B” or “I”.

(2) If the first few characters of a keyphrase is equal to the last few characters 
of the other keyphrase and this keyphrase appears after the other keyphrase in a 
given text, we will concatenate these two keyphrases by their common characters. 
For example:

Text: “术中经食管超声心动图对心脏瓣膜置换术后即刻人工瓣膜功能异常

的诊断价值” (Diagnostic value of intraoperative transesophageal echocardiography 
for abnormal prosthetic valve function in the immediate postoperative period after 
heart valve replacement)

This text has two author-assigned keyphrases: “人工瓣膜” (Prosthetic Valves) 
and “瓣膜功能异常” (Abnormal valve function). These two keyphrases share 
common characters “瓣膜” (Valves) and appear next to each other in the text. Then 
we will tag the keyphrase “人工瓣膜功能异常” (Abnormal prosthetic valve 
function) instead of “人工瓣膜” (Prosthetic Valves) or “瓣膜功能异常” (Abnormal 
valve function). This step determines that our dataset is suitable for flat keyphrase 
extraction rather than nested keyphrase extraction, which means that each character 
will be assigned only one label.

To examine the quality of our data sets, we counted the number of recognized 
keyphrases, the number of correct recognized keyphrases, and the number of 
ground-truth keyphrases in our generated data sets. And we used evaluation measures 
mentioned in section 3.2 to see the IOB generation performance. The IOB generation 
results for character-level and word-level are summarized in Table 1 and Table 2 
separately.
Table 1. Character-level IOB generation results on data sets.

Data Set P R F
Number of 
Recognized  
keyphrases

Number of Correct 
Recognized 
Keyphrases

Number of 
Ground-truth 
Keyphrases

Training Set 99.18% 99.42% 99.3% 416,013 409,371 408,373
Development Set 99.13% 99.54% 99.34%  25,942  26,169  26,061
Test Set 99.15% 99.56% 99.36%  13,344  13,458  13,403
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Table 2. Word-level IOB generation results on data sets.

Data Set P R F
Number of 
Recognized 
keyphrases

Number of Correct 
Recognized 
Keyphrases

Number of 
Ground-truth 
Keyphrases

Training Set 91.15% 96.93% 93.96% 395,852 434,266 408,373
Development Set 91.35% 97.03% 94.11%  25,287  27,680  26,061
Test Set 90.99% 97.11% 93.95%  13,016  14,305  13,403

As we can see, the F1-score of each character-level generated data set was higher 
than the corresponding word-level generated data set for more than 5 percent. For 
character-level data sets, owing to the above-mentioned tricks that we applied to 
IOB generation, the evaluation measures don’t reach to 100%. But the character-
level IOB generation results on all three data sets still show that our data sets are 
of good quality. For word-level sequence labeling data sets, the segmentation error 
of the Chinese tokenizer is a critical reason that the evaluation measures are lower 
than that of character-level. Take the example mentioned in section 3.1 as an 
example, the word-level tagging result is shown in Table 2. There was one incorrect 
keyphrase “nr0b1 基因突变” (nr0b1 gene mutation) which was supposed to be 
“nr0b1 基因” (nr0b1 gene). Except for tagged incorrect keyphrases, there might be 
missing keyphrases because of segmentation error for word-level sequence labeling.

3.4 Model architecture

We initialized our sequence labeling keyphrase extraction model with pretrained 
BERT model. The architecture of BERT is based on a multi-layer bidirectional 
Transformers (Vaswani et al., 2017). Instead of the traditional left-to-right language 
modeling objective, BERT was pretrained on two tasks: predicting randomly masked 
tokens and predicting whether two sentences follow each other. Our sequence 
labeling keyphrase extraction model followed the same architecture as BERT and 
was optimized on scientific Chinese medical abstracts. We used a feed-forward 
neural network which acted as a linear classifier layer on top of the representations 
from the last layer of BERT to compute character level IOB probabilities. Our 
model architecture is shown in Figure 4.

For a given token, its input representation was constructed by summing the 
Wordpiece embedding (Wu et al., 2016), segment embedding, and position 
embedding. The first token of each sequence was always the special token [CLS]. 
The segment embedding is useful in sentence pairs task such as question answering 
to differentiate sentence. Sentence pairs were separated by a special token [SEP] 
and sentence A embedding was added to each token in the first sentence while 
sentence B embedding was added to each token in the second sentence. Our task 
is a single sentence task, so we only used sentence A embedding. The position 
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embedding was used to indicate the location of the token in the text and can only 
take the length lower than 512. A visual representation of our character-level input 
representations is given in Figure 5.

Figure 5. Input representations of character-level sequence labeling keyphrase extraction model.

In addition, BERT can only take the input with the maximum length of 512. 
Owing to this limitation, some source input text will be truncated, causing the 
problem that the model might predict some single character as keyphrases. In most 
cases, single Chinese character makes no sense. We found that some single Chinese 
characters are meaningful including chemical elements in The Periodic Table such 
as “氢” (hydrogen), “氦” (helium), organs such as “胃” (stomach), “脾” (spleen) 
and animals such as “鼠” (mouse), “鸡” (chicken). So we designed a user-defined 
lexicon to store meaningful Chinese characters for further filtration.

Figure 4. Character-level sequence labeling keyphrase extraction model architecture.
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4 Experiments & results
4.1 Experimental design

In this paper, we firstly conducted unsupervised baseline experiments to 
demonstrate that traditional unsupervised two-step keyphrase extraction methods 
are sensitive to N value and the lexicon scale, which depends on precise manual 
settings. Then before we used sequence labeling formulation to Chinese keyphrase 
extraction task, we designed comparative experiments using word-level and 
character-level formulation on supervised machine learning baseline methods and 
BERT-based methods to verify the effectiveness of character-level. Finally, we 
compared the best unsupervised baseline model, the best character-level machine 
learning baseline model, and our character-level BERT-based sequence labeling 
keyphrase extraction model to prove the strength of sequence labeling formulation 
and per-trained language model.

Regarding to unsupervised baselines, we used some traditional approaches 
including term frequency, TF*IDF, and TextRank. As we know, the performance 
of traditional unsupervised approaches varies with the value for N (number of top 
ranked keyphrases), which is a parameter set manually. And traditional unsupervised 
Chinese keyphrase extraction relies on Chinese tokenizer to generate candidate 
keyphrases. Usually, user-defined lexicon will make a great difference to the results 
of Chinese word segmentation.

So we designed two groups of experiments using control variable method for 
unsupervised baselines according to N value and lexicon scale. Group 1 kept the 
same lexicon scale and compared the performance of baseline approaches at different 
N value of 3 and 5 to ensure the stability of the baseline approaches. Group 2 kept 
the same N value and compared the performance of baseline approaches when the 
lexicon scale for the Chinese tokenizer is different to test the transferability of 
baseline approaches. We set two kinds of lexicon scales, one using all ground-truth 
keyphrases in training set, development set, and test set as lexicon, the other just 
using ground-truth keyphrases in training set.

Regarding to supervised machine learning baselines, we cast keyphrase extraction 
as a sequence labeling task instead of a binary classification task and used CRF, 
BiLSTM, BiLSTM-CRF algorithms as machine learning baselines.

4.2 Experimental settings 

As for unsupervised baseline approaches, we used Jieba for Chinese word 
segmentation. Before generating candidate keyphrases, we did some preprocessing 
steps, such as removing stop words and some special characters. We restricted 
candidate keyphrases within our user-defined lexicon and noun phrases.
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Of the three machine learning baseline approaches, CRF was trained by regularized 
maximum likelihood estimation and we used Viterbi algorithm to find the optimal 
sequence of labels. BiLSTM and BiLSTM-CRF were trained with Stochastic 
Gradient Descent (SGD). The learning rate was set to 5e-4 and the model was 
trained for 15 epochs with early stopping. The hidden layers were set to 512 units 
and the embedding size was 768 in both models. In addition, the batch size was 
set to 64.

For our BERT-based keyphrase extraction model, due to system memory 
constraints, the batch size was set to 7 and we used SGD to optimize Cross Entropy 
Loss. The initial learning rate was set to 5e-5 and gradually decreased to 5e-8 as 
the training progresses and the model was trained for 3 epochs.

In this paper, we used F1-score to evaluate model performance, which is the 
weighted average of precision and recall, taking both precision and recall into 
account.

4.3 Unsupervised baseline experiments

As for traditional unsupervised baseline experiments, we conducted two groups 
of comparative experiments according to N value and lexicon scale as what we have 
mentioned in section 4.1.

For the group of N value experiments, we restricted the lexicon scale to whole 
lexicon, which contains author-assigned keyphrases in all the training set, 
development set, and test set as user-defined lexicon for Jieba word segmentation. 
Table 3 provides the results of N value comparison experiments of baseline 
approaches. Increasing the N value will improve the recall but lower the precision. 
We found that the F1-score of baseline approaches varied with the N value, but 
TF*IDF achieved best performance among all baseline models no matter the N 
value. And when the N value was 3, the F1-score of TF*IDF was 44.59%, which 
was higher than that when N value was 5. 
Table 3. N-value comparative experiments of unsupervised baseline approaches.

Method
Top 3 Candidate Keyphrases Top 5 Candidate Keyphrases

P R F P R F

Term Frequency 47.66% 33.36% 39.24% 37.53% 43.78% 40.42%
TF*IDF 54.14% 37.90% 44.59% 40.37% 47.11% 43.48%
TextRank 43.13% 30.19% 35.52% 33.29% 38.84% 35.85%

For the group of lexicon scale experiments, we restricted N value to 3 to compare 
baseline approaches at different lexicon scales. Table 4 presents the results of 
lexicon scale comparative experiments of baseline approaches. As we can see, for 
all unsupervised baseline approaches, the performance of using lexicon that only 
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contains keyphrase in training set for Jieba word segmentation dropped at least 7% 
compared to that of using whole lexicon. The results showed that traditional 
unsupervised keyphrase extraction models for Chinese medical abstracts had poor 
transferability so when transferring to a new domain and no lexicon can be used, 
the keyphrase extraction performance might be poor.
Table 4. Lexicon scale comparative experiments of unsupervised approaches.

Method P R F

Term Frequency (whole lexicon) 47.66% 33.36% 39.24%
Term Frequency (training set lexicon) 37.31% 26.11% 30.72%
TF*IDF (whole lexicon) 54.14% 37.90% 44.59%
TF*IDF (training set lexicon) 42.18% 29.53% 34.74%
TextRank (whole lexicon) 43.13% 30.19% 35.52%
TextRank (training set lexicon) 34.37% 24.06% 28.30%

4.4 Word-level and character-level sequence labeling comparative 
experiments

We used word-level and character-level sequence labeling dataset separately to 
train and evaluate supervised machine learning baseline models and BERT-based 
models.

4.4.1 Supervised machine learning baseline models

The F1-score evaluation metrics of word-level and character-level comparative 
experiments on machine learning baseline models are listed in Table 5. As we can 
see, word-level sequence labeling formulation was better than character-level 
sequence labeling formulation for CRF and BiLSTM algorithms while a little bit 
lower than character-level sequence labeling formulation for BiLSTM-CRF 
algorithms. The reason might be that BiLSTM-CRF is a more powerful model 
to capture the contextual relationship among characters to make up for the 
disadvantage that character-level formulation doesn’t model the relationship among 
words directly.

Table 5. Word-level and character-level comparative experiments of supervised machine learning baselines.

Method Word-Level Character-Level

CRF 47.90% 46.37%
BiLSTM 44.35% 38.38%
BiLSTM-CRF 49.86% 50.16%

4.4.2 BERT-based models

The precision, recall, and F1-score evaluation metrics of word-level and character-
level sequence labeling comparative experiments on BERT-based models are listed 
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in Table 6. For word-level sequence labeling formulation, we just used the hidden 
state corresponding to the first character of the word as input to the linear classifier, 
which is the same approach used in (Devlin et al., 2019) for named entity recognition 
task. We found that the precision for word-level was extremely lower than character-
level and the F1-score of word-level sequence labeling formulation was more than 
20% lower than character-level formulation. Detailed analysis is conducted for 
this result. We assumed that Chinese BERT uses Wordpiece tokenizer which will 
tokenize each Chinese word into characters in the pretraining process. So Chinese 
BERT is character-level and has learned good semantic representation of Chinese 
characters through pretraining, which can maximize the advantages of the character-
level sequence labeling formulation and avoid its shortcomings.

Table 6. Word-level and character-level comparative experiments of BERT-based models.

Metrics Word-Level Character-Level

P 26.88% 60.33%
R 54.93% 59.28%
F 36.10% 59.80%

4.5 BERT-based character-level experiments

From the results of the above word-level and character-level comparative 
experiments, we decided to apply character-level formulation to our BERT-based 
Chinese keyphrase extraction model and the best character-level machine learning 
baseline model is BiLSTM-CRF. We compared the best unsupervised method 
TF*IDF with our character-level sequence labeling BiLSTM-CRF model and found 
that sequence labeling formulation was beneficial for Chinese keyphrase extraction 
task. And we used character-level BiLSTM-CRF to compare with our character-
level BERT-based model. The performance results are summarized in Table 7. 
Compared with BiLSTM-CRF, our BERT-based model achieved F1-score of 
59.80%, exceeding that of baseline approach by 9.64%, which showed that the 
pretrained language model captured rich features that are useful for downstream 
keyphrase extraction task. And we removed single Chinese characters that were not 
in the user-defined lexicon. After removal, the keyphrase extraction performance of 
our adjusted model reached to 60.56%. 

Table 7. Performance evaluation of keyphrase extraction.

Method P R F

TF*IDF (Baseline) 54.14% 37.90% 44.59%
BiLSTM-CRF (Baseline) 42.55% 61.09% 50.16%
BERT-based Model (our model) 60.33% 59.28% 59.80%
Adjusted Model (our model) 61.95% 59.22% 60.56%
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And we compared the predicted keyphrases with author-assigned ground-truth 
keyphrases and found that some predicted phrases were concatenation of author-
assigned keyphrases. For example, there are two author-assigned keyphrases 
“卒中” (Stroke) and “抑郁” (Depression), while our model extracted keyphrases 
“卒中后抑郁” (Post-stroke depression). Another example, there are two author-
assigned keyphrases “急性肠胃炎” (acute gastroenteritis) and “食源性疾病” 
(foodborne disease), while our model extracted keyphrases “食源性胃肠炎” 
(Foodborne gastroenteritis). These examples indicated that as though our model 
got the F1-score of 59.80%, our model can achieve good practical application 
performance. In addition, it also indicated that the calculation of evaluation measure 
is an issue we need to consider further. Using the proportion of predicted phrases 
that exactly match the ground-truth keyphrases to assess the model is actually 
not appropriate because there are some biases for author-assigned keyphrases 
and sometimes the phrases predicted by our model are also concise descriptions 
for the text.

5 Discussion & conclusion
In this paper, we formulated automatic keyphrase extraction as a character-level 

rather than word-level sequence labeling task and used pretrained language model 
BERT to fine-tune our keyphrase extraction model on scientific Chinese medical 
abstracts. Through our experimental work, we proved the benefits of this formulation 
with this architecture, which bypasses the step of Chinese tokenizer and leverages 
the power of pretrained language model. In addition, we also designed comparative 
experiments to verify that character-level formulation is more suitable for Chinese 
keyphrase extraction task under the trend of pretrained language model. 

Our approach only dealed with keyphrase extraction rather than keyphrase 
generation, so it can just handle extractive keyphrases. In the future, we plan to 
build keyphrase generation model to extract keyphrases. And also we will explore 
the solutions to solve the limitation of BERT’s maximum sentence length to avoid 
being truncated. We expect some of the findings in this paper will provide valuable 
experiences for automatic keyphrase extraction and other NLP problems like 
document summarization, term extraction etc.
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