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COMMUNICATIONS

Deep convolutional neural networks for automatic
coil pitches detection systems in induction motors

Hidir Selcuk Nogay1

Stator winding structures are one of the most important parameters affecting motor performance in induction motor
(IM). When deciding on the coil pitch, the winding structure and the power performance of the motor are also taken into
consideration. The stator coil pitch of the IM is known at the design stage of the motor. The stator coil pitch of an IM
manufactured and in use may be wanted to be changed with the desire to improve the performance of the motor and
suppress some harmonics. In this case, it is necessary to determine the motor winding structure and coil pitch by opening

the stator cover of the motor, removing the rotor, and manually examining the stator winding structure visually. However,
this process prolongs this improvement process considerably. A system that can detect the stator coil pitch according to the
stator current behavior while the motor is running can significantly shorten this improvement process. For this purpose, in
this study, a deep convolutional neural network (DCNN) model that can automatically estimate IM stator coil pitch angle
with an accuracy rate of 100% is designed and applied.
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1 Introduction

IM are among the most used motors in the industry
due to their advantages such as having a simple and dy-
namic structure and being cheap. IM continue to main-
tain their popularity for the last thirty years with the
advantage of providing easier speed control compared to
the past by means of sinusoidal pulse width modulation
(SPWM) inverter drives [1]. In industrial applications,
IMs are required to operate with maximum efficiency
and high performance. The winding structure and coil
pitch of IMs are also taken into consideration in the R&D
(Research & Development) studies to increase the perfor-
mance of the IM. Because by changing the IM coil pitch,
some single-row harmonics can be suppressed [2]. In ad-
dition, the magnetomotive force (MMF) arising from IM
windings can be increased with the appropriate winding
step. The stator coil pitch angle of an induction machine
is determined at the design stage of the machine.

After the motor is produced, the stator windings of the
motor are rewound from the very beginning in order to
change the motor performance by changing the coil pitch
or to make trials for different coil pitchs. In order to in-
terfere with the coil pitch in the development of an IM, it
is necessary to know the coil pitch in advance. Being able
to be sure how many degrees the coil pitch angle of the
IM saves considerable time in motor design and improve-
ment studies. In some cases it is impossible to know the
coil pitch angle. It is very difficult to find the coil pitch
by mathematical account on induction machines with a
deleted or unlabeled. Similarly, in unlabeled motors, in
order to know the coil pitch, it is necessary to remove the
motor cover or to examine the stator windings by remov-

ing the rotor. To shorten this process, automatic bobbin
pitch detection systems can speed up research and devel-
opment activities. The design and implementation of an
automatic coil pitch detection system is an issue that is
overlooked and neglected.

The original value and motivation of this work is to
develop and implement a deep learning algorithm that
has not been included in the state of the art until now
and, as far as we know, automatically predicts the IM
coil pitch angle for the first time. In this study, to solve
this problem, a DCNN model is designed and applied
for an automatic coil pitch detection system that works
according to the instantaneous value of the stator phase
currents of identical IM with integer winding structure
with different coil pitches. The parts of the study after the
introduction and theoretical frame are shaped as follows.
In the second part, the aim of the study is explained. In
the third part, studies on the subject and the scope of
the subject are given. In the fourth part, obtaining the
data set and the method used in the study are explained.
In the fifth part, the results obtained from the study are
presented. In the sixth part, the conclusion and discussion
of the study are given.

2 Scope and related works

The active power written on the label of any electric
motor is directly related to the length and cross-section of
the conductor used in the motor winding. In addition, the
coil pitch in the stator winding, the groove shape where
the windings are placed, and the position of the windings
in the groove are among the parameters that affect the
motor. In our previous experimental studies, we empha-
sized that the coil pitch in IMs affects the total current
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Fig. 1. IM connection diagram for experimental application

harmonics [3, 4], low-level single row current harmonics
[5], and total harmonic distortion [6, 7]. In addition to the
coil pitch, we emphasized in our scientific and experimen-
tal studies that harmonics caused by the semiconductor
switching elements in the PWM inverter affect the losses
and internal and external temperature of the IM [8], and
thus the coil insulation level in the stator windings [9]. In
IMs, the groove shape in the stator is also important in
terms of stator windings and losses [10 -12].

A study by Hadiocuhe et al revealed that the leak-
age inductance value caused by current harmonics can
be reduced when the stator coil pitch is used as a full
pitch [13]. In one study, it was found that an IM performs
higher when fed with variable PWM switching frequency
by shortening the coil pitch in a double layer stator wind-
ing [14]. If the stator winding grooves are large enough
to allow a second winding to be wound in order to start
softly in IMs, in this case, the soft start of the IM can be
achieved with parallel winding, and the IM performance

can be increased. As an example of this situation, a sec-
ond winding was wound in the stator cavities in order to
a soft start in one study [15]. In some studies, it has been
tried to determine the most suitable coil pitch in order
to minimize the noise arising due to spatial harmonics
in the air gap where the rotating magnetic field between
the stator and the rotor is located [16 - 18]. Gundogdu et

al examined and analyzed in detail the effect of winding
structure and coil pitch on IM performance in IMs [19].

In the state of the art, there are also studies to develop
stator winding design optimization to suppress MMF har-
monic content in the air gap [23-26]. In [23] and [27], it is
aimed to attenuate MMF harmonic components through
coil pitch abbreviation. It is an important requirement
to utilize artificial intelligence, machine learning, or opti-
mization approaches to suppress harmonics through using
the optimal winding structure and coil pitch [28].

3 Methodology

3.1 Data set acquisition

The stator windings of the six identical squirrel cage
IMs were rewound with different coil pitches, using a con-
ductor of the same cross-section and length so that the
label values are maintained. In the study, the experimen-
tal application was carried out with IM’s with six different
coil pitches, respectively, with the largest coil pitch 180
deg (1-10), 160 deg, 140 deg, 120 deg, 100 deg, and the
smallest coil pitch being 80 deg. For each coil pitch, the
phase current (IL1) value was recorded with a sampling
time of 1 second and transferred to the computer by load-
ing IM from unloaded to the overloaded state through the
setup in Fig. 1. The IM label value used in the study is
shown in Tab. 1.

Table 1. Label values of the IM

Voltage Frequency Current Power cosφ Speed

(V) (Hz) (A) (kW) (rpm)

∆ 220 50 4.7 1.1 0.80 1380

Y 380 50 2.7 1.1 0.80 1380
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Fig. 2. Phase current graph obtained in each coil pitch
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Fig. 3. The coil pitches angles according to the samples
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Data was transferred to the computer via the power
analyzer shown in Fig. 1 and the RS485 converter. In the
study, 3940 sampling points (phase current points) were
obtained.

Figure 2 shows the graph of the current values ob-
tained for each coil pitch and Fig. 3 shows the coil pitches
according to the samples. The spectrogram equivalent of
the same graphic is shown in Fig. 4.
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Fig. 4. Spectrogram obtained from IL1 phase current graph

From the spectrogram in Fig. 3, a total of 300 image
data, 50 for each coil spacing, were obtained by the data
magnification method. In the data augmentation method,
frameshift interval was chosen as 5 samples.

3.2 Architecture of the DCNN model

One of the first steps in the design process of a DCNN
architecture is to decide on the hyperparameters related
to the convolution layer and perform the necessary calcu-
lations. In the convolution layer, stride (s) indicates the
amount the shifting steps to the left and right, while the
matrix K, (nK × nK) is a filter matrix to be applied on
the A input matrix (nA × nA). The number of rows and
columns of the input matrix nA is bigger than or equal
to nK . The elements of B = A

⊗
K matrix, obtained as

the output of the convolution process, can be expressed
as follows, [20]

Bij =

nK−1∑

f=0

nK−1∑

h=0

Ai+f,j+hKi+f,j+h, (1)

the size of the B matrix is (nB × nB), where

nB = ⌊
nA + 2p− nK

s
+ 1⌋ (2,)

with p - being the padding value.

The next steps after the convolution layer processes are
the shaping of the Softmax layer, loss, fully-connected,
and classification layers. The Softmax layer is the layer
where the cross- entropy loss is calculated and it follows
the classification layer. The Softmax layer followed by
the last fully connected layer is the output unit activa-
tion function used for multiple classifications. For the coil

pitches angles classification, the Softmax function for five

categories is

yr(x) =
exp[ar(x)]
k∑

j=1

exp[aj(x)]

. (3)

For the probability distribution of multi-class classi-

fication; 0 ≤ yr ≤ 1 and
∑k

1
indicates the conditional

probability of the sample in class r .

In this study, the architecture of the pre-trained

ResNet-18 model [21] and the MATLAB environment

were re-edited and used for coil pitch angle detection

and classification. In this study, the architecture of the

pre-trained ResNet-18 model [21] was re-edited for coil

pitch prediction in the MATLAB environment by transfer

learning approach. Transfer learning is a machine learn-

ing technique that allows some layers or functions of a

DCNN trained for a specific task to be developed again

for a new task. In the ResNet-18 architecture, the recti-

fied linear unit (ReLU) activation function is connected

after each convolution layer. The ResNet-18 model con-

sists of 2 pooling layers, 17 ReLu layers, 20 convolution

layers, and 20 normalization layers.

We reconsidered the pre-trained ResNet-18 architec-

ture by using the ”transfer learning” technique. The

ResNet-18 architecture was designed to classify 1000s and

was trained with more than one million data. We rear-

ranged the last three layers (fully connected, Softmax and

classification) to make a 6-class classification to determine

the coil pitch angle of this model. We did not change the

learning rate of the previous layers exclusive to the last

three layers but increased the learning rate of the new lay-

ers a little more than in the original so that they adapt

faster to the new situation.

3.3 Training and testing the DCNN model

The study was carried out with NVIDIA GeForce

GTX 1650, 8055 MB GPU laptop. Training and testing

of the DCNN model took 1 minute 18 seconds. Table 2

shows the hyperparameters selected for training and test-

ing of the DCNN model.

Table 2. Limitations for the training and validation process

Hyperparameters Values

Max. epoch 30

Max. iteration 120

Validation Frequency 5

Initial learning rate 0.001

Minibatch size 50

Learning rate schedule constant
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Fig. 5. The confusion matrix obtained from testing of the DCNN
model

In the training duration of the DCNN, the input from

the Softmax layer in the classification layer is assigned to

one of the K classes that mutually excluded through the

cross-entropy function. Training of the DCNN network

continues until the loss function is minimized. In (4) the

loss function, N is the sample number, K is class num-

ber, tij is the output for j class i sample, and yij is
output for j class i sample [22].

Loss = −

N∑

i=1

K∑

j=1

tij ln yij . (4)

4 Results

As a result of training and testing the DCNN model,

the test result with 5-fold cross-validation can be ob-

served in Tab. 3 according to the 120-th iteration and

30-th Epoch. According to this table, 100% accuracy has

been achieved. According to Fig. 5 confusion matrix, the

12 images used as test data for each coil pitch were all

estimated at 100% accuracy. Figure 6 shows the accuracy

rate and error curves obtained as a result of the test and

training process.

5 Conclusion

It is a fact that DCNN algorithms are not much

preferred for electrical machines, as they require two-

dimensional data such as image data. However, in this

study, by using DCNN effectively, it proved to be a

preferable method in electric motor design. With the pre-

trained DCNN model using the transfer learning tech-

nique, the coil pitch angles of an IM could be predicted

with 100% accuracy. The reliability of the model has

been strengthened by the test results made with 5-fold

cross-validation. It was concluded that many deep learn-

ing methods can be used in the selection of the most

optimal coil pitch in IM, as well as the DCNN method

is very useful and produces satisfactory estimation and

classification results.

Table 3. Testing and training processes summary of the DCNN model

Time Training Testing
Training Testing

Iteration Epoch Elapsed Accuracy Accuracy
Loss Loss

(mm:ss) (%) (%)

1 1 00:10 24 25 2.9369 2.8908

5 2 00:13 78 80 0.9238 0.8762

10 3 00:16 100 97 0.1076 0.2462

15 4 00:19 96 98 0.1271 0.1594

40 10 00:33 100 100 0.0057 0.0209

85 22 00:58 100 100 0.0023 0.0120

105 27 01:10 100 100 0.0020 0.0111

120 30 01:18 100 100 0.0019 0.0106
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Fig. 6. Accuracy and loss curves of the DCNN model for training and testing (a) – accuracy curves, (b) – loss curves
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