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When monitoring industrial processes, a Statistical Process Control tool, such as a
multivariate Hotelling T 2 chart is frequently used to evaluate multiple quality characteristics.

However, research into the use of T 2 charts for survey fieldwork–essentially a production
process in which data sets collected by means of interviews are produced–has been scant to
date. In this study, using data from the eighth round of the European Social Survey in
Belgium, we present a procedure for simultaneously monitoring six response quality
indicators and identifying outliers: interviews with anomalous results. The procedure
integrates Kernel Density Estimation (KDE) with a T 2 chart, so that historical “in-control”
data or reference to the assumption of a parametric distribution of the indicators is not
required. In total, 75 outliers (4.25%) are iteratively removed, resulting in an in-control data
set containing 1,691 interviews. The outliers are mainly characterized by having longer
sequences of identical answers, a greater number of extreme answers, and against expectation,
a lower item nonresponse rate. The procedure is validated by means of ten-fold cross-
validation and comparison with the minimum covariance determinant algorithm as the
criterion. By providing a method of obtaining in-control data, the present findings go some
way toward a way to monitor response quality, identify problems, and provide rapid
feedbacks during survey fieldwork.

Key words: Kernel density estimation; Hotelling T 2 chart; multivariate control charts;
response quality; ten-fold cross-validation.

1. Introduction

In a process such as bottling beer, data including the weight of bottles is usually collected

and monitored, in order to check whether the process is operating as expected, and to

detect underfilled or overfilled bottles. A proven tool for pursuing this goal is known as

Shewhart control chart (Shewhart 1931), which presents the fluctuating patterns of the data

collected from a process over time. It allows control limits to be calculated using statistical

equations, and a process is defined as “in control” if fluctuations fall within the control

limits, otherwise the process is defined as “out of control”. In domains such as

manufacturing, public health, and financial services, control charts have been extensively

used to assess process performance and to identify and examine defects (MacCarthy and

Wasusri 2002).
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Survey fieldwork–although it by nature varies according to the mode of data

collection–is essentially a production process, in which data sets collected by means of

interviews are produced. However, the use of control charts for identifying “out-of-

control” signals–such as the interviews or interviewers with abnormal results–has

attracted little attention. The limited work available on control charts in a survey research

context has only focused on univariate charts, which only monitor one variable at a time.

For example, researchers have used control charts to monitor interview duration (Jin et al.

2019; Jans et al. 2013; Sirkis et al. 2011; Peng and Feld 2011), item nonresponse rate

(Sirkis et al. 2011), and measures related to unit response rate such as refusal rate (Corsetti

et al. 2010). However, there are various measurements that are informative about survey

data quality. In this situation, using univariate control charts to monitor each variable

individually has been found to be time consuming, misleading (MacGregor and Kourti

1995), and sometimes unfeasible in practice (Ferrer 2007).

In our previous work, we introduced a projection pursuit method known as Principal

Component Analysis Mix (Chavent et al. 2014) to analyze a combination of numerical and

categorical response quality indicators (Jin and Loosveldt 2020). We showed that the

obtained principal components are capable of identifying and characterizing interviews

that are not in control (hereafter termed as outliers). In the present study, we focus on the

use and performance of the Hotelling T 2 control chart (T 2 chart) in identifying outliers

based on multiple numerical response quality indicators. A T 2 chart monitors the T 2

statistic, which measures the squared Mahalanobis distance from an observation to the

target values of the monitored variables, or the mean estimated from the data if the target

values are unknown.

Conventionally, the control limit of a T 2 chart is calculated based on the percentile of an

F distribution, assuming that the monitored variables follow a multivariate normal

distribution (Mason and Young 2002). However, if this assumption does not hold, the

control limit may generate many false alarms (Chou et al. 2001; Phaladiganon et al. 2011).

In order to relax the multivariate normality assumption, in line with Chou et al. (2001), we

use the kernel density estimation (KDE) technique to fit the distribution of the T 2 statistic.

Assuming that a set of historical in-control data is available, the control limit of the T 2

chart can immediately be established using the percentile of the derived kernel density

curve of the T 2 statistic. Information about the in-control data and the obtained control

limit can then be carried forward to actively monitor new observations from the process.

The assumption of in-control data being available is reasonable and thus remarkably

common in industrial applications such as chemical batch processes, because the operating

conditions of the processes can be ensured as “normal” (see e.g., Ahsan et al. 2018; Kini

and Madakyaru 2016; Costa et al. 2015; Phaladiganon et al. 2011). The vast majority of

industrial applications for control charts are accordingly characterized as “Phase II”

monitoring. This mainly revolves around prospective monitoring of new observations

from a process, treating the in-control process parameters as known.

The production of interviews, however, is more complex due to the variations in

interviewers, respondents, interview environments, and the involvement of human

elements (such as attitude and motivation). Consequently, historical in-control data is

usually not directly available, but needs to be first determined by conducting “Phase I”

monitoring retrospectively, so that possible outliers can be detected and removed. In this
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case, the control limit is unknown and needs to be estimated. Due to the impact that

extreme outliers may have on the T 2 statistic and the estimated control limit, outliers are

usually removed in an iterative fashion in Phase I (Montgomery 2009; Chakraborti et al.

2008; Ferrer 2007; Mason and Young 2002).

2. Situating the Research

The present study aims to address the research question of how to assess response quality

and identify outlying interviews based on a set of quality indicators, without making

assumptions about the underlying distributions of the indicators and without the

availability of historical in-control data. We define outlying interviews as the minority of

those in a data set that are characterized by response behaviour different from the majority.

Accordingly, they are potentially problematic interviews resulting from undesirable

response behavior.

By skewing the distribution parameters, outliers are known to have a masking effect

(one outlier masks a second outlier: a false negative) and a swamping effect (one outlier

swamps a second outlier: a false positive) on the whole data set. Accordingly, when

identifying outliers, methods that are resistant to the distorting effect of outliers–generally

known as robust methods–are needed. In the field of statistics, most of the robust methods

for identifying outliers in multivariate data fall into two categories: first, methods based on

Mahalanobis distance (in which our approach is situated) and second, methods based on

projection pursuit, of which principal component analysis is a well-known special case.

Methods based on Mahalanobis distance have as the main requirements, obtaining

robust estimates of the mean and the covariance matrix to compute a robust Mahalanobis

distance, and determining a threshold to separate outliers from non-outliers (Rocke and

Woodruff 1996). The most widely-used method in this category seems to be the minimum

covariance determinant (MCD) (Rousseeuw 1984, 1985), usually implemented by the fast-

MCD algorithm (Rousseeuw and Driessen 1999). MCD is a highly robust estimator of

multivariate location and scatter. Its objective is to find h out of n observations (h . n / 2)

where the covariance matrix has the smallest determinant. The MCD estimates of location

and scatter are then respectively the mean vector and the covariance matrix of these h

observations (this method is not discussed in depth in this article, but for a detailed

introduction please refer to Rousseeuw 1984, 1985). However, MCD and fast-MCD suffer

from low computation efficiency, which limits their applicability in high-dimensional or

large-scale problems.

In the current article, we present an iterative procedure that integrates the use of a T 2

chart with the non-parametric KDE technique. This procedure is designed in a different

way than other Mahalanobis-based methods with regard to fulfilling the above presented

requirements for obtaining robust estimators (of multivariate mean and covariance) and

determining the threshold. We exclude outliers one at a time, and re-estimate the mean,

covariance matrix, and the threshold with each successive outlier excluded. This is

repeated until no outliers can be found. The iterative nature of the procedure ensures that

the influence of outliers on the estimates of the mean and the covariance matrix is reduced,

and a robust Mahalanobis distance (T 2 statistic in our context) is ultimately obtained. The
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threshold (control limit in our context) is determined based on the percentile values of the

fitted kernel distribution in each iteration.

To return to the survey context, this procedure will ultimately separate a set of in-

control data from the outliers. The obtained in-control data can (1) provide an

understanding of the multiple quality indicators and their correlation structure for an in-

control survey process, and (2) serve as the reference data to be used for real-time

monitoring from the beginning of new and comparable survey fieldwork in Phase II. The

identified outliers, on the other hand, will pinpoint which response quality indicators are

more important for detecting potentially problematic interviews. To evaluate the

reliability and validity of the procedure and the results concerning the identified outliers

and in-control data, a k-fold cross-validation is conducted. We also compare the results

with those obtained using the MCD estimator, in order to validate our procedure from

another perspective.

To illustrate the methods and address the research question, we use six numerical

indicators of response quality that were constructed in our previous work (Jin and

Loosveldt 2020). The indicators were developed based on the respondent satisficing theory

(Krosnick 1991; Simon 1956). This theory proposes that respondents sometimes provide a

“satisfactory” instead of an “optimal” answer, in order to minimize the cognitive effort

needed. As indicators of reduced response quality, we accordingly select response styles

that are deemed to be the consequences or expressions of satisficing behavior. We first use

four of the five response styles detailed in the work of Yan et al. (2004), which comprise

acquiescence, nondifferentiated answers, the selection of middle responses, and the

selection of extreme responses. Moreover, we also consider item nonresponse, which

measures respondents’ repeated use of “don’t know” answers, refusals, and no answers

(Loosveldt and Beullens 2017).

The response styles and constructed indicators are listed in Table 1. The data used to

calculate the indicators are from the eighth round of the European Social Survey (ESS8),

collected in Belgium during 2016 and 2017. A total of 1,766 respondents participated in

the ESS8, with a response rate of 56.8% (AAPOR Response Rate 1) via Computer

Assisted Personal Interviews (CAPI).

Acquiescence refers to the tendency of a respondent to agree with all the items

regardless of content. The indicator of acquiescence is constructed based on three pairs of

items from the ESS8 questionnaire. These item pairs are worded in opposite directions

toward the same construct. Detailed information about these items are displayed in Table 8,

(Section 6, Appendix). In line with previous research (Rammstedt et al. 2017; Billiet and

McClendon 2000), for each respondent an average score is computed by averaging all six

items. Nondifferentiation is the tendency of a respondent to give identical answers to a

block of items. In line with Loosveldt and Beullens (2017), to measure nondifferentiation

we calculate the standard deviation of all responses of a respondent to one block of items

and the maximum sequence of identical responses. In the ESS8 questionnaire, two blocks

of items are suitable to calculate these two indicators. They are listed in Table 9 (Section 6,

Appendix). For each of the two blocks of items, the standard deviation (sd) and the

maximum identical sequence (max) of the responses are calculated separately for each

respondent. The average values for the two blocks of items are used as the measurements

of these two indicators. In the same way, the selection of extreme answers and middle
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answers, respectively measured by the proportion of extreme answers and middle answers,

are also calculated based on these two blocks of items. The last indicator is item

nonresponse rate, calculated as the ratio of item nonresponse (“don’t know”, refusal,

and no answer) to the total number of the applicable items. For a more detailed

introduction to the calculation of the indicators, we refer to our previous work (Jin and

Loosveldt 2020).

The selected indicators are used only as examples to approach our research question. It

is notable that although not the focus of the present study, justifying the choice of the

indicators plays an important role in the subsequent analysis using multivariate control

charts.

The article is structured as follows. The next section details the methods involved in

addressing the research question. We then present the results of applying the procedure

(Subsection 4.1), insights into the in-control data and the outliers (Subsection 4.2), and the

validation results (Subsection 4.3). Lastly, the findings and limitations are discussed and

suggestions for future work are offered.

3. Methodology

3.1. Hotelling T 2 Chart Based on Kernel Density Estimation

The most widely used tool for monitoring multivariate processes is a multivariate control

chart based on the Hotelling T 2 statistic (Hotelling 1947). Suppose that a data set x is

collected from an in-control process over a period of time, and contains n observations

Table 1. Indicators of response quality (modified from Jin and Loosveldt 2020).

Response styles Indicator Meaning Range
of the
values

Acquiescence ave The average score of oppositely-worded
items that measure one construct
(smaller values indicate more acquies-
cence)

1–5

Non-
differentiation

sd The standard deviation of all responses to
one block of Items (smaller values
indicate more non-differentiation)

0–4.41

max The maximum sequence of identical
responses to one block of items (larger
values indicate more non-differen-
tiation)

1–7

Extreme
answers

perc.ex The proportion of extreme answers (larger
values indicate more extreme answers)

0–0.86

Middle
answers

perc.mi The proportion of middle answers (larger
values indicate more middle answers)

0–0.93

Item
nonresponse
rate

perc.
unanswered

The amount of item nonresponse divided
by the number of all applicable items
(larger values indicate a higher item
nonresponse rate)

0–0.11
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with each observation being characterized by p quality indicators. The Hotelling T 2

statistic for each observation xi is calculated with the formula:

T2
i ¼ xi 2 �xð ÞS21 xi 2 �xð ÞT ð1Þ

where �x is the sample ( p £ 1) mean vector and S is the sample ( p £ p) covariance matrix

of the in-control data set x. In this case, the Hotelling T 2 statistic measures the distance

between the values of the variables for an observation and the values of the mean variables

of the data set, which come from the process itself as “the voice of the process” (Jans et al.

2013; Scherkenbach 1986). An alternative is to use the target values of the mean vectors

and the covariance matrix, referred to as “the voice of the customer”, in order to check

whether the process is operating within the target values specified by a “customer”. In this

article, we focus on the estimates based on our sample, assuming that no expert or

customer opinions are available with regard to the “gold” values for the response quality

indicators and their correlation structure.

The next step is to assess the control limit of the T 2 chart, for which the 100(1 2a)

percentile of the distribution of T 2 statistic is used. Here, a is the Type I error rate (or false

alarm rate), indicating the proportion of in-control observations that are falsely identified

as outliers. Since the distribution of the T 2 statistic is unknown, we use the KDE approach

to estimate it and determine the control limit as an upper percentile of the derived kernel

distribution function.

Given the obtained T2
1; T

2
2; : : :T

2
n for the n observations x1, x2, : : :xn, the kernel density

estimator of the distribution of T 2 statistics is specified as:

bfhfh tð Þ ¼
1

n

X
n

i¼1

K½
t 2 T2

i

� �

ĥ
� ð2Þ

where K is the kernel function and ĥ is the smoothing parameter (termed bandwidth). For

K, we consider the most commonly used function: the standard normal density function. In

addition, in line with Chou et al. (2001), we use Polansky and Baker’s (2000) two-stage

estimation procedure to compute ĥ. The kernel distribution function of T 2 is constructed as

cFhFhðtÞ ¼

Z t

0

bfhfh ðT
2ÞdT 2 ð3Þ

The control limit of T 2 based on the KDE (CLk), determined as the 100(1 2 a) percentile

of the distribution function cFhFhðtÞ, can be calculated as

CLk ¼cFhFhðtÞ
21 1 2 að Þ ð4Þ

The choice of the bandwidth parameter is crucial, as it controls the degree of smoothing

applied to the data (T 2), and accordingly may influence the variability of the estimated

control limit of the KDE-based T 2 chart. The verification of our selection of Polansky and

Baker’s procedure is discussed in the appendix, Section 6.

3.2. A Dynamic Procedure for Removing Outliers

It should be remembered that the control limit discussed above is estimated based on a set

of historical in-control data. As already noted, the historical in-control data is usually not
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directly available in surveys, and the data therefore needs to be determined by detecting

and removing possible outliers. The extreme outliers, however, may easily affect the T 2

statistic and the estimated control limit. To address this, an iterative procedure is

developed in order to remove one outlier at a time, and then to re-estimate the T 2 statistic,

and the control limit based on KDE without this outlier. This operation is continued until a

data set is obtained that can be considered as in-control.

One problem associated with using a non-parametric technique such as KDE in the

Phase I analysis is that each time an outlier is removed, there will always be around na

values of T 2 above the newly calculated control limit (Mason and Young 2002). The

reason for this is that the KDE technique is solely based on the data, and always finds the

100(1 2a) percentile of the fitted distribution of the T 2 statistic. Observations with a T 2

above this percentile will hence always (inevitably) be identified as outliers.

Consequently, a “stop rule” is needed in order to terminate the re-estimation of the

control limit after a certain number of iterations, when a suitable control limit can be

determined. Mason and Young (2002) proposed considering the difference between two

consecutive estimated control limits. If this difference is large, it implies that the fitted

kernel density curves change significantly with the outliers dropped. A very small

difference, on the other hand, implies that the desired control limit has already been

obtained, which should be carried forward rather than being re-estimated.

In the present study, we consider the deterministic part of the variation in the estimates

of CLk, rather than the difference between (only) two consecutive estimates. To do so, we

perform locally weighted regression, or Loess (Cleveland 1979; Cleveland and Devlin

1988), to smooth the estimated CLk at different iterations. Loess has the advantage of

being a nonparametric visual technique, which provides a graphical assessments of

the relationship between variables without any prior specification of the form of the

relationship. When the Loess curve has nearly horizontal tangents, it implies that

the estimates of CLk are stable in terms of an approximately zero rate of change, and the

desired control limit is obtained.

Specifically, at each iteration, Loess builds up a polynomial regression to describe the

variation in CLk on the nearest neighbors using weighted least squares. The degree of

polynomial regression (almost always first or second: that is, respectively locally linear or

locally quadratic), the fraction of data points that are considered as the neighborhood

(span), and the weighting function, are thus the choices that should be made to perform

Loess. In this study, we use the default settings in the R software loess function, with a

span of 0.75, quadratic local regression, and tri-cubic weighting. For a detailed

explanation of the Loess algorithm, please refer to Cleveland and Devlin (1988).

Assuming the smoothed value for CLk at iteration i is ĝ(i ), the complete procedure for

identifying and removing outliers is then summarized as follows (with the relevant

equation numbers shown):

a. Construct the T 2 statistic based on the data set x using Equation (1).

b. Fit the kernel density estimation using Equation (2).

c. Calculate the control limit ðCLð1Þk Þ of T 2 using Equation (3) and (4).

d. Remove the observation with the largest T 2 value.
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e. Reconstruct the T 2 statistic based on the remaining data and calculate a new control

limit ðCLð2Þk Þ:

f. Repeat steps d and e until the Loess curve of CLk exhibits a zero slope, approximately

expressed as jĝ(i ) 2 ĝ(i 2 1)j , c, where c is set as 0.001.

g. CLði 21Þ
k is used as the suitable control limit CL*

k . The observations removed before

this control limit is obtained are considered as outliers, and the remaining ones form

the in-control data set.

The Loess curve is only fitted after CLð4Þk is obtained, because a quadratic local

regression requires at least three points. Moreover, the use of c is only for the algorithm to

start and converge. For the determination of the desired estimate of CLk, the choice of c

should be of no real consequence. The reason is that once the iterations start, the visual

inspection of the fitted Loess curve will help a customer or user to determine whether and

where (in terms of iterations) the curve has become close to being horizontal and stable.

We emphasize that at the end of the Phase I analysis, approximately n £ a observations

are larger than the obtained control limit CL*
k , but are tolerated. In Phase II, however, any

new observation with a corresponding T 2 statistic larger than CL*
k , will be considered as

out of control. The probability of this new observation actually being in-control–the false

alarm rate–isa.

4. Results

4.1. Identifying and Removing Outliers

Our data set includes 1,766 interviews described by six response quality indicators. The

procedure developed in Subsection 3.2 is applied to the data set to extract the in-control

data by identifying and removing outliers. Figure 1 presents the utilization of the T 2 chart

for our data set. The data points (1,766) on the x-axis are all the interviews (respondents)

ordered by the respondent ID number, and the y-axis shows the T 2 statistic. The control

limit obtained from the KDE with a false alarm rate (a) of 0.01 is 29.9967, represented by

the red line in Figure 1.

Some 17–as expected based on the calculation of 1,766 £ 0.01–interviews fall outside

the control limit. As described in Subsection 3.2, the outliers are removed one at a time in

order to diminish the impact the extreme outliers may have on the T 2 statistic and the

estimated control limit, until the stop rule is satisfied. With regard to the stop rule, in the

present study we specify c as 0.001 to start the iterations.

The estimated control limit based on all interviews is 29.9967, as shown in Figure 2, and

is decreased as the most extreme outliers are removed, one at each iteration. The curve in

the figure is the Loess curve fit to the data (obtained using the R function loess, with a span

of 0.75, quadratic regression, and tri-cubic weighting function). The Loess curve flattens

out after around 70 iterations, indicating a nearly stable estimate of the control limit. The

desired estimate of the control limit (a ¼ 0.01) is considered to have been achieved at the

76th iteration (Clð76Þ
k 23.1993), because the difference between the fitted smooth value of

ĝ(76) (23.1931) and ĝ(77) (23.1927) is only -0.0004, which satisfies our stop rule.

At the 76th iteration (with 75 outliers having been removed), the T 2 chart for the

remaining 1,691 interviews with CLk
(76) is presented in Figure 3. As expected, for
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n ¼ 1,691 and a ¼ 0.01, some 17 observations are still outside the control limit. As

explained in Subsection 3.2, these 17 outliers, however, are acceptable given a ¼ 0.01,

and should be kept in the in-control data set. In total, around 4.25% (75/1,766) of the total

interviews are considered as outliers in our data set. The 1,691 interviews form the in-

control data set.
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Fig. 1. T2 chart for all interviews (n = 1,766) with a KDE-based control limit (a = 0.01).
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Fig. 2. The estimated KDE-based control limit at different iterations (a = 0.01).
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4.2. The Obtained In-Control Data and the Identified Outliers

Based on the obtained in-control data, the means of the quality Indicators �x and the

correlation matrix (and covariance matrix S) can be computed in order to understand the

in-control process. As shown in Table 2, for a block of seven items (measured on an 11-

point scale), in-control interviews on average have 2.246 identical answers in sequence,

0.315 extreme answers (0.045 £ 7), and 1.253 (0.179 £ 7) middle answers, with the

standard deviation of the responses being 1.619. The average acquiescence score is 2.606

and the average item nonresponse rate is 5%. With regard to the correlation structure of the

response quality indicators, Table 2 also shows the Pearson’s correlation coefficients

between them. It is clear that each indicator is significantly correlated with at least one of

the other indicators at a 0.05 significance level.

More importantly, once the means and the covariance matrix of the response quality

indicators are available, new interviews from similar processes can be monitored in real

time. For instance, assume the quality indicators for a new interview is xnew, then the

corresponding T 2 statistic will be ðxnew 2 �xÞS21ðxnew 2 �xÞT . If this statistic is beyond

23.1993, the new interview is considered as out of control with a 0.01 false alarm rate.

New interviews with relevant information regarding the quality indicators can accordingly

be checked immediately, rather than when the survey fieldwork has been completed.

Moving from the profile of the in-control group to that of the outlier group, we then

compare the two groups on each of the six quality indicators using box plots (Figure 4) and

Welch’s t-tests (Table 3). The goal is to obtain information about which indicators are

more important with regard to characterizing the outliers.

Remarkable differences between the two groups can be seen in the variables perc.ex and

max. Interviews that are identified as outliers, compared with the in-control interviews,

tend to have a greater number of extreme answers (48.1% versus 4.5%) and longer

50
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20

30

0

Interviews (1,691)

CL=23.1993

T2

Fig. 3. T2 chart for in-control interviews (n = 1,691) with a KDE-based control limit (a = 0.01).
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sequences of identical answers (3.973 versus 2.246). This is in line with the expectation

that satisficing is responsible for respondent behavior that results in inferior data quality.

It is, however, unexpected but interesting to note that the outlier group on average has a

lower rate of item nonresponse compared with the in-control group (respectively 2.6%

versus 5%), and differentiates more in the answers to the measured questions in terms of a

larger standard deviation of the responses (respectively 1.913 versus 1.619). This reveals

that the interviews are identified based on a complete picture of the data quality to be

assessed, represented by all the indicators as a whole. Outliers are not always linked to

poor performance on every individual indicator, each of which describes a specific aspect

of the quality.

Table 2. The means and Pearson’s correlation coefficients of quality indicators for the in-control data (n =

1,691).

Means Correlation matrix

max sd ave perc.
ex

perc.
mi

perc.
unanswered

max 2.246 1.000
sd 1.619 20.326* 1.000
ave 2.606 20.016 20.048 1.000
perc.ex 0.045 0.023 0.588* 20.041 1.000
perc.mi 0.179 0.142* 20.116* 20.024 20.100* 1.000
perc.
unanswered

0.050 20.028 20.327* 0.107* 20.338* 20.311* 1.000

Note: * p , 0.05
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Fig. 4. Box plots of quality indicators for the outlier group and the in-control group.
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In addition, the notable difference in the item nonresponse rate between the two groups

is probably a consequence of using the mean of the data set to construct the Hotelling T 2

statistic. As described in Subsection 3.1, we use the center of the data set as the ideal, and

measure whether an interview is too far away from it. The center of the data set, which is

the “voice of the process”, however, is not necessarily the same as one might expect. For

example, a 5% item nonresponse rate may be higher than the goal a customer would set for

the indicator. If a lower target value for this indicator was used, interviews with a higher

item nonresponse rate would be “punished” by having a larger Hotelling T 2 statistic value.

As an attempt to construct the statistic in a case in which the least amount of information is

available, we relax the need for “gold” values for the mean vector and covariance matrix

concerning the response quality indicators, by using “the voice of the process” rather than

a pre-specified “voice of the customer”. Moreover, from a psychological perspective, the

lower item nonresponse rate in the outlier group can also be the consequence of satisficing

behavior. The reason is that some respondents may use a mental shortcut to simply

respond with answers that are not well considered to every question, rather than making

sufficient cognitive effort to determine the answers.

4.3. Validation Tests

The above sections detail how Phase I monitoring was carried out, by applying the

procedure introduced in Subsection 3.2 to the data set. As a result, we identified and labeled

75 out of a total of 1,766 interviews as outliers, and the others (1,691) as in control. We also

illustrate how the obtained in-control data would enable future Phase II monitoring by

providing the in-control parameters: the control limit, the mean vector, and the covariance

matrix. The current section details how, in order to test the procedure and verify the obtained

results, we conduct a ten–fold cross-validation procedure to examine whether the results are

stable when different subsets are used for training. To validate our procedure from another

perspective, we also applied the MCD algorithm to our data set and compared the results

with those previously obtained using the KDE-based T 2 procedure.

4.3.1. The Ten-Fold Cross-Validation Test

The ten-fold cross-validation test is performed in four steps as below:

a. Shuffle the entire data set randomly and split it into ten equal sized (or nearly equal

sized) folds.

Table 3. Comparing the outliers with the in-control data.

Mean Welch’s t-test statistic p-value

In-control data (1,691) Outliers (75)

max 2.246 3.973 13.557 0.000
sd 1.619 1.913 2.249 0.027
ave 2.606 2.561 20.547 0.586
perc.ex 0.045 0.481 15.201 0.000
perc.mi 0.179 0.176 20.091 0.927
perc.unanswered 0.050 0.026 212.210 0.000

Journal of Official Statistics108



b. Repeat the procedure in Subsection 3.2 on nine folds to train the KDE-based control

limit, the mean vector, and the covariance matrix of the obtained in-control data.

c. Compute the Hotelling T 2 statistic values for the remaining tenth fold based on the

parameter estimates, and predict as outliers the interviews with the corresponding

Hotelling T 2 values larger than the control limit.

d. Repeat step b and c until each fold has been taken as the test fold.

In the end, each interview is used as training data nine times and is tested once to predict

the “label” (outlier or in-control).

The data set (1,766) is split into ten folds with each fold containing 176 or 177

interviews for test and 1,590 (1,766 2176) or 1,589 (1,766 2177) for training. For each

test fold, Table 4 details the size of the fold, the estimated control limit, and the mean

vector based on the remaining training folds. Also presented in Table 4 is the accuracy rate

for each test fold, assuming that the initial labels obtained based on the whole data set are

correct. The results show that although the estimated control limit tends to fluctuate (from

23.302 to 28.151, with 23.8 being the median), the estimated mean vector of the six

indicators is fairly stable and close to the initial estimate based on the whole data set. The

accuracy obtained for each test fold is high, ranging from 0.997 to 1.

Pulling the test folds together, Table 5 shows a confusion matrix, which cross-tabulates the

predicted labels with the initial correct labels for the whole data set. For most of the interviews,

the predicted labels are the same as the initial labels. The procedure, for example, correctly

predicts 1,683 of the 1,691 interviews that are in control (99.53%), as well as 63 of the 75

Table 4. Summary of ten-fold cross-validation results.

Fold Size Control
limit

Mean vector Accuracy

max sd ave perc.
ex

perc.
mi

perc.
unanswerd

1 177 23.501 2.247 1.634 2.603 0.050 0.180 0.050 1.000
2 177 28.151 2.305 1.627 2.599 0.060 0.176 0.049 0.983
3 176 26.421 2.272 1.643 2.598 0.057 0.177 0.049 0.977
4 177 26.839 2.296 1.631 2.606 0.058 0.178 0.049 0.977
5 176 23.827 2.254 1.618 2.611 0.044 0.179 0.050 0.977
6 177 23.302 2.244 1.613 2.603 0.043 0.179 0.050 0.977
7 176 23.751 2.243 1.629 2.615 0.049 0.179 0.050 1.000
8 177 23.302 2.243 1.623 2.605 0.046 0.178 0.050 1.000
9 176 24.394 2.269 1.629 2.601 0.050 0.176 0.050 1.000
10 177 23.772 2.268 1.629 2.603 0.053 0.180 0.050 0.994

Initial estimate 2.246 1.618 2.606 0.045 0.179 0.050

Table 5. Confusion matrix for the ten-fold cross-validation test.

Correct labels

in-control outlier

Predicted labels in-control 1,683 12
outlier 8 63

Note: Correct labels are the initial labels obtained based on the whole dat set.
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interviews that are outliers (84%). The overall prediction accuracy is about 98.87%

((1,683 þ 63)/1,766). To sum up, the ten-fold cross-validation results imply that our

procedure is stable and validated, as the results concerning the identification of in-control

interviews and outliers are almost the same as when the whole data set is used as training data.

4.3.2. The Minimum Covariance Determinant (MCD) Algorithm

We now move on to the minimum covariance determinant (MCD), which is widely

recognized as a highly robust estimator of the multivariate mean and covariance matrix

(Hubert et al. 2018). We make a direct comparison between the results obtained from the

MCD and the KDE-based T 2 procedure: a good agreement between the results would be

interpreted as validating the KDE-based T 2 method.

Table 6 presents the robust means obtained by using the MCD algorithm. Comparing

these with what was obtained previously using the KDE-based T 2 procedure, no marked

difference can be found, except for a slight difference in perc.ex. Based on the MCD

estimates of the mean and the covariance matrix, we then compute the MCD-based T 2

statistic. Figure 5 shows the MCD-based T 2 value versus the corresponding KDE-based

T 2 value for each of the 1,766 interviews. Interviews that were previously labeled as

outliers using the KDE-based T 2 procedure are marked in red. Most of the interviews

either cluster in the lower left-hand corner or scatter in the upper right-hand part of the

figure, sugesting that the two methods will give the same assessment of most of the

interviews with regard to whether they are in-control or outliers. This is further supported

by a significant and (extremely) high positive correlation (r ¼ 0.932) between the T 2

values from the two methods.

We should recall that the outliers identified by the KDE-based T 2 procedure account for

4.25% of the total interviews. If we, for the time being, flag the top 4.25 percentile

interviews with the largest MCD-based T 2 value as outliers (separated by the horizontal

line in Figure 5), we can gain more insight into the results of the two methods by

comparing the “outliers” and “in-control” interviews from MCD with those from the

KDE-based T 2 procedure.

The results from the two methods are more similar to each other in the identification of

in-control interviews than in the identification of outliers. Around 77.33% (55/75) of the

MCD outliers are also identified by the KDE-based T 2 procedure, whereas around 98.81%

(1,671/1,691) of the MCD in-control interviews are also identified as in control by the

KDE-based T 2 procedure. Overall, around 97.73% (1,726/1,766) of the interviews are

assigned the same label using the two methods. Given the good agreement between the

two methods, we conclude that the results of the KDE-based T 2 procedure are validated by

the MCD algorithm.

Table 6. Robust means obtained using the MCD algorithm.

Indicator mean

Procedure max sd ave prec.exe perc.mi perc.unanswered

MCD 2.205 1.497 2.616 0.009 0.179 0.052
KDE-based T 2 2.246 1.618 2.606 0.045 0.179 0.050
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5. Conclusion and Discussion

This study started from the observation that although the multivariate Hotelling T 2 control

chart (T 2 chart) has been widely used for monitoring industrial production processes, its

application in survey fieldwork – essentially a production process in which data based on

interviews is produced – has been scant to date. In this article, we have presented a

procedure based on Kernel Density Estimation (KDE) and the Hotelling T 2 chart. The

procedure can identify interviews that are potentially problematic interviews by

simultaneously monitoring a set of response quality indicators, without relying on

historical in-control data or referring to the assumption of a parametric distribution of the

indicators. Although illustrated here by using the data collected from the eighth round of

the European Social Survey (ESS) in Belgium using computer-assisted personal

interviews, the procedure is not limited to any particular survey mode. It could also be

applied to assess the response quality of interviews collected using other survey modes.
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Fig. 5. T2 values computed based on MCD estimates of the mean and the covariance matrix.

Table 7. Confusion matrix for comparing the identification of outliers using MCD and KDE-

based T2 procedure.

KDE-based T 2

in-control outlier

MCD in-control 1,671 20
outlier 20 55

Note: MCD outliers are the top 4.25 percentile interviews with the largest MCD-based T 2 value.
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First, we constructed the Hotelling T 2 statistic based on six numerical indicators of

response quality. These six indicators, representing various response styles (acquiescence,

non-differentiation, the selection of middle answers, the selection of extreme answers, and

item nonresponse), were used as examples of response quality indicators. Second, we used

the KDE to fit the distribution of the T 2 statistic in order to relax the conventional, yet

strict, normality assumption of the indicators. The control limit of the T 2 chart was

subsequently determined based on the percentile of the derived kernel curve of the T 2

statistic. Lastly, we presented a procedure for extracting the in-control data by iteratively

removing the outliers until the desired KDE-based control limit was determined as being

achieved. To guide the decision, we produced a locally weighted regression (Loess) curve

to describe the variations in the estimates of the control limit, and searched for the iteration

around which the curve had a (nearly) horizontal tangent. Our analysis was treated as a

Phase I analysis, so as to avoid the need for prior knowledge of the chart parameters. This

was also the rationale behind the presented procedure.

By applying the procedure to our data set, around 4.25% of the total interviews are

considered as outliers, resulting in an in-control data set comprising the remaining

interviews. The outlier group pinpoints a few indicators that are seen to be more important

for fieldwork monitoring. The outliers are characterized by having longer sequences of

identical answers and a greater number of extreme answers. This finding is in line with the

basic idea that satisficing behavior would lead to compromised data quality (Krosnick

1991). In addition, the outliers also have on average a lower item nonresponse rate and

differentiate more in the answers to the measured questions. While contrary to expectation

at first sight, the lower item nonresponse rate in the outlier group is well interpretable as

some respondents may incline to respond to every question without making sufficient

cognitive effort to carefully consider the answers. The greater number of extreme answers

in the outlier group points to the advantages of a multivariate framework over a univariate

one (that examines one indicator at a time). The outliers are identified based on the entirety

of the indicators, and do not necessarily exhibit poor performance on every individual

indicator. As documented by MacGregor and Kourti (1995), the quality of a product can

only be represented by the simultaneous consideration of all the measured indicators. The

individual indicator, however, does not adequately define the product quality by itself. In

the meantime, it cannot be ruled out that the choice of the target values for the indicators

when constructing the Hotelling T 2 statistic may have influenced the results regarding the

identified outliers. In cases of no prior knowledge or expert opinions regarding the target

values for the indicators, the mean of the data set is used as the reference to measure

whether an interview is too far away from the ideal. The mean of the data set, taken from

the process, could differ from the target value that would be set as the goal. An alternative

would be to use “the voice of the customer” (Jans et al. 2013; Scherkenbach 1986),

concerned about the response quality indicators, if available.

The obtained in-control data set, on the other hand, enables a basic understanding of the

in-control process by providing the in-control parameters: the mean vector and covariance

matrix for the response quality indicators, and the estimated control limit. For example, for

a block of seven items, the in-control interviews on average are found to have 2.246

identical answers in sequence. More importantly, as noted in Montgomery (2009), the

obtained in-control parameters lead to the implementation of control charts in Phase II: the
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subsequent on-line, real-time monitoring phase based on new incoming data from the

survey. Although often relying on the timely availability of the monitored data (Kreuter

et al. 2010), the capability to monitor new interviews during rather than after fieldwork is

crucial for survey practitioners to identify problems and give rapid feedback. The idea of

using control charts to monitor key variables and guide interventions with a view to

adapting fieldwork to the problems identified is essentially the same as that of responsive

designs (Groves and Heeringa 2006) and adaptive designs (Wagner 2008; Schouten et al.

2017).

The minimum covariance determinant (MCD) is another Mahalanobisbased method that

is widely recognized as a highly robust estimator of the multivariate mean and the

covariance matrix. Applying MCD to our data set and comparing the results with those

obtained using the proposed KDE-based T 2 procedure, no marked difference is found in

either the estimated mean or the T 2 statistic (computed based on the mean and covariance

matrix). Although the robust MCD estimator is very helpful in detecting multivariate

outliers, the commonly-used cutoff value – based on the asymptotic chi-square distribution

of the robust distances – has been found to tend to flag far too many outliers (Hubert and

Debruyne 2010). The KDE-based T 2 procedure, by contrast, does not rely on any

underlying distribution, but instead searches for the cutoff (control limit) through the

iterative process of removing outliers one at a time. However, it is worthwhile to note that

KDE involves determination of the bandwidth parameter regulating the scale of smoothing

in advance, and the estimated control limits can be sensitive to that.

To sum up, this article underlines the suitability of using a T 2 chart based on non-

parametric techniques such as KDE to assess interview response quality and identify

outliers. First, survey researchers and practitioners could simultaneously monitor all

quality indicators. This is preferable to monitoring one indicator at a time, which could

lead to unsatisfactory results (Bersimis et al. 2005). Also, thanks to the KDE technique

integrated in our procedure, the indicators do not need to follow multivariate normal

distribution. Second, the in-control interviews extracted from the data set can be used to

estimate unknown in-control parameters (i.e., the mean vector and covariance matrix of

the in-control process) and obtain the desired control limit that can be used in Phase II

monitoring.

Our work clearly has some limitations. First, the present study only uses data for

Belgium from the European Social Survey (ESS), and this may have influenced the results

regarding the estimated KDE-based control limit and the important response quality

indicators. Although these results might not be generalizable to other data sets, the

methods and procedure we present–the integration of a T 2 chart with KDE–is not limited

to the Belgian data, and could be applied to other data sets. Second, we have only

considered a limited number of indicators of response quality. Future studies would benefit

from starting with a broader range of indicators of response quality. Third, the indicators

used in the present study are all numerical indicators. Investigations into the use of control

charts for a mix of numerical and categorical indicators (e.g., whether or not a respondent

exhibits acquiescence bias) can be considered as the next step in the exploration of the use

of control charts to assess survey data quality. Moreover, in addition to the ten-fold cross-

validation test and the comparison with the results from the MCD, using simulations
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(where the data distribution is contaminated with another distribution) is an alternative

way to evaluate the performance of the KDE-based T 2 procedure.

Despite the limitations of the exclusive selection of a data set from one country and the

use of a limited number of numerical indicators, we believe that the results presented in

this article could be a starting point for using statistical process control tools to

simultaneously monitor multiple response quality indicators and identify interviews with

outlying performance on the indicators.

6. Appendix

6.1. Sensitivity of the KDE-Based Control Limits to the Choice of Smoothing Parameter

Figure 6 illustrates the control limits of KDE-based T 2 chart using different values of

bandwidths. We consider a simplified scenario where simulated data are described by six

variables following a skewed normal distribution (skewness parameter is set to five). We

clearly observe on the simulation results that in the range from 0.01 to around 0.04,

the bandwidth parameter introduces important variations on the estimated control limits.

The two-stage bandwidth computed using Polansky and Baker’s procedure, represented by

the red circle in Figure 6, is in a range where the corresponding control limits are already

stable.
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Fig. 6. Control limits of KDE-based T2 chart with different bandwidths.
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6.2. Items Used in the ESS8 Questionnaire for the Calculations of the Response Quality

Indicators

Table 8. Items used to measure acquiescence.

Construct Pair Items Positively or
negatively keyed

Label

Beliefs about
inequality

1 E1 þ Large differences in people’s
incomes are acceptable to
properly reward differences in
talent and effort.

E2 2 For a society to be fair, differences
in people’s standard of living
should be small.

2 E1 þ Large differences in people’s
incomes are acceptable to
properly reward differences in
talent and effort.

B33 2 The government should take
measures to reduce differences in
income levels.

Attitudes
towards
target

3 E17 þ Many people with very low income
receive lower benefits than they
are legally entitled to.

groups and
recipients of
benefits and
services

E18 2 Many people manage to obtain
benefits and services to which
they are not entitled.

Table 9. Items used to measure nondifferentiation, selection of extreme answers and selection of middle

answers.

Block Variable Item label 11 point scale (0–10)

B6 How much you personally
trust the [country] parlia-
ment?

No trust at all – Complete trust

B7 How much you personally
trust the legal system?

No trust at all – Complete trust

B8 How much you personally
trust the police?

No trust at all – Complete trust

1 B9 How much you personally
trust politicians?

No trust at all – Complete trust

B10 How much you personally
trust political parties?

No trust at all – Complete trust

B11 How much you personally
trust the European Parlia-
ment?

No trust at all – Complete trust
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