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It is important for demographic analyses and policy-making to obtain accurate models of spatial
diffusion, so that policy experiments can reflect endogenous spatial spillovers appropriately.
Likewise, it is important to obtain accurate estimates and forecasts of demographic variables
such as age-specific fertility rates, by regions and over time, as well as the uncertainty
associated with such estimation. Here, we consider Bayesian hierarchical models with
separable spatio-temporal dependence structure that can be estimated by borrowing strength
from neighbouring regions and all years. Further, we do not consider the adjacency structure as
a given, but rather as an object of inference. For this purpose, we use the local similarity of
temporal patterns by developing a spatial clustering model based on Bayesian nonparametric
smoothing techniques. The Bayesian inference provides the uncertainty associated with the
clustering configurations that is typically lacking in classical analyses of large data sets in which
a unique clustering representation can be insufficient. The proposed model is applied to 16-year
data on age-specific fertility rates observed over 28 regions in Portugal, and provides statistical
inference on the number of clusters, and local scaling and shrinkage levels. The corresponding
central clustering configuration is able to capture spatial diffusion that has key demographic
interpretations. Importantly, the exercise aids identification of peripheral regions with poor
demographic prospects and development of regional policy for such places.

Key words: Spatio-temporal modeling; conditional autoregressive model; spatial clustering;
bayesian wavelet smoothing; bayesian hierarchical model; age-specific fertility rates.

1. Introduction

[D]emographers and population scientists were pioneers in the study of neighborhoods and

health : : : Putting people into place means explaining behavior and outcomes in relation

to a potentially changing local context. A more dynamic conceptualization is needed that

fully incorporates human agency, integrates multiple dimensions of local social and spatial

context, develops the necessary longitudinal data, and implements appropriate tools.

(Entwisle 2007, 687).

The above quote highlights the central idea behind this article – to emphasize spatial

and temporal dynamics as key elements of demographic study. The complexity of spatio-
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temporal patterns is perhaps most evident in fertility, resulting as it were, from a

combination of fertility behavior and health outcomes, both of which are spatially

contingent and exhibit large spatio-temporal diffusion. Further, fertility behavior is

endogenously related to regional economic performance, being both affected by the

economy and influencing the economy, and the regional economy in turn exhibits

substantial spatial concentration. However, quantitative study of spatio-temporal

dynamics in fertility is challenging, and empirical examination has been lacking. We

develop a new framework and methods for spatial clustering of time trends to estimate the

spatio-temporal pattern of fertility across small areas or sub-national regions. The results

are useful for prediction, for understanding spatial diffusion and for regional demographic

and economic policies in the peripheral regions of Portugal.

The article complements and extends current quantitative research in demography along

several dimensions. First, the literature acknowledges substantial spatial diffusion in

fertility; see, for example, Tolnay 1995; Weeks et al. 2000. Long run dynamics in fertility

have traditionally been explained by the “structural” demographic transition model

(Thompson 1929; Notestein 1945; Blacker 1947), describing the transition from high

towards low birth and death rates as part of the economic development of a country or

region. Under this theoretical premise, macrostructural characteristics of society – such as

urbanization, industrialization, and education – determine the demand for children by

influencing their economic value to their households. However, following evidence

uncovered by the Princeton European Fertility Project (Coale 2017), the “diffusion”

perspective on variation and change in fertility levels, emphasizing cultural influences on

fertility, has become prominent. Specifically, European fertility transition has been more

temporally concentrated and less concentrated in space than what would be expected from

strictly structural explanations of fertility decline, and further, changes in important

structural factors such as literacy and industrialization are found to be only weakly related

to the timing of fertility decline.

A second relevant line of research relates to the influential literature, starting from

Seiver (1985), that explores seasonal variation in fertility and the spatial clustering of such

seasonal patterns. While within-the-year seasonal variation in fertility has declined over

the past 50 years (Seiver 1985; Lam and Miron 1991), the key insight from the above

research, that temporal patterns in fertility exhibit significant clustering, is equally

prominent over longer periods of time. This is particularly true in advanced countries,

where fertility has steadily declined as these societies progressed through the third phase

of demographic transition, and these declining trends are significantly spatially clustered.

In this article, we develop methodology for spatial clustering of time-trends in age-specific

fertility rates over longer periods of time.

A third strand of the current literature has focussed on small area statistical methods to

obtain improved estimates and projection for micro-demographic variables such as

fertility and migration. Forecasts of population and its micro-demographic components,

notably fertility, and quantification of the uncertainty surrounding such projection, are

very important for policy. At the same time, it is extremely challenging to obtain reliable

forecasts for such quantities Alkema et al. (2011). In particular, accurately estimating

regional fertility rates by age groups is difficult not only for less developed countries,

where there are often problems of the scarcity and quality of demographic data, but also
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for developed countries, particularly at a fine spatial level (Bongaarts and Bulatao 1999;

Potter et al. 2002). Assunção et al. (2005) developed empirical Bayes methods for small

area estimation, where the data from spatially neighboring regions is used to improve the

precision of estimates, particularly for a region with small sample size. Castro et al. (2015)

developed Bayesian small-area inference by spatial clustering of observed fertility rates.

The fertility rates were modeled as determined by a collection of covariates, plus a region-

specific random effect that has spatial dependence following a conditional autoregressive

(CAR) model Besag (1974). Since fertility decline is spatially heterogeneous and exhibits

complex spatial dynamics, based potentially on endogenous socio-cultural diffusion rather

than exogenous geographical contiguity, the adjacency matrix is not assumed known, but

inferred from the data by spatial clustering. The estimated spatial structure is then used to

construct several alternate scenarios, which aid policy-makers and experts in identifying

peripheral regions with adverse demographic prospects and designing policy to regenerate

such areas. This approach is also related to Billari et al. (2012, 2014) who developed

methods for Bayesian stochastic population forecasting based on expert evaluations. In

this article, we consider the approach of Castro et al. (2015) and extend this by developing

methods for spatial clustering of curves, applied to time trends of fertility rates across

different regions.

The above discussion highlights four main issues that empirical modeling of regional

age-specific fertility rates must address: first, the heterogeneity of fertility behavior across

age-groups (age-specific fertility rates); second, the territorial patterns and differences

across spatial units or regions (spatial heterogeneity); third, socio-cultural and spatial

diffusion, potentially subject to spatial non-stationarity (or, strong spatial dependence);

and fourth, the time trends of fertility rates, which are heterogeneous in terms of regions

and age groups, but typically exhibit strong spatial clustering. In particular, regional data

shows that, in addition to spatial heterogeneity due to varying macrostructures, trends in

fertility rates are also subject to complex spatial diffusion that may not be captured by

restrictive dynamics based on geographic distances. For example, two nearby regions with

relatively similar economic and demographic macrostructure may often exhibit

dramatically different temporal patterns of fertility decline (Potter et al. 2002). These

arguments justify the integration of the above four features in modeling regional age-

specific fertility rates, to perform accurate estimation, but more importantly to understand

spatial diffusion and design demographic policy. This, in turn, requires new framework

and methodologies to encompass the high level of complexity. In this article, we develop

Bayesian methodology to model variations in time trends of fertility and spatial clustering

of temporal curves of fertility across different regions. This allows for very rich spatio-

temporal dynamics, and improves the precision of demographic forecasts substantially.

Most importantly, it enables policy aimed at identifying depressed peripheral regions with

poor demographic dynamics and the design of regional policy for such regions.

The rest of the article is organized as follows. In Section 2, we briefly review spatial

smoothing methods in demography. Section 3 describes the Portuguese demographic

context, the data structure and exploratory analysis for the age-specific Portuguese NUTS

III regions, which motivates our methodology and modeling strategies. Section 2 discusses

our methodology. We propose a new spatio-temporal mixed-effects model that jointly

considers spatial, temporal, and age-group effects for estimating and predicting the
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fertility rates, and that allows inference on spatial diffusion (Subsection 4.1). In

Subsection 4.2, we develop a spatial functional clustering method based on Bayesian

wavelets to estimate the unobserved spatial structure that leads to diffusion. We apply the

proposed methodologies to Portuguese NUTS III regional fertility rates data and

summarize the results in Subsection 4.3. Section 5 presents evaluation of forecast

performance, and Section 6 collects conclusions.

2. Smoothing and Spatial Methods in Demography

The methods for spatial clustering developed in this article provide small area estimates by

smoothing. Smoothing, spatial modeling and spatial clustering are areas that have

witnessed substantial methodological advances over recent times.

2.1. Smoothing and Small Area Estimation

Frequentist smoothing methodologies are popular for estimating cross-classified counts

for subpopulations with small sample size or sparse observations. Prime examples are

small area estimation (SAE) methods that borrow strength from related characteristics to

enhance precision of such count estimates. Smoothing techniques aimed either at

correcting inaccurate data or obtaining efficient estimates for sub-national domains are

also attracting a growing interest in the field of demography (see, for example, Smith and

Sincich 1988; Bongaarts and Bulatao 1999; Festy et al. 2002; Alkema et al. 2011, 2012).

These methods aid estimation of demographic variables either by using macro-level

explanatory variables (covariates) or micro-level data for individuals assumed to have a

similar behavior. In the first case, missing or inaccurate data are estimated assuming that

the demographic variables under analysis vary according to fixed effects related to a set of

macrostructural variables (percentage of rural population, per capita GDP, education, etc).

These indirect estimation methods are widely used by demographers, mainly for

population predictions for developing countries (Raftery 1995; Potter et al. 2002; Alkema

et al. 2011). In the second case, smoothing is performed by using a suitable combination of

demographic data for other age groups and total population in the same region and year

(Retherford et al. 2010; Zhao and Guo 2012), for the same age group and region in

different years (Potter et al. 2010), or for areas expected to be similar, either because they

are geographical neighbours or because they have similar socio-economic patterns

(Assunção et al. 2005; Potter et al. 2010)

Even with good quality data, smoothing is essential when estimates are unstable and

show excessive variation over space or population cohorts. This can occur either because

the demographic behavior is affected by qualitative socio-cultural changes or because the

analysed areas or cohorts are too small. Both these issues are of key concern in this article.

A good example of the first case is the rapid change in fertility rates, with heterogeneous

effects in the different age groups and regions, which occurred in Portugal in the final

decades of the 20th century; this evidence is also in line with observed variation across

other developed countries (Guinnane 2011). The second case corresponds to structural

instability, independent of data accuracy and transitional changes, and is particularly

important in regional statistics on counts where incidence is reduced, because both the

base population and the per capita frequency of such occurrences are small. This structural
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instability cannot always be adjusted by using non-demographic covariates, particularly

when these other covariates are affected by the same sort of issues as well. Therefore, an

appropriate alternative is the application of shrinkage techniques where each specific

(small area) estimate is improved by using information on the same variable, either from

related observational units (Assunção et al. 2005) or from the overall set of estimates

(Cavenaghi et al. 2016).

Borrowing strength from related observational units or overall averages is done by

assuming that the variable under analysis has a given probability distribution which

produces the individual observations and is described by a set of parameters u. Moreover,

u in turn can be generated by specific distributions described typically by a lower

dimensional vector of hyper-parameters. Shrinkage, the correction of observed values

taking into account the distribution from which they are generated, can be implemented

through various Bayesian methods, namely:

1. Hierarchical Bayesian approaches, applied to demography by Borgoni and Billari

(2003) and Divino et al. (2009), where the model is described at two or more levels,

the first typically at the individual unit level highlighting heterogeneity across these

individuals, and the second at a broader regional or cohort level explaining the

reasons for such heterogeneity; and

2. Empirical Bayes approaches, applied by Cavenaghi et al. (2016) and Assunção et al.

(2005), where the complete definition of the priors is substituted by inferences

provided by observed data.

See, for example, Carlin and Louis (2010) for a full description of these approaches.

Jointly considering multiple factors and dependence structures increases the complexity of

statistical inference, which in turn can create challenges for efficiently estimating and

describing the uncertainty of an increasing number of modeling parameters. Because of

rapid development of scientific computation in both equipment and techniques over the

past several decades, these issues can now be well addressed by Bayesian hierarchical

models and Markov Chain Monte Carlo (MCMC) techniques.

2.2. Spatial and Spatio-Temporal Modeling in Demography

Together with developments in smoothing methods, analyses of social processes

embedded within a spatial context have also gained prominence in the recent past, with

applications to socio-economic and demographic data; see, for example, Sampson et al.

(2002). However, Voss (2007) argues that demographic research has moved from the

traditional spatial view where place had a central position to one where increasing

attention is offered to the individual as the agent of demographic action. As Weeks (2004)

writes: “[s]patial analysis has thus far played only a small role in the development and

testing of demographic theory.” Based on our discussion earlier, this trend in the literature

is not unexpected; while demographic processes such as fertility are driven by diffusion

and partly by macrostructural features, geographic distances and contiguity provide at best

imperfect measures of the strength and direction of such diffusion.

However, there are recent exciting developments within the spatial econometrics and

statistics literature that may help bridge this gap. The traditional literature assumed an a
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priori known structure of spatial spillovers in terms of a well-specified spatial weights (or,

social interactions) matrix, usually measured by geographic distances and contiguity. In this

context, spatial spillovers imply that fertility behavior in one region depends not only on the

characteristics of this index region, but also on spillovers of behavior from other regions that

are in close proximity. Typically, proximity is measured by a spatial weights matrix that

reflects how much each region affects other regions within a connected system. For areal

data, the spatial contiguity matrix with binary elements (1 if two regions are contiguous and

0 otherwise) is typically used to measure spatial weights. Then, spatial dependence and

spatial heterogeneity are examined within a spatial context implied by the pattern of these

spatial weights. In sharp contrast, this new branch of the literature treats these weights as

unknown and potentially endogenous, and in itself an object of inference; see Bhattacharjee

and Jensen-Butler 2013; Bhattacharjee and Holly 2013; Bailey et al. 2016) for a

representative selection, and Bhattacharjee et al. (2014, 2016) for reviews. Castro et al.

(2015) propose Bayesian estimation of spatial weights, or equivalently the spatial contiguity

matrix, by spatial clustering of fertility rates in a specific time-point. This article extends the

methodology by developing Bayesian methods for spatial clustering of curves, which are

then applied to time trends of fertility rates in different regions.

Thus, this article also falls within the domain of spatio-temporal modeling under the

Bayesian framework, which has a relatively independent literature. One traditional

approach is to extend the well-developed time series models and spatial models for the

spatio-temporal data by modeling the dependence structure as an interaction of two

random processes that admits temporal and spatial dependence structure, respectively.

Inference and prediction are then made based on the calibrated standard regression

techniques with composite variance and dependence components.

Alternatively, one can view temporal data as a function of time to study its behavior;

see, for example, Clyde and George (2003) and Morris and Carroll (2006). Moreover, one

can regionally group such functions (curves) that arise spatially and share common

patterns. In this approach, in addition to fitting and predicting the data, one can identify

local similarity and regional effects of temporal trends by conducting spatial cluster

analysis, where we seek clusters of curves that are similar for spatially contiguous regions.

This approach is closely related to Seiver (1985), where seasonal patterns in fertility are

analyzed for a collection of regions to help identify clusters of similar trends. The key

difference here is that we do not consider the contiguity (adjacency) matrix as precisely

known a priori. Diffusion in fertility behavior is based on endogenous social networks and

may follow complex spatial patterns that are not necessarily closely related to geography.

By allowing diffusion to be based on a variable number of spatial clusters whose

boundaries are estimated from the data, our methodology allows socio-cultural diffusion

to shape fertility outcomes in a relatively unrestricted manner. In turn, this enriches spatial

analysis in a way that allows social and cultural diffusion processes embedded in a spatial

context to be accurately modeled.

2.3. Spatial Clustering of Curves

Bayesian approaches for clustering of curves have received considerable attention during

the past decade due to their capacity to measure the uncertainty associated with the

Journal of Official Statistics616



clustering structure; this is crucial for clustering high-dimensional data where a unique

clustering representation can be insufficient. One key feature of the Bayesian clustering

methods is to assume the clustering structure, including the number of clusters, is in itself

random, and draw posterior realizations of the underlying structure using Bayesian

techniques such as Dirichlet process methodologies (Ferguson 1973; Ray and Mallick

2006) and reversible jump MCMC (rjMCMC) algorithm (Green 1995) for variable-

dimensional exploration of the candidate model space; see, for example, Knorr-Held and

Raber (2000). The functional clustering techniques based on Bayesian nonparametric

smoothing techniques, such as the wavelet-based approach in Ray and Mallick (2006), do

not consider clusterspecific shrinkage levels which may characterize important features of

the clusters. It is therefore less restrictive and potentially useful to assume varying shrinkage

levels and selection probabilities for the wavelets across functional clusters. However,

issues for hyper-parameters across fixed groups, as addressed in Clyde and George (2003),

need to be overcome in the more intractable case of random groups. Furthermore, by

extending the spatial clustering technique in Knorr-Held and Raber (2000) to functional

data, the functional clustering technique tends to produce spatially-connected clusters that

have meaningful interpretations and provide further insight into regional effects, local

similarity and diffusion that accounts for demographic variables of interests. On the other

hand, harnessing wavelet smoothing techniques on the spatial clustering method for

functional data is necessary for addressing issues of model complexity when there are

multiple clusters, particularly when the data are high dimensional.

When probability distributions are related to a spatial structure, as expected for

demographic variables, this spatial structure must be adequately described by a model.

Typically, either the conditional autoregressive model (CAR) (Besag 1974) or the spatial

autoregressive model (SAR) (Whittle 1954) is used to describe such spatial dependence.

Observationally, these two models are very similar (Wall 2004), even if the interpretation

of the models is somewhat different. SAR models were adopted for example by Borgoni

and Billari (2003) and Divino et al. (2009). Here we assume CAR dependence structure,

which is better suited for the adopted estimation methodology. First, it offers interpretation

in terms of conditional distributions of fertility rates across different regions. Second, the

CAR spatial model is better suited to Bayesian modeling, and better adapted for

interpretation within a Bayesian model.

This general overview of the application of small area estimation techniques, and spatial

methods and clustering, to demography is the basis for the development, in the following

section, of our wavelet-based methodology for empirical analysis. In this sense, our work

extends wavelet-based functional models in Morris and Carroll (2006), Morris et al.

(2006) and Ciarleglio and Ogden (2016).

3. Data and the Portuguese Context

3.1. Portuguese Regional Demographic Context

The methodology developed in this article is applied to the context of Portugal, which is a

good example of how important it is to analyze, in a spatio-temporal framework with

flexible spatial diffusion, regional patterns and trends in fertility. Though Portugal follows
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the general trend of the developed countries in the third phase of demographic transition,

the spatial-temporal evolution of the fertility rate by age-group has some important

particularities. In the past few decades, Portugal has undergone substantial political and

socio-economic transformations with considerable impacts on the fertility rate, leading to

a late and rapid fertility decline: total fertility rates significantly decreased from 3.19 to

1.35 between 1960 and 2011, and the population replacement threshold (2.07 children per

woman) has been consistently breached since 1982.

Even if these changes occurred across the entire country, the intensity of the impacts

was not similar in all regions and all age groups. The decrease in total fertility rate was the

combined result of a declining fertility rate in younger age groups and an increase in the

older age groups. Moreover, the higher levels of total fertility rate moved from the

northern regions to the southern and metropolitan areas. This occurred because fertility in

younger groups had a sharper decrease in the north while the increase in older groups was

stronger in the south and in the Metropolitan Area of Lisbon. Over the period 1991 to

2012, Algarve had the fastest rate of population growth at 1.5 %, followed by Lisbon (0.5

%), the north, Madeira and Acores in the middle (around 0.2 %), while Alentejo had a

shrinking population and central Portugal was stagnant.

The spatial heterogeneity described above is combined with spatial clustering and

diffusion, shaping a complex pattern which can only be fully revealed when the units of

analysis are small and representative of local contexts. This means that modeling and

estimation of fertility rates should aim to use shrinkage methods, borrowing strength from

spatially related regions, consecutive years, and relevant age groups. This is very important

for estimation of fertility rates in extreme age groups, which are sensitive to small changes

and subject of various types of distortions. Bigotte et al. (2014) studied the relationship

between population dynamics and the hierarchy of urban centers in Portugal, using

geographical contiguity to measure diffusion. However, as discussed above, such reliance

on geography as the sole driver of spatial spillovers and concentration is not adequate for

demographic variables subject to spatial diffusion. Additionally, the rapid changes in the

spatial patterns recently occurred imply that spatial dependence should be captured by

estimated spatial weight matrices, rather than by coefficients previously defined in an ad hoc

manner. Castro et al. (2015) examined the short term dynamics of fertility rates driven by

spatially complex regional contexts of economic growth and decline, using spatial

clustering for Bayesian small-area estimation of the fertility rates across the Portuguese

regions in 2009. The CAR model was routinely adopted for their region-specific random

effect, yet with the adjacency matrix of spatial diffusion estimated via spatial clustering

which improved prediction accuracy. Such flexible modeling of spatial diffusion allows

identification of regions and clusters where policy initiatives need to be placed. In this

article, we develop a framework and methodology for spatial clustering of curves and apply

this to data on trajectories of fertility rates across the Portuguese regions.

3.2. Portuguese Regional Fertility Data

The data were provided by the National Statistical Institute of Portugal (INE) (INE 2011),

under a protocol between the University of Aveiro (UA) and the Foundation for Science

and Technology (FCT). The period for analysis in this work (from 1991 to 2009) captures,
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on the one hand, the beginning of the period of fertility stability rates (low values at the

level of the national territory), and on the other hand the end of the period of significant

changes of regional patterns. Fertility rates have been structurally low in Portugal since

1990, with very different spatial behaviors at NUTS III level (Silva et al. 2011). However,

significant changes at this spatial level occurred between 1990 and 2006, with the

stabilization of regional fertility patterns since then (Gomes et al. 2016). In 1991, there was

a strong concentration of high fertility rates in the north, contrasting with low rates in the

south of the country. By 2010, this pattern was reversed, that is, the highest fertility rates

were now in the south and the lowest in the north. Between 2006 and 2009, the differences

are not substantial and from 2009, the differences are small. Therefore, the above period of

analysis considers, on the one hand, the beginning of the period of fertility stability rates

(low values at the level of the national territory), and on the other hand the end of the

period of significant changes of regional patterns.

It was also decided to consider only the Mainland Portuguese regions, excluding the

islands, since the spatial autocorrelation analysis would be questionable if these two non-

contiguous autonomous regions were included in the analysis. Note that the spatial weight

matrix involved in the CAR model (either assumed as unknown or estimated from the data),

considers the territorial influences that fertility rate behavior of a set of neighboring regions

have in a specific region. This logic breaks down for islands, which have no land borders.

The Mainland Portuguese NUTS III geographical regions (N ¼ 28) regions are shown

in Figure 1, with boundary (bold line) based on two clusters identified by spatial clustering

in Castro et al. (2015) using data for the year of 2009. The clusters split the country into

two halves, North and South. This is consistent with the discussion above, where the

southern regions have higher fertility rates compared with the northern regions. However,

this static view is very simplistic, because the highest fertility rates have moved from the

rural and northern regions to the urban areas and the south, as part of the demographic

transition in recent decades. Being based on one year, temporal patterns were ignored in

the previous analysis and now form the basis for the current article.

Our data comprises the number of births Bijt and the number of women Eijt for i ¼ 1,

2,: : :, N ¼ 28 regions, j ¼ 1, 2,: : :, J ¼ 7 quinquennial age groups from 15 to 49 years

old, and t ¼ 1, 2,: : :, T ¼ 19 time points (years) from year 1991 to 2009. We are interested

in modeling the fertility rates Fijt ¼ Bijt/Eijt. One common approach for modeling count

responses Bijt in Bayesian small area estimation (SAE) is to use spatial Poisson regression;

see, for example, Castro et al.(2015) as a previous study of the data in a single year.

However, Gaussian models are among the most popular models of flexibly handling spatial

and temporal dependence structure due to computational effciency in particular for high-

dimensional data. In this article, we model transformed fertility rates Yijt as a Gaussian

mixed-effects model with Bayesian estimation. We consider the Freeman-Tukey (square-

root) transformation with variance stabilization (Cressie and Chan 1989)

Yijt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

103E21
ijt

q

ffiffiffiffiffiffiffi

Bijt

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bijt þ 1
p

� �

ð1Þ

to obtain the transformed variable Yijt for fertility rates that meets the Gaussian assumption,

expressed formally in Equation (3), and avoid additional computational burden introduced

by Poisson regression. Note that when a posterior prediction of the transformed variable
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Ŷijt is obtained, one can obtain the corresponding fertility rate F̂ijt by back-transforming

Ŷijt via

F̂ijt ¼ H Ŷijt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1023Eijt

q

� �

=Eijt ð2Þ

where H(x) ¼ ((x 4 þ1)/(2x 2) –– 1) /2 is the inverse function of the Freeman-Tukey

transformation y ¼
ffiffiffi

x
p
þ

ffiffiffiffiffiffiffiffiffiffiffi

xþ 1
p

on the count response x. Therefore the transformation in

Equation (1) does not cause any loss of information.

The Freeman-Tukey transformed fertility rates by the quinquennial age groups are shown

in Figure 2, with a different trend line for each of the N ¼ 28 regions. Overall, the fertility

rates in the South area (in shades of blue), particularly around the capital city Lisbon, are

higher than that in the North area (green and yellow). This difference is particularly evident

for the age group 15–19 years. However, for the 20–24 years old age group the region

Tamega (yellow) in the north has fertility rates above other regions in the years before 2005.
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2526
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NUTS III region

1 ALENTEJO CENTRAL
2 ALENTEJO LITORAL
3 ALGARVE
4 ALTO ALENTEJO
5 ALTO TRÁS−OS−MONTES
6 AVE
7 BAIXO ALENTEJO
8 BAIXO MONDEGO
9 BAIXO VOUGA
10 BEIRA INTERIOR NORTE
11 BEIRA INTERIOR SUL
12 CÁVADO
13 COVA DA BEIRA
14 DÃO−LAFÕES
15 DOURO
16 ENTRE DOURO E VOUGA
17 GRANDE LISBOA
18 GRANDE PORTO
19 LEZÍRIA DO TEJO
20 MÉDIO TEJO
21 MINHO−LIMA
22 OESTE
23 PENÍNSULA DE SETÚBAL
24 PINHAL INTERIOR NORTE
25 PINHAL INTERIOR SUL
26 PINHAL LITORAL
27 SERRA DA ESTRELA
28 TÂMEGA

Fig. 1. Map of the N ¼ 28 Portuguese NUTS III regions.

Note: The Nomenclature of Units for Territorial Statistics (NUTS) is the geocode standard for referencing the

subdivisions of countries for statistical purposes, developed and regulated by the European Union (EU). It covers

the member states of the EU and is used in the European Union’s Structural Fund delivery mechanisms. For each

EU member country, a hierarchy of three NUTS levels is established by Eurostat (the statistical agency for the

EU). The current NUTS classification lists 97 regions at NUTS I, 270 regions at NUTS II and 1294 regions at

NUTS III level; NUTS III represents regional classification at the finest spatial level. Our regions refer to the 28

NUTS III statistical regions in Portugal.
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Generally, there is no visible heteroscedasticity over time and between age groups after the

variance stabilization in Equation (1); however, the mean levels and time trends are clearly

varying across age groups. The age groups with ages below 29 years generally exhibit a

decreasing trend over the 19 years, while the age groups above 30 have an increasing trend,

except the final age group (45–49 years old) in which fertility shows a flat pattern.

Based on the figures, we consider addressing the following two major concerns:

1. Estimating and predicting the age-specific fertility rates based on a model that can

accommodate spatial, temporal, and age-group effects. Spatial dependence is

assumed to be based on the adjacency of regions.

2. Investigating socio-cultural fertility diffusion, where for each age group the temporal

trends display spatial concentration, but the gradient of change across regions is not

necessarily driven by geographical distances or contiguity. Rather, one can estimate

the adjacency of regions by borrowing strength from the data, and use the estimated

adjacency to infer on social and cultural diffusion.

In particular for (2), Figures 1 and 2 jointly suggest that there is a potential local similarity

in curve trends and mean levels. Therefore, estimating diffusion patterns by clusters that

tend to be spatially connected is meaningful for estimating regional adjacency, but can

also capture diffusion patterns.

4. Proposed Spatio-Temporal Models

There are two components to our spatio-temporal model for fertility rates. First, we

develop a spatio-temporal mixed effects model assuming knowledge of the drivers of

spatial diffusion, and second, estimation of the diffusion patterns by functional spatial

clustering. Table 5 in the Appendix (Section 7), provides some explanation on the

notations involved in the model statement.

4.1. STM: Spatio-Temporal Mixed-Effects Model

To model the transformed fertility rates Yijt by incorporating the spatial, temporal and

group effects, we consider the following Spatio-Temporal Mixed-effects model (STM)

Yijt , N ðait þ mj þ bjt; d
2Þ ð3Þ

5

10

15

20

25

19
91

19
97

20
03

20
09

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●
●●●●●●●●

●
●●

●●●●●●●●●●●●
●●

●
●●

●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

15−19 yrs

19
91

19
97

20
03

20
09

●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●

●●●●●

●
●
●●

●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●

●●
●●

●
●
●●●●●●

●●●●●●●

●
●●●

●●●●●●●●●
●
●●

●●
●

●●●●
●●●●●●●●●

●●●●●●

●●●●
●●●●

●●●●●●●●●●●

●●
●●

●
●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●

●●
●●●●

●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

20−24 yrs

19
91

19
97

20
03

20
09

●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●

●●●●
●●●●●●●

●●●●●●●●
●●●●●

●●●●
●●●●

●●●
●
●
●

●●●●●●●●●●●●●●●●●●●

●●●
●●●

●
●●●●●●●●●●

●●

●
●●●

●●●●●
●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●
●
●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

25−29 yrs

19
91

19
97

20
03

20
09

●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●

●●●●●
●
●●●●●●

●●●●●●●
●●●●●

●●●●●●●●●●●●●●
●●●●

●●●●●●●●
●●●●●●●

●●●●
●●●●●●●

●●●●●●●●

●●●●●●●
●●●●

●●●●●●
●
●●●●●●●●

●●●●●●●●●●●●
●
●●

●●●
●●●●●●●

●
●
●●●●●

●●
●
●●●

●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●

●●
●
●●

●●●
●
●
●●●

●●●●●
●

●●●●●●●
●●●●●●●●

●●●●
●●●●●●

●●●
●●●●●●

●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●

●●●●●●
●●●●●

●●●●
●●●●

●●
●●●●●●

●●●
●●●●●

●
●●

●●●●●●
●●●●●

●●
●●●●

●●
●●●●●●

●●●●●
●●●●●●

●
●

●●●●●●●
●●●●●

●●●●
●●●

●●●●●●
●●●

●●
●●

●●●●●●

●●●●●●
●●●●●

●●●●●●
●●

30−34 yrs

19
91

19
97

20
03

20
09

●●●●
●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●
●●●●

●●●●●
●
●●●●●

●●●●
●●●●●

●●●●●●●●●
●●●●●

●●●●●
●●●●

●●●●●●●●
●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●

●●●
●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●

●●
●●●●

●
●
●●●●

●
●●●●●

●●
●●●●

●●●●
●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●●
●●●●

●●●●
●●●

●
●●

●●●
●●●●●

●●●
●●●

●●●●●●
●●

●●●●●●●
●●●●●●●

●●●●●

●●●●●●●
●●●●●●●●●●

●●
●●●●●●

●●●
●●●●●●●

●●●

●●●●●●●
●●

●●●●●●●●
●●

●●●●●●
●●

●●●●
●●●●●

●●

●●●●●●
●●●

●●●●●●●●●
●

●●●●●●
●●

●●●●●●●●●
●●

●●●●●●
●●●

●●●
●●●●●

●●

●●●●●●
●●●

●●●●●●●●
●●

●●●●●●●
●●●●●●

●●●●●●

35−39 yrs

19
91

19
97

20
03

20
09

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●●●●●

●●●●●
●●

●
●

●●
●●●●●●

●
●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●
●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●

●
●●●●●●●

●●●●●
●
●●●●●●●

●●●●●
●●

●
●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●
●●●●●●●●●●

●●●●●●●●
●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

40−44 yrs

19
91

19
97

20
03

20
09

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●

●
●●●●●

●
●●●●●

●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●

●●●●●●●●●●●●●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

45−50 yrs

Fig. 2. Transformed fertility rates for the J ¼ 7 quinquennial age over T ¼ 19 years.

Note: Seven quinquennial age-groups of women in their reproductive ages: 15–19, 20–24, 25–29, 30–34,

35–39, 40–44 and 45–49 years old. Childbirth is a rare event, and the highest fertility rates occur in age-groups

25–29 and 30–34 years olds, followed by 20–24 years old ). Hence these three age-groups are the most crucial in

determining the number of children born.
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We assume the fixed age-group effects in both the intercept and time trend, and the spatio-

temporal random effect a ¼ a 01;a
0
2; · · ·;a 0T

� � 0

; where at ¼ a1t; · · ·;aNt

� � 0

is the vector of

random effects at time t. The age-group effect does not interact with spatial and temporal

dependences; while this assumption can be strong in some other applications, it can also be

relaxed. In other words, the spatio-temporal dependence does not vary across age groups,

so that it can be quantitatively measured by borrowing strengths from observations in all

age groups. Moreover, we assume (1) Markov property; and (2) Stationarity for both

spatial and temporal dependence by specifying

at ¼ Fat21 þ et ð4Þ

where F ¼ diag1#s#N{fs} with fs [ ð–1; 1Þmeasures the temporal dependence for each

region and et ,ind N ð0N; t
2
t DðctÞÞ with ct measures the spatial dependence at each time.

Note that non-stationary temporal dynamics can be accommodated by letting F be the

identity matrix. It is also very common to assume the spatial and temporal dependences are

separable, for example, setting fs ; f, that is, F ¼ fIN, and t2
t ; t 2 and ct ; c; then

Equation (4) becomes

a , N ð0; t2AðfÞ^DðcÞÞ ð5Þ

where “^” denotes the Kronecker product of two matrices; We assume autoregressive (AR)

structure of order 1 for the temporal dependence with covariance matrix AðfÞ ¼

½fn2m�1#m;n#T ; and Conditional Autoregressive (CAR) structure for the spatial dependence

with covariance matrix DðcÞ ¼ ðM 21 2 cWÞ21; where both matrices have inverses in

closed form, which bring efficiency to computations. W is the adjacency matrix with wij ¼ 1

if region i and region j are adjacent and 0 otherwise, and with zero diagonal, that is wii ; 0

for 1 # i; j # N: For each region i, define wiþ ;
PN

j¼1wij as the row sum that represents the

total number of neighbors of region i. M is a diagonal matrix with diagonal entries mii ¼

1=max{1;wiþ}: In the above specification, f [ ð21; 1Þ measures temporal dependence

and c [ ðe21
N , e21

1 Þ measures spatial dependence, where e1 and eN are the largest and

smallest eigenvalues of MW, which ensures that D(c) is a valid covariance matrix.

Let IM denote the identity matrix of dimension M, and 1M denote the column vector of

dimension M and all entries 1. By stacking data in the order of geographical regions, time

points (years), and then groups, we can write the model in the canonical form of the mixed-

effects model

Y , N ðXuþ Za; d2INTJÞ; ð6Þ

where the fixed effects u ¼ ðm1; : : :;mJ ;b1; : : :;bJÞ
0 have the design matrix X ¼ ½X0jX1�

with X0 ¼ IJ^1NT and X1 ¼ IJ^ðð1; 2; : : :; TÞ
0

^1NÞ: The design matrix for the spatio-

temporal random effects is Z ¼ 1J^INT :

To proceed with Bayesian estimation of the parameters, we choose the following priors:

pðukÞ / 1; pðcÞ ¼ Uniformðe21
N ; e21

1 Þ; pðfÞ ¼ Uniformð21; 1Þ;

pðd2Þ ¼ igammaðad; bdÞ; pðt2Þ ¼ igammaðat; btÞ:
ð7Þ

For the prior densities that involve hyper-parameters, we choose inverse gamma

(igamma) densities with shape parameters ad ¼ at ¼ 2 and scale parameters bd ¼ bt ¼
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0:01: This yields dispersed prior distributions, involves less subjectivity and allows

estimates to be more data-driven.

The STM implementation via Gibbs sampling for Bayesian estimation of

{u;a; d2; t2;c;f} is detailed in Appendix (Subsection 7.1). The model can be

implemented efficiently due to conjugate prior for {u;a; d2; t2} and the convenient form

of likelihood for {c;f} under AR(1) and CAR structure. Using the Griddy-Gibbs sampler

(Ritter and Tanner 1992) for spatio-temporal dependence f and c, multiple terms for the

likelihood can be pre-calculated to further facilitate computation.

To evaluate the importance of the spatio-temporal dependence, we consider the full

implementations of the unrestricted model (3) and the following three sub-models under

different restrictions:

1. Non-random model: fixing a ; 0, and hence all associated components t 2, f and c

are zero,

2. Spatial-only model: fixing f ; 0; and

3. Temporal-only model: fixing c ; 0 and M ¼ IN :

For model comparisons, we use Deviance Information Criterion (DIC) for mixed-

effects model, DIC4 (Celeux et al. 2006), based on the complete likelihood f

DIC4 ¼ 24Eu;a½log f ðY;ajuÞjY� þ 2Ea½log f ðY;ajEu½ujY;a�ÞjY�

W 24E1 þ 2E2

where the conditional expectation Eu½ujY;a� can be evaluated by sampling u for each

posterior sample of a and obtain the mean. We also report DðuÞ ¼ 22E1 as the posterior

expected value of the joint deviance, and pD4 ¼D(u)þ2E2 as a measure of model

dimensionality. Generally, a smaller DIC4 indicates better predictive performance.

4.2. SFC: Spatial Functional Clustering

Our STM model above assumes the specification of an adjacency matrix W. However, as

discussed before, spatial diffusion in fertility is complex and need not be adequately

described by geographical proximity or contiguity. At the same time, socio-cultural diffusion

should capture the phenomenon of spatial concentration observed in data on fertility rates

and their evolution over time. In this section, we consider grouping the observed curves in

Figure 2 according to the local similarity and regional effects to capture the common trends

in fertility rates, and thereby estimate the adjacency matrix W from the data.

We adopt the functional mixed-effects model approach by regularizing the curves

(temporal observations) using basis functions, such as wavelets, for reducing the number

of parameters proliferated by the clustering structure. Since different age groups can have

different clustering configurations, we conduct the clustering analysis for each group. We

therefore suppress the group index j in the following model description. Importantly, the

number of clusters is not assumed known, but is itself an object of inference.

4.2.1. SFC Model Specification

We specify a spatio-functional clustering (SFC) model as follows. Consider the functional

response Yi(t) over [0, 1] for region i ¼ 1; 2; : : :;N;with k ¼ 1, 2,: : :, p functional covariates
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~Xi(t) including the intercept. Our goal is to spatially cluster these regions according to the

regional impact of ~Xi(t)’s. In general, the ~Xi(t)’s may capture macrostructural characteristics,

and spatial diffusion may reflect the variation in the socio-cultural effects of these

macrostructural features on fertility. When ~Xi(t) includes only the intercept, with p ¼ 1, we

would cluster Yi(t) by its trajectory as ordinary functional clustering procedure.

Suppose we have data Yi(t) observed at t ¼ t1, t2,: : :, tT over a set of regions, i [ S ¼

{1; 2; : : :;N}; which can be partitioned into d clusters, S ¼ <d
r¼1Cr; Cr’s are mutually

exclusive and each contains nr regions and we have
Pd

r¼1nr ¼ N: Consider the regression

model YiðtÞ ¼
Pp

k¼1 ~xikðtÞ ~brkðtÞ þ e iðtÞ for region i in cluster Cr; r ¼ 1; 2; : : :; d; with p

covariates. The kth covariate ~xik(t) has effect ~brk(t) at time point t. The same model at

region level is stated as:

Yi ¼ ~Xi
~br þ ei ð8Þ

where Yi is the T £ 1 functional response for i-th region, and e i is the T £ 1 error vector

which follows i.i.d.N (0, s 2); ~br ¼ ( ~br1(t1),: : :, ~br1(tT), ~br2(t1),: : :, ~brp(tT))0 is the pT £

1 vector that represents the impact of ~Xi on Yi in the Cr cluster, with the T £ pT design

matrix ~Xi ¼ ( ~Xi1,: : :, ~Xip) and each ~Xik is a T £ T diagonal matrix with ~xik(t1),: : :, ~xik(tT)

as diagonal entries. Finally, the model pooling data over all regions can be written as

Y ¼ ~X ~bþ e ð9Þ

by stacking ~b ¼ ~b 01; · · ·; ~b 0d
� �

0

for the d clusters.

It is evident that model complexity is greatly increased by the clustering structure. To

avoid potential redundancy of parameters, we consider Bayesian wavelet smoothing

techniques for dimension reduction. Specifically, let b ¼ Q ~b with the block-diagonal

matrix Q ¼ ^
dp
i¼1 Q, where each block matrix Q is the Discrete Wavelet Transform

(DWT) matrix; that is, we reparametrize ~b by Wavelet transforming each of its T -

functional components. Then, the slope vector reduces to b ¼ (b11
0,: : :, b1p

0,: : :,

bd1
0,: : :, bdp

0)0 with T £ 1 wavelet coefficients brk for fixed-effects function ~brk(t).

Furthermore, by assuming T ¼ 2L, we have the explicit regularization form

~brkðtÞ ¼ jrk;00f00ðtÞ þ
X

L

l¼1

X

2l21

m¼1

zrk;lmclmðtÞ;

where f00(t) and clm(t) are the wavelet basis functions at resolution level l ¼ 1, 2,: : :, L, and

m ¼ 1, 2,: : :, 2l21 denotes the location at the l-th level. Then, brk ¼ (jrk,00, zrk,11, zrk,21,: : :,

zrk,L2L21)0. Note that, the coefficients in the temporal domain with a single index (t) are

regularized in the wavelet domain with double index (lm), with equal length as 1 þ
PL

l¼1

P2l21
m¼1 1 ¼ 2L ¼ T. The model in Equation (9) can now be written as Y ¼ Xbþe with

X ¼ ~XQ 0. Under the clustering structure, the model can be also written at cluster level as

Y r ¼ Xrbr þ e r; r ¼ 1; 2; : : :; d; ð10Þ

where Y r is the nrT £ 1 vector obtained by stacking all the Yi’s for i [ Cr. The likelihood of the

model is the product of cluster-specific likelihoods:

f ðYjb;s2Þ ¼
Y

d

r¼1

N ðXrbr;s
2InrT Þ ð11Þ

Journal of Official Statistics624



For the intercept-only clustering model ( p ¼ 1), each ~Xi ¼ IT and hence Xi ¼ Q0, the

inverse– wavelet transformation matrix. Hence Xr ¼ (Q, Q,: : :, Q)0 ¼ 1nr ^ Q0 and X0rJ

Xr ¼ nrIT by the orthonormality of Q.

The spatial contiguity of clusters under SFC is essential for estimating the spatial

adjacency W. Developing inferences for W is a major methodological innovation in the

current article. Here, we conduct such inferences using spatial clustering of curves, where

the number of clusters is not assumed a priori, but is also an object of inference.

4.2.2. SFC Prior Specification

Let 4 be a clustering configuration which consists of two components 4 ¼ (d, z), where d

is the number of clusters and z ¼ (z1, z2,: : :, zN) is the vector containing labels for each

region, zi [ {1, 2,: : :, d}. For spatial clustering, we can reduce to 4 ¼ (d, Gd) where

Gd ¼ (g1,: : :, gd) are cluster centers and gr [ S; see, for example, Knorr-Held and Raßer

(2000), Zhang et al. (2014) and Feng et al. (2016). The membership z is determined by the

minimal distance criterion, that is, regions with the minimal distance from center gr

constitute the cluster Cr.

A clustering prior model is defined as p(4) ¼ p(d )p(Gd j d ), where p(d ) is a prior for

the number of clusters, d, and p(Gd j d ) is a prior for the cluster centers, Gd. We specify the

minimal cluster size n0 such that nr $ n0 $ 1 for all Cr’s; consequently, d is bounded

above, say d # N0 # N. Note that the minimal cluster size is not really a constraint, since

this can be as small as 1. However, the researcher is offered the exibility to choose any

other minimal size that might be relevant to a specific application. Knorr-Held and Raßer

(2000) considered a power penalty on the number of clusters d by eliciting p(d j k) / (1

2 k)d so that p(d þ 1 j k)/p(d j k) ¼ 1 2 k, although an exponential penalty can mimic

the well-known criterion such as Akaike information criterion (AIC) or Bayesian

information criterion (BIC) for model comparisons. Under their choice, when d is bounded

above by N0, we explicitly have p(d j k) ¼ C(k)(1 2 k)d21 for d ¼ 1,: : :, N0 with

C(k) ¼ k/(1 2 (1 2 k)N0) and p(k) , Unif[0, 1]. When k is larger, d receives higher

penalty for increasing, while when k is fixed at a tiny value, say k ¼ 0, d becomes

uniformly distributed over {1, 2,: : :, N0} and all possible values of d receives the same

prior weight. Conditioning on d, we choose the prior for centers to be p(Gd j d ) ¼ (N 2

d )!/N ! and the
N
d
� �

d! possible Gd’s receive equal prior weight for being the cluster centers.

Although it is common to assume certain penalty for higher-dimensional models by

penalizing d, it is generally more reasonable to penalize the associated model parameters

themselves. Popular choices are L2 penalty through a normal prior, or L1 penalty through a

logistic density prior on b which is equivalent to LASSO estimates (Park and Casella

2008). More specifically, for the fixed-effects function b, we assume each element brk(lm)

of b is i.i.d.

brkðlmÞj4 , N ð0;s2lrklgrkðlmÞÞ; grkðlmÞ , Bernoullið prklÞ: ð12Þ

Note when grk(lm) ¼ 0, p(brk(lm) j4) is a point mass at 0. The clustering configuration

4 and the wavelet shrinkage indicator grk(lm)’s jointly determine the effective size of b.

This prior specification (12) introduces a set of hyper-parameters: the signal-to-noise ratio

lrkl, and the amount of shrinkage prkl, which can be estimated using an empirical Bayes
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procedure as described by Clyde and George (2000). However, the empirical Bayes

estimation procedures become intractable when the random clustering structure is

introduced. Furthermore, the clustering results can be sensitive to the selection of hyper-

parameters. Therefore, we update these hyper-parameters during the posterior sampling

procedure.

Accordingly, we further consider the conjugate Beta prior prkl , Beta (a0,kl, b0,kl), that

is,p( pkl) / p
a0;kl21
rkl ð1 2 prklÞ

b0;kl21; where the case a0,kl ¼ b0,k¼1 corresponds the non-

informative 01031uniform prior on [0, 1], and one can assume Inverse Gamma prior for

lrkl , igamma(a1,kl, b1,kl) with shape and scale parameters (a1,kl and b1,kl respectively)

selected to specify a rather dispersed distribution to indicate our weak prior information.

For the variability parameter for e, we consider the inverse-Gamma prior s 2, -

igamma(a
s, bs), where we choose as ¼ bs ¼ 0 for non-informative Jeffreys prior to

allow data-driven model search. The hyper-parameters a0,kl, b0,kl, a1,kl and b1,kl are also re-

evaluated from the posterior samples via fitting SFC with fix-cluster runs by picking some

reasonable partition (e.g., K-means). This gives reasonable prior information of the scaling

and shrinkage levels of the wavelet coefficients. Our simulation studies suggest this data-

driven model search works very well under various scenarios.

The Bayesian estimation of the spatial clusters 4 involves variable model dimensions,

that is, changing number of parameters associated with a new cluster introduced or an

existing cluster deleted during a stochastic search. For example, a new cluster r can

potentially introduce a new set of lrkl’s, prkl’s, and br. To handle the variable-dimensional

model exploration, we adopt an embedded rjMCMC step for [ within the conventional

Gibbs sampler which then updates the remaining parameters. The full implementation of

SFC is detailed in Appendix (Subsection 7.2). The key to the success of rjMCMC for

spatial clustering to alleviate the known local-trap issue (Zhang et al. 2014) is to propose a

new spatial cluster configuration without substantially deviating from the current [ and

avoid extreme values of likelihood ratio used for acceptance/denial. Our construction of

different move types for stochastic search of spatial clustering configurations under

rjMCMC is given in Appendix (Subsection 7.3).

4.2.3. SFC Posterior Inference

The prediction for the above spatial clustering model is based on averaging over all modelsa’s

using the posterior samples, which is shown to have better predictive power compared with

the prediction from a single model (Raftery et al. 1997). To estimate the adjacency matrix W,

once we have obtained posterior samples of size B, consider wb(i1, i2) ¼ 1 if regions i1 and i2
share the sameclustering membership in the b-th sample, and 0 otherwise. Let wi1i2 ¼

PB
b¼1

wb(i1, i2)/B [ [0, 1] and wi1i1 ; 0 be the estimated adjacency between regions i1 and i2. We

can then fit the STM with our estimate Ŵ¼ ððwi1i2ÞÞ1#i1;i2#N . To further obtain a central

clustering configuration 4 * from the posterior samples 4 1,: : :, 4 B, consider the

dissimilarity measure Dissði1; i2Þ ¼ 1 2 wi1i2 based on which an agglomerative clustering

algorithm is performed with the number of cluster d̂ set to the posterior mode of d. Once the

memberships for each region under the central configuration are determined, the inference on

the cluster-specific effects br(t) j4 * can be made via the posterior samples of b (b)
s (t) for all

s [ Cr with size nr. For example, the mean estimates b̂rðtÞ ¼
PB

b¼1

P

s[Cr b
ðbÞ
s (t)/(nrB) and

the associated 95% confidence interval can be drawn using the (2.5, 97.5)% quantiles
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accordingly. Similarly, we can obtain the posterior samples of Ŷijt based on bðbÞs (t)’s for each

age group j, and transform it back using Equation (2) to obtain the posterior estimates of the

fertility rates F̂ijt together with 95% confidence bands.

The performance of SFC in both curve clustering and estimation is assessed via

simulation studies in Appendix (Subsection 7.4). It is compared with other popular

clustering methods, such as K-means with the number of clusters selected using GAP

statistic (Tibshirani et al. 2001) and a popular software SaTScan. The simulated data set

mimics the real Portuguese fertility data (age-group 20–24), obtained by perturbing the

cluster-mean (obtained by averaging the real response curves as cluster representative) for

the specified true clustering configurations. As shown in Figure 3, the simulated mean

curves for clusters 1–3 (from the real data) are similar to each other in means and trends,

but there are local differences in spikes, fluctuations and slopes at specific time points.

Indeed, all three methods – SFC, Kmen þ GAP, and SaTScan – are able to detect 4

clusters in more than half of the 500 such simulated data sets. One interesting finding is

that if we use Kmeans þ Silhouette criterion (predates GAP), it frequently picked 2

clusters only with poor simulation performance, without being able to distinguish between

cluster 1, 2 and 3. The results show that competing methods, especially SFC, can well

capture the true number of clusters under various scenarios, even when started from

different initial values and hyper-parameter re-estimation (we used initial d ¼ 8). We also

tried a true d ¼ 1 (no cluster), and SFC/K-means can pick the no-cluster pattern well.

The simulation results demonstrate the superiority of SFC serving both ends. We also

compared SFC with the tool SaTScan for spatial clustering, and noticed several

differences in the goals despite of consistent clustering results and comparable

performance. One important difference is that SaTScan scans for spatial clusters in a

certain time frame (subinterval of the study period) that exhibit extremely high or low

values. Therefore, some regions may not receive any cluster label due to their absence at

all detected hot-spots, and this happened in our simulated data. Whereas SFC or other

functional-clustering techniques, such as K-means clustering, would consider the

complete time course to cluster all regions. However, SFC does share similar features as

scan-statistic-based approach, such as spatial contiguity that aids in the interpretation of

clustering results. Our model-based SFC approach also provides parameter estimation

(including Bayesian uncertainty quantification about the number of clusters) and allows

covariates, while scan-statistic-based approach has less constraints on the cluster shapes

such as voronoi tessellation, and is robust against violation of model assumptions. We
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Fig. 3. Estimated central clustering configurations by quinquennial age group j (j ¼ 1,..., 7: ages 15 to 49

years old), with cluster labels.
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have added one graph to elaborate the difference and similarity between both approaches,

in addition to the comparison with machine learning algorithms like K-means clustering in

the simulation section. Finally, we also provide a code for easy implementation. See

Appendix (Subsection 7.4) for further details.

4.3. Analysis of Portuguese Regional Fertility Rate Evolution

Using Portuguese data for N ¼ 28 (NUTS III) regions, T ¼ 19 years from 1991 to 2009,

and J ¼ 7 groups, we fit the spatio-temporal mixed-effects model (3) by proceeding with 3

MCMC runs with distinct initial values, and 6,000 total iterations per chain. The

convergence is well committed after 5,000 iterations, in that the Potential Scale Reduction

Factor (PSRF)
ffiffiffi

R
p

, 1.2 for all parameters (Brooks and Gelman 1998). The final 1,000

samples for each chain are then used as posterior samples.

Further, we implement SFC in the intercept only case ( p ¼ 1) for each of the J ¼ 7 age

groups. Since the implementation of wavelet smoothing using Haar basis requires the

length of the curve to be a power of two, we choose the first T ¼ 16 years out of the 19,

which are representative of the overall pattern and temporal evolution that is required for

clustering (Figure 2); the remaining three years data are retained for evaluation of out of

sample forecasts. Then, we conduct five MCMC runs with a total of 60, 000 iterations per

chain for each age group j ¼ 1, 2,: : :, J ¼ 7. The five chains start with distinct values of d

and corresponding randomly selected cluster centers, which yield distinct clustering

configurations and the associated parameters. Each chain with a total of 60,000 iterations

takes around nine minutes to complete on a regular 32MB RAM machine. The

convergence of all five chains is well committed after 50,000 iterations by monitoring the

PSRF for parameters and the deviance statistics based on both the marginal likelihood and

full model likelihood. We then stack the final 10,000 samples for each of the five chains,

and sample at every ten iterations to obtain a total of B ¼ 5,000 samples for posterior

inference.

4.3.1. Estimates

Table 1 reports the posterior distribution of the number of clusters d from the total of

5,000 posterior samples. The estimated clustering configuration varies somewhat across

Table 1. Posterior probabilities of the number of clusters (d) for SFC in each age group.

d 15–19 20–24 25–29 30–34 35–39 40–44 45–49

1 0.006
2 0.828
3 0.003 0.012 0.185 0.074 0.142
4 0.525 0.305 0.413 0.056 0.111 0.017
5 0.307 0.594 0.045 0.741 0.532 0.004
6 0.041 0.164 0.089 0.174 0.197 0.131 0.002
7 0.440 0.000 0.103 0.006 0.066 0.001
8 0.493 0.078 0.000 0.081
9 0.026 0.002 0.005
10 0.000 0.001
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the J ¼ 7 age groups in terms of both the posterior mode and spread of d. Figure 1 shows

the central clustering configuration 4̂j based on the estimated adjacency matrix Ŵj or the j-

th age group. Correspondingly, the observed curves of fertility rates Fijt for each cluster,

together with the estimated mean curve of fertility rates F̂ijt and the 95% confidence bands

for each cluster, are shown in Figures 4 and 5, with cluster labels and colors matched to the

central clustering configurations in Figure 1. For each cluster in each age group in Figures 4

and 5, we also report the estimated Variation Rate (VR)

VR ¼ ðF̂ijT – F̂ij1Þ=F̂ij1 £ 100%;

the percentage change in estimated fertility rates in each cluster over the 16 years

1991–2006. There is substantial spatial variation in the trends of fertility change over

time, reflected in the optimal cluster configuration reflecting between four to eight clusters
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Fig. 4. Functional clustering groups of fertility rates by quinquennial age group j ¼ 1, 2, 3: 15 to 29 years old,

together with variation rate (VR).
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in most age-groups, except the final age-group, j ¼ 7: 45 to 49 years old, which has the

smallest fertility rates and exhibits a flat pattern over time. The posterior mass of d centers

at 2 for this age group and the configuration suggests that the observed curves can be

generally grouped by North and South regions. The fitted curves suggests there is a slightly

decreasing trend for the North regions, while a slightly increasing trend for the South

regions, although the overall trends are flat for both groups.

The optimal representation of temporal trends generally corresponds to a number of

clusters d varying from two to eight. The evolution of fertility rates by age group ( j ¼ 1, 2,

3, 4, 5, 6), over the period between 1991 and 2006, as shown in Figures 4 and 5 (and the

estimates, in Tables 2 and 3, of intercepts m1, m2,: : :, m7 and slopes b1, b2,: : :, b7 for the

different age-groups), there are two features of temporal dynamics: (1) a decreasing trend
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Fig. 5. Functional clustering groups of fertility rates by quinquennial age group j ¼ 4, 5, 6, 7: 30 to 49 years

old, together with variation rate (VR).
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of the fertility rates in the lower age groups, which encompass women from 15 to 29 years

old ( j ¼ 1, 2, 3); and (2) an increasing trend of fertility rates in the higher age groups, in

particular those between 30 to 44 years old ( j ¼ 4, 5, 6). The final age group ( j ¼ 7,

45–49 years), is an exception, presenting two clusters with opposite trends; however, this

is connected to the low frequencies of births at these ages. Survey findings from Mendes

et al. (2006) reveal four related factors that lead to the postponement of having children:

prolongation of studies, subsequent entry into the labour market, the instability or lack of a

marital relationship and the delayed leave from parental home. Indeed, Portugal now has

one of the highest rates of women attending higher education in the world.

Beyond temporal dynamics, our work reveals interesting regional variations and spatial

dynamics. Gomes et al. (2016) also discuss socio-economic conditions that explain the

variation of regional fertility rates, highlighting the importance of female employment

rates, income per capita and proportion of the unmarried couples. Even if the general

territorial pattern of temporal variation in fertility rates is similar to the national level, the

intensity with which these dynamics are expressed locally are different, creating clear

regional variations. This leads us into spatial diffusion, where the clusters identified by our

spatio-temporal modelling are very useful.

Several points may be highlighted. First, our approach of modelling spatial dynamics by

clustering is clearly a substantial improvement over the common practice of assuming an a

priori known contiguity based spatial weights matrix. Second, the clustering configuration

can be generally summarized as South and North areas, which again coincides with the

general regional economic conditions. In particular, the most representative fertility age

groups with the richest fertility rates, j ¼ 2, 3, 4 from age 20 to 34 years old, all exhibit

clusters that center around the capital Lisbon and Penı́nsula de Setubal, including more

urbanized, richer areas with better economic conditions. For women who are aged below

30, decreasing trends for the regions in the South around the capital are more persistent.

For example, for the two richest fertility groups 20–24 and 25–29 in Figure 4 for these

regions, both labeled as cluster 4, the reduction in fertility rates from 1991 to 2006 is

smaller compared to other clusters, plus there is a visible bump near 1999 and 2000 which

is manifested in both the fitted cluster-specific mean curves. On the other hand, for the age

group above 30, the increasing trend for ages above 30 for these areas is steeper,

particularly for the 35–39 age group, in which Lisbon (Grande Lisboa) (cluster 1) and

Penı́nsula de Setubal (cluster 2) form clusters distinct from the far south area cluster due to

their sharp increments. For the 40–44 age group, Grande Lisboa constitutes a distinct

cluster due to its steady increasing trend after 1998. Such varying fertility trends are well

detected by our functional clustering model in that they typically form a singleton cluster.

Another example is Serra da Estrela (cluster 3) for age group 15–19, which has distinct

temporal trends compared to other regions.

Since the functional clustering model is applied to the first 16 years of data for the j-th

age group, the results are not exactly comparable with the STM in Equation (3) which is

applied to the full data observed over 19 years for all J ¼ 7 age groups. We plug in the

estimated adjacency matrix Ŵj from each age group j to investigate if it can potentially

improve the STM model fit but more importantly, offer key insights into fertlity diffusion.

The parameter estimates and model assessment for STM are summarized in Tables 2 and 3.

Several case are presented: the non-random case (with no spatial or temporal dynamics),
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spatial-only case, temporal-only case, full model with the natural adjacency matrix and

estimated adjacency Ŵj matrices from each sub age-group j ¼ 1, 2,: : :, J ¼ 7 using the

functional clustering techniques. The estimated Ŵ2 based on SFC for j ¼ 2: 20–24 offers

the best model fit, that is, the STM with the lowest DIC4.

Finally, the clustering configurations have clear connections with regional migration

patterns. Young people migrate to regional towns and cities for education, and then for

employment, and this is evident in clusters that spread from major coastal cities – Lisboa,

Porto, Aveiro and Faro – inward to interior areas in their hinterland, with some variations

Table 2. Posterior inference for STM with the three partial implementations and estimated adjacency matrix Ŵj

for j ¼ 1. Parameter estimates include posterior mean (95% highest posterior density set) from the 3,000

samples.

No dynamics Spatial-only Temporal-only Spatio-temporal STM(Ŵ1)

m1 9.92
(9.76,10.09)

9.94
(9.67,10.21)

10.04
(9.82,10.25)

10.01
(9.50,10.57)

10.00
(9.41,10.53)

m2 18.51
(18.35,18.68)

18.54
(18.27,18.80)

18.64
(18.43,18.85)

18.61
(18.11,19.17)

18.60
(18.02,19.14)

m3 20.64
(20.47,20.80)

20.66
(20.38,20.93)

20.76
(20.55,20.97)

20.73
(20.21,21.29)

20.72
(20.14,21.24)

m4 15.47
(15.31,15.63)

15.49
(15.22,15.77)

15.59
(15.38,15.79)

15.56
(15.05,16.11)

15.56
(14.96,16.09)

m5 8.89
(8.72,9.05)

8.90
(8.63,9.18)

9.01
(8.80,9.23)

8.98
(8.47,9.53)

8.97
(8.37,9.50)

m6 4.20
(4.04,4.36)

4.21
(3.94,4.49)

4.32
(4.12,4.53)

4.29
(3.77,4.83)

4.28
(3.69,4.84)

m7 1.25
(1.08,1.42)

1.27
(1.00,1.54)

1.37
(1.17,1.59)

1.34
(0.83,1.90)

1.33
(0.73,1.86)

b1 –0.14
(–0.16,–0.13)

–0.15
(–0.17,–0.13)

–0.16
(–0.17,–0.14)

–0.17
(–0.22,–0.12)

–0.15
(–0.19,–0.11)

b2 –0.35
(–0.37,–0.34)

–0.36
(–0.38,–0.34)

–0.37
(–0.38,–0.35)

–0.38
(–0.43,–0.33)

–0.36
(–0.40,–0.32)

b3 –0.17
(–0.18,–0.15)

–0.17
(–0.20,–0.15)

–0.18
(–0.20,–0.16)

–0.19
(–0.24,–0.15)

–0.18
(–0.22,–0.13)

b4 0.17
(0.16,0.19)

0.17
(0.14,0.19)

0.16
(0.14,0.18)

0.15
(0.10,0.19)

0.17
(0.12,0.21)

b5 0.18
(0.16,0.19)

0.17
(0.15,0.20)

0.17
(0.15,0.18)

0.15
(0.10,0.20)

0.17
(0.13,0.22)

b6 0.05
(0.04,0.07)

0.05
(0.02,0.07)

0.04
(0.02,0.06)

0.03
(–0.02,0.07)

0.04
(0.00,0.09)

b7 –0.00
(–0.01,0.01)

–0.01
(–0.03,0.02)

–0.01
(–0.03,0.00)

–0.02
(–0.07,0.02)

–0.01
(–0.05,0.03)

d 2 0.86
(0.82,0.89)

0.61
(0.58,0.65)

0.58
(0.55,0.61)

0.57
(0.55,0.60)

0.57
(0.55,0.60)

t 2 0.00
(–0.08,0.08)

0.42
(0.33,0.51)

0.20
(0.15,0.26)

0.34
(0.24,0.44)

0.92
(0.66,1.18)

f 0.00
(–0.08,0.08)

0.00
(–0.08,0.08)

0.92
(0.89,0.94)

0.93
(0.91,0.95)

0.94
(0.91,0.95)

g 0.00
(–0.08,0.08)

0.94
(0.90,0.97)

0.00
(–0.08,0.08)

0.97
(0.95,0.99)

0.95
(0.91,0.98)

DðuÞ 9990.89 9192.32 8279.49 7786.06 7942.31
PD4 14.63 16.41 16.19 16.50 16.49
DIC4 10005.53 9208.73 8295.69 7802.56 7958.80
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in alternate local business centers and university towns like Braga. In older age groups,

some localized clusters in the interior of the country also emerge, likely because of more

local migration. For example, in our central (best-fitting) clustering configuration in age-

group j ¼ 2 (30–34 years old), the 4 clusters represent Lisbon, Porto, Aveiro (and

Coimbra) and Braga, which are also major university cities and towns. A similar pattern is

observed for age-group j ¼ 3 (35–39 years old), where the clusters emerge from Lisbon,

Porto, Aveiro, Évora and Faro.

5. Forecast and Prediction

While our focus in this article has been on estimation and inference, the ability of the

model to generate accurate out-of-sample and in-sample predictions also needs to be

Table 3. Posterior inference for STM with the three partial implementations and estimated adjacency matrix Ŵj

for j ¼ 2 to 7. Parameter estimates include posterior mean (95% highest posterior density set) from the 3,000

samples.

STM(Ŵ2) STM(Ŵ3) STM(Ŵ4) STM(Ŵ5) STM(Ŵ6) STM(Ŵ7)

m1 10.20

(9.70,10.78)

10.16

(9.66,10.62)

9.98

(9.45,10.55)

10.00

(9.41,10.53)

10.08

(9.53,10.60)

10.13

(9.61,10.70)

m2 18.80

(18.30,19.37)

18.76

(18.25,19.23)

18.58

(18.05,19.14)

18.60

(18.02,19.14)

18.68

(18.13,19.19)

18.73

(18.20,19.28)

m1 20.92

(20.41,21.50)

20.88

(20.38,21.35)

20.70

(20.17,21.26)

20.72

(20.14,21.24)

20.80

(20.27,21.32)

20.85

(20.32,21.42)

m1 15.76

(15.26,16.34)

15.71

(15.21,16.19)

15.54

(14.99,16.10)

15.56

(14.96,16.09)

15.63

(15.10,16.15)

15.69

(15.16,16.24)

m1 9.17

(8.66,9.75)

9.13

(8.63,9.59)

8.95

(8.40,9.51)

8.97

(8.37,9.50)

9.04

(8.49,9.56)

9.10

(8.57,9.65)

m1 4.48

(3.99,5.05)

4.44

(3.93,4.90)

4.26

(3.71,4.82)

4.28

(3.69,4.84)

4.36

(3.83,4.88)

4.41

(3.89,4.96)

m1 1.53

(1.02,2.10)

1.49

(1.00,1.95)

1.31

(0.78,1.88)

1.33

(0.73,1.86)

1.41

(0.87,1.93)

1.46

(0.95,2.02)

b1 –0.16

(–0.20,–0.12)

–0.16

(–0.21,–0.13)

–0.17

(–0.22,–0.12)

–0.15

(–0.19,–0.11)

–0.16

(–0.21,–0.12)

–0.17

(–0.21,–0.14)

b2 –0.37

(–0.42,–0.33)

–0.38

(–0.42,–0.34)

–0.38

(–0.43,–0.33)

–0.36

(–0.40,–0.32)

–0.37

(–0.42,–0.33)

–0.38

(–0.42,–0.35)

b3 –0.19

(–0.23,–0.14)

–0.19

(–0.23,–0.15)

–0.19

(–0.25,–0.14)

–0.18

(–0.22,–0.13)

–0.18

(–0.23,–0.14)

–0.20

(–0.23,–0.16)

b4 0.15

(0.11,0.20)

0.15

(0.11,0.19)

0.15

(0.10,0.20)

0.17

(0.12,0.21)

0.16

(0.11,0.20)

0.14

(0.11,0.18)

b5 0.16

(0.12,0.20)

0.16

(0.11,0.20)

0.15

(0.10,0.21)

0.17

(0.13,0.22)

0.16

(0.12,0.21)

0.15

(0.11,0.18)

b6 0.03

(–0.01,0.08)

0.03

(–0.01,0.07)

0.03

(–0.02,0.08)

0.04

(0.00,0.09)

0.04

(–0.01,0.08)

0.02

(–0.01,0.06)

b7 –0.02

(–0.06,0.02)

–0.02

(–0.07,0.02)

–0.02

(–0.08,0.03)

–0.01

(–0.05,0.03)

–0.01

(–0.06,0.03)

–0.03

(–0.06,0.00)

d 2 0.57

(0.54,0.60)

0.57

(0.55,0.60)

0.57

(0.54,0.60)

0.57

(0.55,0.60)

0.57

(0.54,0.60)

0.57

(0.55,0.60)

t 2 0.52

(0.38,0.67)

0.73

(0.53,0.94)

0.85

(0.61,1.10)

0.92

(0.66,1.18)

0.83

(0.61,1.06)

1.66

(1.20,2.12)

f 0.93

(0.91,0.95)

0.93

(0.91,0.95)

0.94

(0.92,0.96)

0.94

(0.91,0.95)

0.93

(0.91,0.95)

0.94

(0.91,0.95)

c 0.97

(0.95,0.98)

0.95

(0.92,0.98)

0.96

(0.93,0.99)

0.95

(0.91,0.98)

0.96

(0.93,0.98)

0.96

(0.93,0.99)

DðuÞ 7773.46 7925.02 7878.33 7942.31 7901.21 7923.85

PD4 15.91 17.00 16.34 16.49 16.60 17.07

DIC4 7789.37 7942.02 7894.68 7958.80 7917.82 7940.92
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examined. Thus, we evaluate the forecast and prediction performance of our proposed

approach. We compare the in-sample prediction and out-of-sample forecast performance

of the STM as described in Equations (3)–(5) with two other related models.

5.1. Models

Our main model for the transformed fertility rates Yijt incorporating the spatial, temporal

and group effects is the STM model. This we denote as Model 1.

We also include Model 2 with only temporal variation modelled, that is, D(c) ¼ I in

STM. Finally, we consider the spatial-temporal (independent random effects) as our

Model 3:

Yijt , N ða1;i þ a2;t þ mj þ bjt; d
2Þ

with spatial random effect a1 ¼ ða1;1; : : :;a1;NÞ
0 and temporal random effect a2 ¼

ða2;1; : : :;a2;T Þ
0 :

a1 , N ð0; t2
1DðcÞÞ; a2 , N ð0; t2

2AðwÞÞ

5.2. Prediction

As discussed above, our data run through 19 years. We fit Models 1, 2 and 3 to the data on

Portuguese age-specific fertility rates Y ¼ a þ m þ bt with t ¼ 1, 2,: : :, 16, and make

prediction on Y0 ¼ a0 þ mþ bt for the last 3 time points t ¼ 17, 18, 19. Generally, let

u ¼ {c, w, m, b, t 2, d 2} denote the model parameters, and a be the random effects for

each model for fitted data. The posterior prediction of Y0 is

pðY0jYÞ ¼

Z

pðY0jY ; u;a1Þpðu;a1jYÞduda1

¼

Z Z

pðY0jY ; u;a1;a0Þpða0jY; u;a1Þda0

� �

pðu;a1jYÞduda1

via composite sampling: with posterior samples u ðbÞ;aðbÞ1

	 
B

b¼1
, we draw Y ðbÞ0 from the

inner integration term which can be identified to a N ðm* ;S* Þ since a0 j a , N (m0, S0)

where S0 ¼ S00 2 S01

P21
11 S10 and m0 ¼ S01

P21
11 a, and Sij is the partition block of the

covariance assumed for ða00ja
0Þ0 with i, j ¼ 0 for a0 and 1 for a. We then have S* ¼

d2I þ S0 and m* ¼ m0 þ mþ bt:

5.3. Model Comparisons

As before, for model comparisons, we use Deviance Information Criterion (DIC) for

mixed-effects model and DIC4 (Celeux et al. 2006) based on complete likelihood. We also

report DðuÞ ¼ 22E1 as the posterior expected value of the joint deviance, and

pD4 ¼ DðuÞ ¼ 22E2 as a measure of model dimensionality. As discussed in Section 2.4,

generally a smaller DIC4 indicates better predictive power.

To evaluate forecast performance, we also compute the mean squared error (MSE) and

relative average deviation (RAD) to evaluate the prediction for Yk, k ¼ 1, 2,: : :, K, which

are, respectively, defined as
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MSE ¼
X

K

k¼1

ðŶk 2 YkÞ
2=K; RAD ¼

X

K

k¼1

jŶk= Yk 2 1j=K:

5.4. Results

Table 4 reports model estimates and the model comparison statistics for Models 1, 2 and 3.

The forecast performance of each individual estimated age-specific mortality rate for each

region is shown graphically in Appendix Subsection 7.5. In terms of in-sample predictive

densities, as reflected for example in DIC4, the best performance is obtained for the

proposed STM. The additive model (Model 3) comes out the worst of the three models in

this measure. This underscores the importance of modeling spatio-temporal dynamics

appropriately. In an important departure from the standard literature, we do not take the

adjacency structure of the spatial units as a given, but estimate this using spatial clustering

(see also Bhattacharjee and Jensen-Butler 2013; Bhattacharjee and Holly 2013; Castro

et al. 2015).

However, exactly the opposite situation emerges when we consider out-of-sample

forecast performance. Here, the additive model (Model 3) comes best, while the temporal-

only model (Model 2) is the worst. However, while the additive model has the smallest

Table 4. Posterior inference for the three models. Parameter estimates include posterior mean (95% credible

set) from the 3,000 samples.

Full Spatio-temporal
Model 1

Temporal-only
Model 2

Additive model
Model 3

ml 10.24 (9.64,10.73) 10.00 (9.77,10.22) 10.13 (8.46,12.43)
m2 18.94 (18.33,19.43) 18.69 (18.46,18.92) 18.83 (17.16,21.07)
m3 20.73 (20.13,21.21) 20.48 (20.25,20.71) 20.62 (18.94,22.86)
m4 15.72 (15.11,16.20) 15.48 (15.25,15.70) 15.62 (13.95,17.86)
m5 9.22 (8.62,9.70) 8.98 (8.74,9.20) 9.11 (7.46,11.38)
m6 4.59 (3.98,5.06) 4.34 (4.11,4.57) 4.47 (2.78,6.69)
m7 1.63 (1.03,2.11) 1.39 (1.17,1.62) 1.52 (–0.14,3.78)
b1 –0.16 (–0.21, –0.13) –0.15 (–0.17, –0.13) –0.16 (–0.32, –0.01)
b2 –0.39 (–0.43, –0.35) –0.37 (–0.39, –0.35) –0.38 (–0.54, –0.24)
b3 –0.15 (–0.19, –0.11) –0.13 (–0.15, –0.11) –0.14 (–0.30,0.00)
b4 0.16 (0.12,0.20) 0.18 (0.16,0.20) 0.17 (0.01,0.31)
b5 0.15 (0.11,0.19) 0.17 (0.15,0.19) 0.16 (0.00,0.31)
b6 0.02 (–0.02,0.06) 0.04 (0.02,0.06) 0.03 (–0.13,0.17)
b7 –0.03 (–0.07,0.01) –0.01 (–0.03,0.01) –0.02 (–0.19,0.12)
d2 0.56 (0.53,0.59) 0.57 (0.54,0.60) 0.62 (0.59, 0.65)
t2

1 0.34 (0.24,0.46) 0.18 (0.13,0.24) 0.57 (0.31,1.01)

t2
2 – – 0.49 (0.02,1.74)
c 0.97 (0.94,0.99) 0.00 (0.00,0.00) 0.77 (–0.04,0.99)
w 0.93 (0.91,0.96) 0.91 (0.88,0.94) 0.88 (0.38, 0.99)
DðuÞ 6491.57 6907.71 7452.12
PD4 16.71 16.36 23.49
DIC4 6508.28 6924.07 7475.62
MSE 1.25 1.36 0.97
RAD 0.16 0.17 0.12
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MSE and RAD in forecasting, the pD4 statistic suggests that the model also has the highest

complexity. An important insight resulting from this observation is that the most complex

over-parameterized model typically has better forecast performance. At the same time, it is

relatively weak in terms of structural interpretation. Hence, such a model may not be

readily useful for evaluation of alternate scenarios and policy measures.

6. Conclusion

This article develops a new Bayesian methodology for spatio-temporal modeling of

demographic outcomes. The proposed spatio-temporal mixed-effects model (STM) allows

for very rich spatial and temporal dynamics, which are assumed separable for

mathematical tractability. Importantly, we do not assume spatial diffusion to be driven by

geographic proximity, but equally dependent on socio-cultural distances. Inferences on

such complex spatial dynamics is based on a spatial functional clustering (SFC) model

where time trends of demographic outcomes across regions and groups are modeled;

neither the number of clusters nor their boundaries are assumed a priori, but inferred from

the data. The MATLAB code for implementing STM and SFC is provided and maintained

in the Github repository https://github.com/zhangz19/PorFerAnalysis.

Applied to Portuguese regional fertility data, the methods uncover exciting insights on the

nature of spatial diffusion. This is driven by the socio-economic patterns of historical

development of the country and its regions. The results aid identification of peripheral regions

with depressive demographic dynamics, and allow for unique design of regional policy for such

regions.

The methods extend the recent literature on unknown and endogenous spatial dynamics

(Bhattacharjee and Holly 2013; Bhattacharjee and Jensen-Butler 2013; Bailey et al. 2016).

In line with other recent evidences, for example in Bhattacharjee et al. (2014), we find that

estimated spatial diffusion aids the design of effective place based policies, by focusing

not only on local benefits from policy, but spillover benefits brought about by diffusion.

Reduced form models may predict better, although flexible structural models are more

useful for policy.

7. Appendix

Table 5 gives some major notations used in this article.

Table 5. Notation.

Abbreviation
STM Spatio-temporal mixed-effects model
SFC Spatio-functional clustering
AR Autoregressive. STM assumes AR model for temporal dependence
CAR Conditional autoregressive. STM assumes CAR model for spatial

dependence
Indices

N Number of regions, with s = 1, . . . , N indicating ith region
J Number of age groups, with j = 1, . . . , J indicating jth age group
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7.1. STM Implementation

We obtain the posterior samples of the parameters {u, a, d 2, t 2, c, w} via Gibbs Sampler.

Under our choice of the prior densities in Equation (7), the full conditional distributions

given the data and the remaining parameters for the fixed-effects and random-effects are,

respectively

pðujh;a; d2Þ ¼ N ðmu;SuÞ
Su ¼ d2ðX 0XÞ21

mu ¼ ðX
0XÞ21X 0ðh 2 ZaÞ

8

<

:

pðajh; u; d2; t2;c;fÞ ¼ N ðma;SaÞ
Sa ¼ d22JIN þ t22AðfÞ21^DðcÞ21

� �21

ma ¼ SaZ 0ðh 2 XuÞ=d2

8

<

:

d Number of clusters, with r = 1, . . . , d indicating rth cluster Cr with
nr regions

p Number of covariates, with k = 1, . . . , p indicating kth covariate
T Number of time points, with t = 1, . . . , T indicating tthe time point

(year)
L Number of wavelet resolution levels, with l = 1, . . . , L indicating lth

level
m Index of position at each wavelet level l, m = 1, . . . , 2l21

Parameters
a Spatio-temporal random effect
t 2 variation explained by the spatio-temporal random effect
d 2 unexplained variation under STM
W N £ N spatial adjacency matrix, usually defined with entry ws1,s2 = 1

if region s1 and s2 are neighbors, 0 otherwise.
M N £ N diagonal matrix with number of neighbors as diagonal

entries
A(f) Temporal correlation matrix under AR, with temporal dependence f
D(c) Spatial correlation matrix under CAR, with spatial dependence c
Q T £ T Discrete Wavelet Transform (DWT) matrix
[ Spatial clustering configuration.

Gd Set of d cluster centers. [ labels are obtained by minimum distance
criterion.

brk(lm) Wavelet coefficient at position m of resolution l, for kth covariate in rth
cluster

grk(lm) Bernoulli random variable for the spike-and-slab prior: 0 means brk(lm)
is a point mass at 0, 1 means brk(lm) follows a Normal prior
N (0, s2lrkl).

s 2 Noise level, or error variance in the wavelet regression setting
lrkl Signal-to-noise ratio of wavelet coefficients. Lr is the diagonal matrix

with lrkl’s as diagonal entries for cluster r
Prkl Wavelet shrinkage level, or probability of grk(lm) = 1
k hyper-parameter for penalizing larger number of clusters d
p(u | q) Conditional prior density of u given q
p(u | q, Y) Full conditional posterior density of u given q and the data Y
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The conditional distributions of the variance components and spatio-temporal

dependence are

pðd2jh;a; uÞ ¼ igamma ðad þ NJT=2; bd þ e 0e=2; with e ¼ h 2 Xu 2 Za

pðt2ja;c;fÞ ¼ igamma ðat þ NJT=2; bt þ a 0ðAðfÞ21^DðcÞ21Þa=2Þ

pðcja; t2;fÞ / jDðcÞj
2T=2

expfca 0ðAðfÞ21;^WÞa=ð2t2Þg · Iðf e ðe21
N ; e21

1 ÞÞ

pðfja; t2;cÞ / jAðfÞj
2N=2

expf2a 0ðAðfÞ21;^DðcÞ2 1Þa=ð2t2Þg · Iðf e ð21; 1ÞÞ

For CAR structure we have a convenient form for the precision matrix DðcÞ21 ¼

M21 2 cW with UL-decomposition DðcÞ21 ¼ L
0

DLD; and for AR(1) structure we have

AðfÞ21 ¼ L 0ALA where

LA ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 2 f2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 2 f2
p

0 0 : : : 0

2f 1 0 : : : 0

0 2f 1 : : : 0

..

. . .
. . .

. . .
. . .

.

0 : : : 0 2f 1

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

Hence jA(f)j ¼ (1 2f2)T 21. Sampling t 2 and f requires efficient computation of a 0V

a where V ¼ A(f)21 ^ D(c)21 ¼ (L 0ALA) ^ (L 0D LD) ¼ (L 0A ^ L 0D
)(LA ^ LD) ¼ L 0V LV

with LV ¼ LA ^ LD. Hence a 0Va ¼ k ~ak
2
t with ~a ¼ LV a and can be efficiently evaluated

by exploiting the sparseness of LA.

7.2. SFC Implementation

For notational convenience, we use (akl)k,l to denote a vector a with elements indexed by

double index k ¼ 1, 2,: : :, K and l ¼ 1, 2,: : :, L, and stacked by the order of the

subscripts, that is, (akl)k,l ¼ (a1,1,: : :, aK,1,: : :, a1,L,: : :, aK,L); we use a similar notation

for more than two indexes. For example, we have b ¼ (brk(lm))m,l,k,r. Let g ¼ (g 01,: : :,

g 0d)0 with gr ¼ (grk(lm))m,l,k, l ¼ (l1,: : :, ld)0 with lr ¼ (lrkl)l,k and p ¼ (p1,: : :, pd)0

with pr ¼ ( prkl)l,k. Then, the prior (12) can be informally written as brj4, N (0, s 2Lr)

where Lr is a diagonal matrix with lrgr as diagonal entries (which allow zero). We also

employ the generic notation a[c ] to denote the c-th element (column) of the vector

(matrix) a, and a[2c ] denotes the complement of a[c ].

For Bayesian estimation of SFC parameters {4, b, g, s 2, l, p, k}, each iteration of

Gibbs sampling involves the following steps:

(1) Update 4: We include an rjMCMC step for the variable-dimensional model search

of the spatial clustering configuration 4 ¼ (d, Gd). Let (4, g, l, p, s 2, b) be the current

state, we propose a new state (4*, g *, l *, p *, s 2*, b *). Define the auxiliary variable

U ¼ u * ¼ (s 2*, b *, g *, l *, p *) and let u ¼ (s 2, b, g, l, p) ¼ U *, the corresponding

invertible map q: (u, U) to (u *, U *) is one-to-one with Jacobian determinant jJ j ¼ 1. We

first propose a new clustering configuration 4*. The proposed 4* should be close to the
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current 4 to avoid dramatic change in likelihood that incurs the local trap problem in

model search. The proposed moves that utilize the spatial information are detailed in

Appendix Subsection 7.3.

Next, we propose the associated parameters U , h(· j 4, u, 4*) via a certain proposal

density h. Hence the acceptance ratio for the new state is

min 1;
pð4j4*Þ

pð4*j4Þ
£
pð4 *; u*jYÞ

pð4; ujYÞ
£

hðu*j4*; u*;4Þ

hðuj4; u;4
£ jJ j

� �

ð13Þ

We choose h(u j 4, u, 4*) ¼ p(g *, l *, p * j 4*) £ p(s 2* j 4*, g *, Y) £ p(b * j 4*,

g *, s 2*, Y). More specifically, we first generate l* and p* from the prior distributions,

then g *, or grk(lm) from Bernoulli( prkl) for new clusters if any involved. Note for given

4* and g *, the effective dimension of b * is determined. For cluster r, let b
*

r ,1 be the non-

zero portion of each b
*

r with dimension qr, the corresponding design matrix Xr, 1, and the

prior covariance s 2Lr, 1 determined by gr
*. We first sample s 2* from

pðs2*j4*;g*;l*;YÞ / pðs2*Þ
Y

d

r¼1

Z

pðYrjbr;s
2*Þpðbrjg*

rÞdbr ð14Þ

which is an inverse-Gamma density with shape parameter as þ NT/2 and scale parameter

bs þ
Pd

r¼1 YT
r VrYr/2 with Vr ¼ InrT 2 Xr;1 ðX

0
r;1Xr;1 þL21Þ21X 0r;1. Next, we sample the

non-zero portion b
*

r;1 from pðb
*

r;1j4*;s2*;Yr;g*
r Þ; which is in turn a Gaussian density

with mean ðX0r,1Xr;1 þL21
r;1 Þ

21X0r,1Yr and covariance matrix s2*ðX0r,1;Xr;1 þL21
r;1 Þ

21.

Under this choice of proposal density, we can substitute the factorization up to a constant

(const.):

pð4; ujYÞ ¼ pðYj4; uÞpðbj4;g;l;s2Þpðs2Þpðg;l; pj4Þpð4Þ £ const:

and cancel out the prior and proposal part p(g, l, p j 4,). Then, the Metropolis-Hasting

ratio in Equation (13) becomes

pð4j4 *Þ

pð4*j4Þ
£
pðYj4*;b*;s2*

;g*Þpðb*;s2*
j4*; g*; l*Þpðb;s2j4; g; l;YÞ

pðYj4;b;s2; gÞpðb;s2j4;g; lÞpðb*;s2* j4*; g*; l*; YÞ
£
pð4*Þ

pð4Þ
ð15Þ

Using the fact that

pðYj4; g; lÞ ¼
pðYj4;b;s2; gÞpðb;s2j4; g; lÞ

pðb;s2j4; g; l; YÞ
;

the ration in Equation (15) reduces to

pð4j4 *Þ

pð4 *j4Þ
£
pðYj4*;g*; l*Þ

pðYj4;g; lÞ
£
pð4*Þ

pð4Þ
: ð16Þ

When the prior and proposal density of a are both diffuse (such as under fixed tiny k and

uniform proposal), the acceptance rate is mainly determined by the marginal likelihood

ratio, the second ratio in Equation (16). We have the marginal likelihood ratio r ¼ p(Y j

4*, g *, l *)/p(Y j 4, g, l) with
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pðYj4;g;lÞ ¼

Z

Y

d

r¼1

Z

pðYrjs
2;br;4;gÞpðbrjs

2;4;g;lrÞpðs
2Þdbr

 !

s2 ð17Þ

The integrand in Equation (17) is a product of three densities: N ðXr;1br;s
2InrT Þ’s;

N ð0qr;s
2Lr;1Þ’s and igamma(as, bs). After the first integration with respect to br’s, the

first two Gaussian densities merge into N ð0q;s
2VrÞ with Vr ¼ InrT 2 Xr;1ðX

0
r;1Xr;1þ

L21
r;1 Þ

21X 0r;1. By Sherman-Morrison-Woodbury formula and Sylvester’s determinant

theorem

ðAþ UCVÞ21 ¼ A21 2 A21UðC 21 þ VA21UÞ21VA21

jAþ UCV j ¼ jC 21 þ VA21UkCkAj

and taking A ¼ InT ; U ¼ 2Xr;1; C ¼ ðX0r,1Xr;1 þL21Þ21 and V ¼ X 0r;1; we have V21 ¼

InrT þ Xr;1Lr;1X 0r;1 with determinant jInrT þ Xr;1Lr;1X 0r;1j ¼ jIqr þLr;1X 0r;1; 1Xr;1j: After

the second integration with respect to s 2, which is over igammaðas þ NT=2; bs þ
Pd

r¼1 YrVrYr=2Þ; the marginal likelihood pðYj4;g;lÞ in Equation (17) is simplified to:

p Yj4; g; l
� �

¼
GðNT=2ÞD2ðasþNT=2Þ

GðasÞð2pbsÞ
NT=2

Y

d

r¼1

jLr;1X 0r;1Xr;1 þ Iqrj
2

1
2; ð18Þ

with D ¼ 1 þ
Pd

r¼1Y 0r ðInrT 2 Xr;1ðX
0
r;1Xr;1 þ L21

r;1 )21X 0r;1)Yr/(2bs).

Note that Equaiton (18) is a multivariate t-desity for ordered Y by clusters with location

0NT, scale matrix ðbs=asÞ ^d
r¼1 ðInrT þ Xr;1Lr;1X 0r;1) and degree of freedom 2as. For

intercept-only model, since X 0r;1 Xr, 1 ¼ nrIqr and, we have the simple form log p(Y j4, g,

l) ¼ const. 2 (as þ NT/2) log(1 þ
Pd

r¼1 Yr Vr Yr/(2bs)) 2
Pd

r¼1

PT
c¼1 log(nrl[c ]g[c ]

þ1)/2.

Since the marginal likelihood can be sensitive to the choice of as and bs, one can choose

the non-informative Jeffreys prior (as ¼ bs ¼ 0) when prior information for the noise

level is not available. Then, the marginal likelihood would no longer be multivariate

t-distributed as in Equation (18), but rather

p Yj4; g; l
� �

¼
GðNT=2ÞD

2ðNT=2Þ
0

pNT=2

Y

d

r¼1

jLr;1X 0r;1Xr;1 þ Iqrj
2

1
2 ð19Þ

where D0 ¼
Pd

r¼1Y 0r (InT 2 Xr, 1(X 0r;1 Xr, 1 þ L21
r;1 )21X 0r;1)Yr.

(2) Update (b,g): The independence of posterior distribution of br’s and gr’s follows

the independence structure in both likelihood and prior distributions. Hence, we update

(br, gr) independently for each r ¼ 1; : : :; d through p(br, gr j Y r, 4, lr, pr) ¼ p(br j gr, Y

r, lr, 4) £ p(gr j Y r, p, 4). We update each pair (br[c ], gr[c ]) given others (br[2c ],

gr[2c ]), where c ¼ 1, 2,: : :, pT. We first sample gr[c ] from the posterior density that

marginalizes br[c ] out:
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pðgr½c�jYr; prÞ ¼

Z

pðgr½c�;br½c�jYr;br½2c�;4;s2; lr; prÞdbr½c�

¼ pðgr½c�jprÞ

Z

pðYrjbr½c�;br½2c�;s2Þpðbr½c�jgr½c�; lrÞdbr½c� £ const:

Let Ms denotes the likelihood with br[c ] marginalized out conditioning on gr½c� ¼ s for

s ¼ 0; 1: Then M1 is the density of N ðXr½2c�br½2c�; s2ðInrT þ lr½c�Xr½c�Xr½c�
0ÞÞ:

Similarly, M0 is the density ofN ðXr½2c�br½2c�;s2InrT Þ:Assume the index c corresponds

to the k-th covariate and l-the resolution level, then the posterior odds of gr[c ] being 1 is

Og ¼ prklM1/[(1 2 prkl)M0] and we sample gr[c ] , Bernoulli(Og/(Og þ1)).

Next, we sample br[c ] from posterior distribution given the updated gr[c ]. If gr[c ] ¼ 0,

we have br[c ] ¼ 0; otherwise, we sample br[c ] through

pðbr½c�jYr; lr;br½2c�; gr½c� ¼ 1Þ / pðYrjbr½c�;br½2c�;s2Þpðbr½c�jgr½c� ¼ 1; lrÞ;

which is a Gaussian density with variance n 2 ¼ s 2(lr[c ]21 þ Xr[c ]0Xr[c ])21 and mean

m ¼ (lr[c ]21 þ Xr[c ]0Xr[c ])21Xr[c ]0(Y r 2 Xr[2c ]br[2c ]). Note that the Bayes factor

M1/M0 for calculating posterior odds Og has the simple expression

logðM1=M0Þ ¼ 2
1

2
logð1þ lr½c�Xr½c�’Xr½c�Þ þ þ

m2

2n2
:

(3) Update (s 2, l, p, k): During this step, we update ( p, s 2, k) under current (4 ¼ (d,

Gd), b, g). Although s 2 is updated when proposing 4*, we further update it given the

clustering configuration to obtain its sample within the Gibbs circle at every iteration even

when a new configuration 4* is not accepted during the Metropolis step.

The conditional distribution of the shrinkage probability prkl is given by

prkljg , b a0;kl þ
X

2l21

m¼0

grkðml Þ; b0;kl þ
X

2l21

m¼0

ð1 2 grkðlmÞÞ

 !

ð20Þ

for k ¼ 1,: : :, p, and l ¼ 1,: : :, L.

The conditional distribution of residual variance s 2 is

s2jb;l , igammaða*
s; b*

sÞ ð21Þ

with a*
s ¼ as þ ððNT þ

P

r;k;l;m grkðlmÞÞ=2; and

bs* ¼ bs þ (Y 2 Xb)T (Y 2 Xb) þ
P

r;k;l;m b 2 (lm)/lrkl /2.

The conditional distribution of signal-to-noise ratio l is

lrkljb;s
2 , igammaða*

1;rkl; b*
1;rkl Þ ð22Þ

where a*
1;rkl ¼ a1;kl þ

P

m grkðlmÞ=2 and b*
1; rkl ¼ b1;kl þ

P

m brkðlmÞ
2=ð2s2Þ:

Updating k is optional. Under the power penalty of d, the posterior pðkj4Þ /

pðkÞpðdjkÞ / kð1 2 kÞd21=ð1 2 ð1 2 kÞN0Þ with k [ (0, 1), and can be sampled using

the Griddy-Gibbs sampler.
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7.3. Construction of Move Types for the rjMCMC Algorithm

We consider the following 4 move types for proposing a new spatial clustering

configuration 4* given the current configuration 4, with the probability of acceptance for

4* under each move type based on our choice of the proposal density function h for the

triplet (s 2, b, g):

1. Split step (d, Gd) ! (d þ 1, G *
dþ1): We create a new cluster. We first draw a random

variable uniformly distributed on the n 2 d non-center regions, to determine the new

cluster C * with center g *. Secondly, we draw another random variable r uniformly

distributed on {1,: : :, d þ 1} to determine the position of g * in G *
dþ1. The n *

r

regions that have minimal distance from g * then automatically enter C *. In this case,

the ratios of proposal and prior probability are, respectively,

pð4j4*Þ

pð4 *j4Þ
¼

PðMergeÞðN 2 dÞ

PðSplitÞ
;
pð4*Þ

pð4Þ
¼
ð1 2 kÞdþ1ðN 2 d 2 1Þ!

ð1 2 kÞdðN 2 dÞ!

and the acceptance ratio in Equation (13) becomes min{1; rð1 2 kÞPðMergeÞ=P

ðSplitÞ}: The ratio can be dominated by the marginal likelihood ratio r ¼ pðYj4*;

g*Þ=pðYj4;gÞ particularly when one specifies a tiny k for almost equal prior

weights on the number of clusters d, and P(Merge) ¼ P(Split) for equal chance of

proceeding to Split and Merge step.

2. Merge step (d þ 1, Gdþ1) ! (d, Gd
*): We delete one existing cluster and merge its

members into other existing clusters. First, generate a random variable uniformly r

distributed on {1,: : :, d þ 1}, which determines the cluster Cr with center gr to be

removed with all its members merging into one of the remaining clusters by the

minimal distance criterion. The acceptance is the reciprocal of that in Split Step.

3. Shift Step: (d, Gd) ! (d, Gd
*): We adopt a shift step for moving one cluster center to

its non-center neighborhood to potentially improve the mixing performance of the

MCMC. For each region s, we define all regions that are directly connected (i.e., via

no third region) to it by latitude or longitude as its neighbors. Among d current

cluster centers there are K(Gd) cluster centers that have at least one non-center

neighbors. Draw r , Uniform{1,: : :, K(Gd)} to obtain one such cluster center gr

with R(gr) non-center neighbors. Secondly, draw s from {1,: : :, R(gr)} uniformly.

The sth non-center neighbor becomes the new cluster center gr
* that replaces gr in Gd.

The acceptance probability is min{1, rK(Gd)R(gr)/(K(Gd
*)R(gr

*))}.

4. Switch Step: (d, Gd) ! (d, Gd
*): We adopt a switch step for exchanging the positions

of a randomly selected pair of cluster centers, when the choice of the distance

measure introduce distance ties, i.e., certain regions have equal distance from more

than one cluster centers. We assign such regions according to the cluster center that

has smaller index in Gd. Consequently, swapping two cluster centers in this step can

result in different cluster memberships and hence the marginal likelihood. The

acceptance probability is min{1, r}.

Each iteration for updating a proceeds with one of the four move types based on

prescribed probabilities P(Split) ¼ P(Merge) ¼ 0.4 and P(Shift) ¼ P(Switch) ¼ 0.1.
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7.4. Simulation Studies

We conduct simulation studies to evaluate the performance of the proposed SFC in both

curve clustering and fertility estimation, and compare it with other popular methods such

as K-means clustering. The number of clusters for K-means clustering can be determined

via GAP statistic. The MATLAB code for the simulation to compare SFC with K-means

clustering þ GAP is included in the Github repository https://github.com/zhangz19/Por-

FerAnalysis.

The simulated spatio-temporal data mimic the real Portugal fertility data analyzed in

this work. We specify the true spatial clustering configuration with d ¼ 4 clusters for the

28 Portugal NUTS III regions, with true cluster-specific mean transformed fertility

calculated based on the real data. The true cluster labels are indicated by different colors in

Figure 6 with spatial cluster centers. We then simulate 16-year temporal response for

individual region by adding Gaussian noise with variance s 2 to the corresponding cluster

mean. We choose the noise level s 2 ¼ 0.6 based on the real data, but also investigate the

performance of the clustering methods under different scenarios with smaller or larger

noise level (s 2 ¼ 0.2, 1). A total of 500 spatio-temporal data sets were generated by

perturbing the fixed true mean curve under the fixed true clustering configuration with

noise level s 2, and one example data set is provided in Figure 6 for each of the 3

scenarios.

For SFC, a total of 50,000 MCMC iterations include first 10,000 fixed-cluster runs. At

end of the batch, the hypeparameters for the wavelet shrinkage and signal-to-noise ratio

are re-evaluated by fitting the last 5,000 samples. Then the full SFC runs with the cluster

search for the remaining 40,000 iterations, with the first 15,000 as burn-in period, and the

posterior samples are drawn at every 10th iteration of the last 25,000 runs. In general, we

recommend using some reasonable guess of the clustering configuration as the initial

value, such as K-means clustering to obtain centroid curves and identify locations that

have the closest profile as centroids for the initial spatial clustering. However, in the

simulation study, we intentionally use a distinct number of clusters, e.g., d ¼ 8 as the
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Fig. 6. Simulated true clusters with true mean curves (bold line) and example data set.
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initial value for SFC with hypeparameters re-evaluation, and check how well it reveals the

true spatial clustering configuration with d ¼ 4.

To evaluate the similarity between the clustering results under each method and the true

labels, common measures for comparing two cluster labels (Hubert and Arabie 1985) are

adopted, including Rand index (RI), adjusted Rand (AR) index to account for agreement

by chance, Mirkin’s index for disagreement, and Hubert’s index to measure agreement. A

value of Rand index closer to one indicates higher degree of agreement, while 0 indicates

disagreement. We compute these measures between the central cluster under SFC and the

true labels to evaluate the agreement. Similarly for K-means clustering and the true labels.

For fertility estimation, we also provide root-mean-squared-error (RMSE) in mean curve

estimation for each of the true four clusters. For SFC, the estimated mean curve is the

posterior mean of b-parameter averaged over all member regions in the true cluster. For

K-means clustering, the centroid curves are used for member regions, which provide

estimated mean curves for the true values by averaging over member regions in the true

clusters.

The above simulation procedure is repeated 500 times to obtain the average of those

performance metrics in Table 6. The results demonstrates the superiority of the proposed

SFC over the frequently adopted K-mean clustering for the simulation studies in the

Portugal fertility analysis context. Albeit starting from distinct initial d values (e.g.,

d ¼ 8), SFC captures the true d ¼ 4 well with an average posterior mode d ¼ 3.59 over the

500 simulations, in contrast to averaged d ¼ 2.54 by K-means clustering. SFC also has

higher agreement with the true labels with lager agreement measures (AR, RI and HI) and

lower disagreement measure (MI). For fertility estimation, the RMSE values for the four

true clusters are generally much smaller under SFC when compared with K-means

method, except the comparable estimation results for cluster 2 under s 2 ¼ 0.6 of primary

interest. SFC is also robust against higher noise level in preserving agreement with the true

labels as well as accuracy in mean curve estimation. This again demonstrates the merit of

Bayesian model-based clustering approach comparing to non-parametric approach in this

application. The above simulation procedure is also repeated with no clustering pattern

under s 2 ¼ 0.6, both SFC and K-means þ GAP were capable to capture the true d ¼ 1

for all 500 simulated data sets.

In addition, we compared SFC with other spatial clustering methods such as scan-

statistic-based approach implemented in popular software such as SaTScan (ver9.6). It

has been adopted for detecting spatial and space-time clusters that locally exhibit high or

Table 6. Averaged results for clustering and mean curve estimation over 500 simulations

s 2 Method d AR RI MI HI RMSE1 RMSE2 RMSE3 RMSE4

1 SFC 3.98 0.75 0.90 0.10 0.79 0.78 0.55 0.42 0.30
K-means 2.98 0.59 0.82 0.18 0.63 0.77 1.00 0.48 0.32

0.6 SFC 3.59 0.85 0.93 0.07 0.86 0.54 0.24 0.95 0.25
K-means 2.54 0.81 0.90 0.10 0.81 1.11 0.22 1.68 0.36

0.2 SFC 4.39 0.85 0.94 0.06 0.88 0.41 0.24 0.21 0.14
K-means 3.13 0.77 0.90 0.10 0.79 0.81 0.43 0.33 0.19
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low values (e.g., risk), with statistical significance concluded using the scan statistic. In

the spatial hot-spot detection context, the spatial clustering approach and scan-statistic-

based approach have provided consistent results in previous studies (see, e.g., Waller

2015). However, the goal of scan-statistic-based approach is not necessarily for curve

clustering with centroid curve estimation as SFC or K-means. Indeed, when applied to the

simulated data above, SaTScan can detect d ¼ 4 clusters with high agreement with the

true labels, yet each concluded cluster has targeted time frame (subinterval in 1991-2009

period) with extreme values. Summary statistics (e.g., mean parameter) are presented

inside or outside the window rather than for each time scale on a curve basis. Also, a few

regions may not receive any label due to they are not at presence of any detected clusters

(e.g., four regions in the example provided in Figure 6 for s 2 ¼ 0.6), which prohibits the

further comparison using the aforementioned measures such as adjusted Rand index.

Nevertheless, if the goal is to capture local clusters (regions in a specific time frame) with

extreme values, the scan-statistic-based approach can be preferable due to fast

implementation and less constraints on clusters. On the other hand, if the goal is to cluster

regions based on their complete temporal profile, the non-parametric K-means method or

the model-based SFC can be considered. In addition to spatial contiguity for clustering

results that can aid in interpretation, SFC under Bayesian framework treats number of

clusters d as random and can give further uncertainty quantification and insights on

grouping structure. This is particularly beneficial when a single d can be misspecified, as

elaborated in the simulation studies. The implementation for SFC is also publicly

available, open source without call for any special library/toolbox, and carries simple

input variables for easy setup.

7.5. Forecast Performance of Models 1–3
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Fig. 7. Estimated transformed fertility rates versus observed values for 15–19 age group.
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Fig. 8. Estimated transformed fertility rates versus observed values for 20–24 age group.
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Fig. 9. Estimated transformed fertility rates versus observed values for 25–29 age group.
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Fig. 10. Estimated transformed fertility rates versus observed values for 30–34 age group.
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Fig. 11. Estimated transformed fertility rates versus observed values for 35–39 age group.
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Fig. 12. Estimated transformed fertility rates versus observed values for 40–44 age group.
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Fig. 13. Estimated transformed fertility rates versus observed values for 45–49 age group.
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