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Estimation of the unknown population size using capture-recapture techniques relies on the
key assumption that the capture probabilities are homogeneous across individuals in the
population. This is usually accomplished via post-stratification by some key covariates
believed to influence individual catchability. Another issue that arises in population
estimation from data collected from multiple sources is list dependence, where an individual’s
catchability on one list is related to that of another list. The earlier models for population
estimation heavily relied upon list independence. However, there are methods available that
can adjust the population estimates to account for dependence among lists. In this article, we
propose the use of latent class analysis through log-linear modelling to estimate the population
size in the presence of both heterogeneity and list dependence. The proposed approach is
illustrated using data from the 1988 US census dress rehearsal.
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1. Introduction

In the original development of capture-recapture methods in application to wildlife

population measurement (Seber 1986), animals were captured, marked and recaptured

resulting in two incomplete lists. Estimation of the unknown population size then relied on

a set of assumptions. Firstly, there is no change in the population between captures (i.e.,

the population is closed). Secondly, individuals can be matched from capture to recapture

(without error). Thirdly, there is homogeneity of capture or recapture (i.e., on each

sampling occasion all individuals have the same capture probability). Fourthly, there is

independence between the capture and recapture processes. In fact, the third and fourth

assumptions are connected since independence implies that capture does not affect

recapture. However, it is convenient to state them separately, and it will be shown that, in

particular for human populations, the homogeneity and list independence assumptions are

different. These assumptions are all intertwined and a failure of any one can invalidate the

others, leading to biased estimates of the population (International Working Group for

Disease Monitoring and Forecasting 1995; Zhang 2019). The earliest paper that applied

capture-recapture for the measurement of human populations, Chandrasekar and Deming

(1949), discussed the practical problems of ensuring (list) independence and homogeneity.
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Both heterogeneity and list dependence result in biased population estimates. This bias is

termed ‘correlation bias’ (Alho et al. 1990); Brown et al. 2006b) and can be due to two

types of dependence:

(1) List dependence: the act of inclusion in the first list makes an individual more or less

likely to be included in the second list; that is, inclusion in the first sample has a

causal effect on inclusion in the second sample. This is sometimes referred to as

causal dependence.

(2) Heterogneity: even if the two lists are independent within individuals, the lists may

become dependent if the capture probabilities are not the same (i.e., not

homogenous, or are heterogenous) among individuals. This is similar to the

Simpson paradox, which shows that an aggregation of two independent 2 £ 2 tables

may result in a dependent table. This is sometimes referred to as apparent

dependence (see, for example, Cormack 1972; Coull and Agresti 1999).

Although possible for animal populations, where some degree of control can be

exercised by the experimenter to ensure either list independence and homogeneity or

known list dependence and heterogeneity of capture, this can be difficult to ensure in

human populations. Specifically, the difficulty is that these two types of dependence are

confounded and cannot be separated unless additional information is provided. In the case

where there are three capture occasions, the third list allows for the possibility of

examining the list dependence between pairs of lists. Subsequently the independence

assumption that underpins the two list capture-recapture problem is no longer necessary.

Nonetheless, the homogeneity assumption is still needed.

In practice, heterogeneity (lack of homogeneity) can be accounted for by dividing the

population into homogeneous sub-groups through post-stratification (Chandrasekar and

Deming 1949). This is often undertaken in population censuses on the basis of geography,

race/ethnicity, housing characteristics, age and sex (for example, Hogan 1992) for the US

and Brown et al. (1999) for the UK). When the covariates that account for the

heterogeneity of capture are continuous, instead of categorical, so that in effect there are as

many categories as individuals, Rasch-type models can be used (Agresti 1994; Fienberg

et al. 1999). The choice of these covariates to ensure that capture is homogeneous across

individuals requires a great deal of effort, and it is inevitable that, in some applications,

there is a failure to account for all the heterogeneity leading to inaccurate estimates of the

population (Chao 2001). Also for post-stratification to properly work, the independence

assumption needs to hold within each strata.

An alternative approach to estimating the population size is to assume that individuals

cluster into latent classes, such that individuals within the same class have the same chance

of being captured. Under latent class analysis, the assumption is that the whole population

can be subdivided into L subgroups but the choice of these classes is unknown. For

population estimation using latent class analysis, however, there needs to be at least four

lists, or three lists with some constraints to ensure model identifiability (Goodman 1974).

Several authors have discussed latent class analysis within a capture-recapture framework.

For instance, Agresti (1994) fits various latent class models to estimate the population of

snowshoe hares. In an application to human populations, Bruno et al. (1994) estimate the

incidence of diabetes in the northern Italian town of Casale Monteferrato, while Wang and

Journal of Official Statistics674



Thandrayen (2009) use a similar approach to estimate the number of homeless people in

the Australian city of Adelaide’s central business district. The present article concentrates

on an application to population censuses as proposed by Biemer et al. (2001). In official

statistics, the Dutch have been using log-linear modelling to provide population estimates

when linking information from multiple registers (Gerritse et al. 2015). More recently,

statisticians from the Italian National Statistical Insitute applied this approach to estimate

the number of active local enterprises for the production of business statistics (Di Cecco

et al. 2018). In our application, we present a model that can provide estimates of the

unknown population from three lists when the assumptions of homogeneity of capture

probabilities of individuals, and marginal independence of the lists are violated.

When estimating the unknown population size within a capture-recapture framework,

many authors have considered latent class modelling to account for both list dependence

and heterogeneity using additional covariate information; see, for example Stanghellini

and Van der Heijden (2004) and Bartolucci and Forcina (2006). However, in the case

where there are three data sources, the latent model cannot cope with list dependence due

to problems with model identifiability unless there are some restrictions (usually equality

constraints are placed on the conditional probabilities) or a continuous covariate relating to

the capture probabilities is available (resulting in a logistic regression model). As an

alternative, we propose an identifiable latent class model that can cope with heterogeneity

of individual capture probabilities and dependence between the lists using a categorical

covariate. As mentioned, the basic methodology described has been used in many areas.

However, for population estimation (i.e., census measurement) the costs associated with

multiple capture-recapture methods have meant that most national statistical institutes

have to make a trade-off between the number of sources and overall quality of data, and as

such constrained the number of lists to two – a census and a post-enumeration survey. Our

main contribution is to extend the literature and investigate the use of latent class models

in population estimation to account for both list dependence and heterogeneity when data

has been collected from three lists (here a census, a post-enumeration survey and an

administrative register).

The outline of the article is as follows. In Section 2 we lay out the general framework for

the estimation of the unknown population size within a capture-recapture context. In

Section 3 we apply various population estimation approaches to data gathered as part of

the US 1988 census dress rehearsal. Subsection 3.1 provides a description of the data and

the post-stratification scheme used to ensure that the homogeneity assumption holds, while

Subsection 3.2 presents the population estimation using log-linear models fitted separately

to the different post-strata. In Subsection 3.3 we propose a log-linear model fitted

simultaneously to the post-strata as an alternative and more efficient parameterization for

population estimation. In Section 4 we demonstrate how log-linear modelling can be

extended to fit latent class models, allowing the population size to be estimated when there

is both observed and unobserved heterogeneity. Subsection 4.1 introduces the latent class

model and embeds it within a log-linear modelling framework. In Subsection 4.2 we

extend this log-linear model to account for both heterogeneity and missingness (i.e

unobserved cells) through effectively using the post-stratification information. This

proposed modelling approach is applied in Subsection 4.3 to the US dress rehearsal data,

and the results are compared to the previous modelling results in Section 3. We find that
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the conventional approach in Section 3 does not work, but our proposed approach seems to

work. Finally, we conclude with a brief discussion.

2. Population Size Estimation for Incomplete Contingency Tables

In the simplest version of the capture-recapture model, there is an initial capture followed

by a subsequent recapture of the closed population of interest. The individuals that are

found or missed by the two lists can be placed in a 2 £ 2 contingency table (see Table 1).

The estimate of the individuals missed by both lists, n̂00, is found by assuming that, firstly,

there is independence between the two lists and, secondly, that individuals have a constant

probability of capture or recapture. These assumptions are ultimately untestable unless

additional information can be provided (Seber 1986). Mathematically, the estimate of the

missing cell count, n̂00, is given by r n01n10

n11
, where r is the cross product ratio or dependence

parameter. Since the depedence parameter cannot be estimated, we make the assumption

that r ¼ 1; that is the samples are independent of each other.

Isaki and Schultz (1986) suggested several alternative dual list estimates to incorporate

dependence (i.e., r – 1). Wolter (1990) and Brown et al. (2006b) suggest using

demographic or other information to assess dependence, while a number of authors,

including Alho (1990) and Darroch et al. (1993), propose using explanatory variables. It is

important to note that the dependence being discussed here is due to individuals not having

the same probability of capture; that is heterogeniety.

The obvious extension to overcome the restrictive assumptions imposed by the two-

capture model is to increase the number of capture occasions. This has been the preferred

approach in ecological literature (for example, Cormack 1972). The added advantage

when there are three lists is that the inter-relationships between the various captures can

now be explored, in particular the (in)dependence between the first and second captures

can be investigated. Having three or more capture occasions allows both list dependence

and heterogeneity of capture to be investigated during population estimation.

In the situation of information having been collected about individuals on three separate

occasions, the capture history can be represented in a 2 £ 2 £ 2 contingency table (see

Table 2), with the missing cell denoted by n000.

The incomplete 2 £ 2 £ 2 table of counts can be divided into one complete 2 £ 2 sub-

table and one incomplete 2 £ 2 sub-table (with the missing n000-cell). If we assume that

the cross-product ratio r is the same in both sub-tables, we can use the information from

the complete sub-table to estimate the missing cell in the incomplete sub-table.

Mathematically, for the complete sub-table, the cross-product ratio can be written as

r ¼ n111n001

n011n101
. For the incomplete sub-table, we have r ¼ n110n000

n100n010
.

Table 1. Two sample capture-recapture.

Second sample

Counted Missed
Counted n11 n10

First sample
Missed n01 n00
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We can then apply the dual-system estimate to the incomplete sub-table, to obtain

n̂000 ¼ r £
n110n000

n110

¼
n111n100n010n001

n011n101n110

: ð1Þ

The specification of the individual capture histories in the form of an incomplete

contingency table allows us to use log-linear models (Fienberg 1972). The likelihood can

be estimated through working with the conditional probabilities given the observed

frequencies (i.e., nijk for ði; j; kÞ – ð0; 0; 0ÞÞ. Once the loglinear model parameters have

been (conditionally) estimated, given the observed counts, the estimate of the unobserved,

missing, cell count n̂000 can be generated based on the conditional maximum likelihood

estimation (Darroch 1958; Fienberg 1972). The log-linear based estimators are built from

explicit considerations of the heterogeneity among individuals and the dependence

between the lists (but in capture-recapture, the probabilities are assumed to be

homogenous among individuals within the same capture profile). In addition, the goodness

of fit of these models can be formally tested. Therefore, the log-linear modelling

framework for capture-recapture is intuitively appealing since it allows for dependence

among lists and heterogeneity of capture (Gerritse et al. 2015). Based on the selected

model, the missing cell can be estimated, thereby leading to the total population estimate.

Additionally appealing is the fact that for all models, either closed form solutions exist or

they can be estimated through iterative techniques (see Bishop et al. 1975, chap. 6).

Following the same notation introduced by Bishop et al. (1975), let mijk be the expected

number of individuals in the ði; j; kÞth cell of the 2 £ 2 £ 2 contingency table, then the

(‘saturated’) log-linear can be specified as

logmijk ¼ lþ l
ð1Þ
i þ l

ð2Þ
j þ l

ð3Þ
k þ l

ð12Þ
ij þ l

ð13Þ
ik þ l

ð23Þ
jk þ l

ð123Þ
ijk ; ð2Þ

where l
ð1Þ
i ; lð2Þj ; lð3Þk are the main effect terms, lð12Þ

ij ; lð13Þ
ik ; lð23Þ

jk are the two-way interaction

terms, and l
ð123Þ
ijk is the three-way interaction term.

When we have an incomplete 2 £ 2 £ 2 contingency table, with m000 representing the

unobserved (‘missing’) cell, the saturated model is not indentifiable (in that we have eight

parameters but seven observable cell counts). The implication of considering only

hierarchical models (Fienberg 1972), is that the highest order interaction, that is, the three-

way term, lð123Þ
ijk , is set to zero, and our ‘saturated model’ becomes

logmijk ¼ lþ l
ð1Þ
i þ l

ð2Þ
j þ l

ð3Þ
k þ l

ð12Þ
ij þ l

ð13Þ
ik þ l

ð23Þ
jk : ð3Þ

Table 2. Three-list general capture-recapture problem.

Third list
Counted Missed

Second list Second list
Counted Missed Counted Missed

Counted n111 n101 n110 n100

Frist list
Missed n011 n001 n010 n000
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When lijk ¼ 0, this states that each of the two-factor effects (i.e., lð12Þ
ij ; lð13Þ

ik ; and l
ð23Þ
jk ) is

unaffected by the level of the third variable. Bartlett (1935) was the first to show that under

the no-three-way interaction model, the cross product ratio specified by this model

m̂001m̂010m̂100m̂111

m̂000m̂011m̂101m̂110

¼ 1 holds; which implies that the 2 £ 2 odds are equal; ð4Þ

where m̂ijk are the maximum likehood estimates of the ði; j; kÞth cell, under the specifed log-

linear model.

This no-three-way interaction assumption is analagous to the assumption of

independence in the 2 £ 2 case: all pairs of lists can exhibit dependence, but the amount

of dependence in each pair is assumed to be uninfluenced after conditioning on the third

list (Darroch 1958, Fienberg 1972; Darroch et al. 1993). It now becomes possible to define

various unsaturated hierarchical models by setting l-terms to be equal to zero. The

restriction for all models under consideration to be hierarchical implies that when a

particular l-term is set to zero, then all of the higher-order relatives are also zero.

Crucially in capture-recapture population estimation, the best model is the one with the

fewest possible parameters that allows for the dependencies among the lists (Fienberg

1972). This model is then used to predict the missing cell, and subsequently estimate the

population size. Closed form solutions exist for all models, apart from when all three lists

are independent (Fienberg 1972; Darroch et al. 1993). For this case, the iterative

proportional fitting algorithm (Deming and Stephan 1940) can be used. Furthermore there

are a number of techniques available to provide estimates of precision of these population

estimates, such as the Supplemented EM algorithm (Meng and Rubin 1991) or the profile

likelihood (Cormack 1992). For the estimators of the population total from log-linear

models, Bishop et al. (1975, 237–242) derive variance estimates using the delta method.

Our preferred approach will be to use a bootstrap procedure similar to that suggested by

Buckland and Garthwaite (1991). Note that the reason for fitting the most parsimonious

model is to ensure that the variance of the estimate of the missing cell count, and hence the

estimate of the unknown population size, can be as small as possible: the simpler the

model, the smaller the variance (Fienberg 1972).

3. An Application to the 1988 US Census Dress Rehearsal

3.1. Description

To investigate the performance of log-linear and latent class models for estimating the

unknown population, an application to population censuses with data from the U.S.

Census Bureau was used. Previous censuses had shown that Black males are much more

likely to be missed in the census processes (Darroch et al. 1993; Zaslavsky and Wolfgang

1990; Zaslavsky and Wolfgang 1993). Therefore, in the lead-up to the 1990 census, the

Census Bureau carried out a census dress rehearsal in a district of St Louis, Missouri, an

area chosen because most residents were expected to be Black renters. A census was

carried out, shortly followed by a survey. From a combination of administrative registers,

an administrative list was created and, based on key demographic identifiers, the three lists

were matched. However, due to the difficulties in determining correct matches, a large
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number of records were removed, so that the final data set had around 1,000 observed

people. The data have been restricted by age and sex to fall within four post-strata: Black

Males aged 20–29 in Owned homes (Young Owners), Black Males aged 30–44 in Owned

homes (Old Owners), Black Males aged 20–29 in Rented homes (Young Renters) and

Black Males aged 30–44 in Rented homes (Old Renters), and are given in Table 3. After

classifying the respondents in the dress rehearsal into whether or not they appeared on the

census (i.e., First List, denoted C), post-enumeration survey (i.e., Second List, S) or the

Administrative List (i.e., Third List, L), post-stratified by age and tenure, estimates of the

total population can be derived (including those that are missing in all three lists).

3.2. Estimation of the Missing Cell Counts through Log-Linear Modelling

The estimates of the missing cell under the different log-linear models are shown in

Table 4, using results from Bishop et al. (1975, chap. 6). The log-likelihood chi-squared

statistic (i.e., the Deviance) is found by comparing the expected counts with the observed

counts in all the cells but the missing cell. The results presented in the table are found by

fitting eight different models to each of the four strata (i.e., Young Owners, Young

Renters, Old Owners and Old Renters). From Table 4, the three sources have some definite

inter-relationships, and the size of the Deviance statistics shows that the model assuming

complete independence (i.e., the Census, Survey and Administrative List are independent

of each other) poorly fits the data, across all four post-strata. There is evidence to suggest

that there is some dependence between the census list and the survey list. survey appears

related to whether or not an individual is found on the administrative list. It can be

concluded from these that the best fitting model is the one that accounts for the pairwise

interaction terms between the Census and Survey, and the Survey and Administrative List.

It is, however, noticeable that the estimate of the missing cell under the ‘selected’

parsimonious model and the ‘saturated’ model are different – for some post-strata the

estimate under the {CS, CL, SL} model was almost three times the size of that under model

{CS, SL}. The estimates of the missing are 96 Young Owners, 147 Young Renters, 167

Old Owners and 196 Old Renters under the reduced model, while the respective estimates

under the ‘saturated’ model are 245, 380, 419 and 379. Additionally, the confidence

Table 3. Three sample data from 1988 US census dress rehearsal.

Cell Young
owners

Young
renters

Old
owners

Old
renters

n000 – – – –
n001 59 43 35 43
n010 8 34 10 24
n011 19 11 10 13
n100 31 41 62 32
n101 19 12 13 7
n110 13 69 36 69
n111 79 58 91 72

n 228 268 257 260

Source: Zaslavsky and Wolfgang (1993).
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intervals for all the post-strata under the chosen model do not contain the ‘saturated’ model

estimates, implying that the estimates of the population size under the ‘best’ fitting model

and the ‘saturated model’ are very different. This casts doubt on the assumption that there

is no three-way interaction between the Census, Survey and Third List.

A crucial prior assumption is that there is no unaccounted heterogeneity, and for cases

where there is additional heterogeneity not fully corrected for by the post-stratification

mechanism, the no-three-way assumption might fail. As mentioned earlier, the no-three-

way assumption is important because we have an incomplete contingency table and the

(likelihood) estimation of the parameters from each log-linear model relies on information

from only the observed cell; in other words, the information about the dependence

structure in the contingency table is fully provided by the observed cell counts.

3.3. An Alternative Parameterisation of the Log-Linear Model With a Grouping

Co-Variate

It is generally well accepted that post-stratification is the most efficient method of ensuring

that there is homogeneity of capture, which implies that any remaining dependence is due

to dependence between lists (International Working Group for Disease Monitoring and

Forecasting 1995). However, the advantage of the log-linear modelling framework is that

it provides a convenient specification for including the post-stratification variables directly

into the model. Here the post-stratified variables can be thought of as a grouping covariate,

G, such that the ‘saturated’ model (with the G) becomes

logmijk ¼ lþ l
ðCÞ
i þ l

ðSÞ
j þ l

ðLÞ
k þ l

ðgÞ
G þ l

ðCSÞ
ik þ l

ðCLÞ
ik þ l

ðSLÞ
jk þ l

ðCGÞ
ij þ l

ðSGÞ
jg

þ l
ðLGÞ
kg þ l

ðCSGÞ
ijg þ l

ðCLGÞ
ijk þ l

ðSLGÞ
jkg : ð5Þ

Table 4. Estimate of the missing cell counts, standard errors, and deviance under different models. The

bootstrap standard errors are provided in parenthesis.

Model Young
owners

Young
renters

Old
owners

Old
renters

df
(per

stratum)

Independence
{C, S, L}

n̂000

Deviance
13.8 (8.6)

72.59
28.4 (18.2)

54.83
14.3 (10.9)

90.19
18.2 (15.3)

76.20
3

{L, CS} n̂000

Deviance
24.0 (19.2)

59.01
26.0 (22.4)

54.23
24.4 (23.6)

62.54
17.3 (21.3)

76.06
2

{S, CL} n̂000

Deviance
7.9 (6.4)

68.55
23.7 (19.8)

52.80
8.0 (7.7)

84.54
12.8 (i3.4)

70.73
2

{C, SL} n̂000

Deviance
26.2 (17.7)

34.46
76.4 (26.4)

12.19
33.2 (29.6)

59.27
58.4 (28.3)

15.71
2

{CS, CL} n̂000

Deviance
19.1 (28.3)

58.71
20.2 (29.0)

51.58
17.2 (33.4)

61.25
11.1 (24.5)

69.90
1

{CS, SL} n̂000

Deviance
96.2 (42.5)

3.15
146.8 (55.6)

6.53
166.8 (70.6)

3.55
196.2 (50.1)

3.04
1

{CL, SL} n̂000

Deviance
24.8 (21.8)

34.44
132.8 (56.6)

8.78
35.0 (42.4)

59.25
79.3 (59.0)

14.73
1

‘Saturated’
{CS, CL, SL}

n̂000

Deviance
245.1 (0)

0
379.7 (0)

0
418.8 (0)

0
378.7 (0)

0
0
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The log-linear model, given in Equation (5), directly includes the combined post-strata

and contains parameters that identify both the list effects and the effects of heterogeneity

of capture.

The benefit of incorporating the post-strata variables directly into the log-linear

modelling framework is that there are more combinations of variables that can be

considered. In particular, we can consider various two-way and three-way interaction

terms. In essence, simultnaeously modelling over strata has the advantage over modelling

each stratum separately since it enables selection of more parsimonious models through

restricting certain parameters to be equal over specific strata (Agresti 1994).

We re-analyzed the 1988 US census dress rehearsal data using the post-strata as

covariates in the log-linear model. We contrast our results to the previous analysis. To

select the best model, we use a stepwise selection procedure to sequentially remove

(backward elimination) or add in (forward selection) terms for which the resulting

change in the AIC is smallest (or biggest). To ensure better model interpretability, we

restricted the models under consideration to be hierarchical, and included all lower-

order terms contained in the higher-order model term. The results are presented in

Table 5.

We start with Model I which has all the pairwise interaction terms between the grouping

covariate G and the lists (C, S and L). This model implies that there is conditional

association and this association is the same across all variables, when controlling for the

other variables. This model is a good starting point for us to assess whether there are any

additional association terms that are needed to reconstruct the joint distribution which

defines the simultaneous behaviour of the relationship between C, S and L and G. This

assessment between competing models is done by examining the deviance statistics, and

allows us to remove some pairwise interactions. However, we can see that the CS (i.e.,

Table 5. Estimate of the missing cell counts, standard errors and deviance under different models – fitted

simultaneously over the post-strata. The bootstrap standard errors are provided in parenthesis.

Models Young

owners

Young

renters

Old

owners

Old

renters

df

I. {CS, CL, SL, CG, n̂000g 199.6 (74.6) 528.4 (185.0) 242.9 (87.6) 368.6 (118.8) 9

SG, LG} Deviance 20.54

II. Model I–CS n̂000g 11.7 (14.4) 26.1 (30.6) 12.0 (11.4) 16.6 (15.7) 10

Deviance 269.56

III. Model I–SL n̂000g 35.7 (21.9) 98.9 (54.6) 45.9 (48.7) 63.7 (35.4) 10

Deviance 121.62

IV. Model I–CL n̂000g 92.2 (34.7) 275.9 (107.6) 113.3 (45.5) 186.6 (73.1) 10

Deviance 33.59

V. Model IþCSG n̂000g 170.1 (60.0) 908.3 (323.8) 23 9.6 (79.3) 543.3 (180.7) 3

þCLG Deviance 8.92

VI. Model IþCSG n̂000g 225.7 (13.2) 344.4 (20.1) 391.3 (24.5) 460.4 (26.5) 3

þSLG Deviance 0.41

VII. Model IþCLG n̂000g 380.0 (63.8) 402.8 (69.8) 343.3 (56.5) 221.9 (32.1) 3

þSLG Deviance 2.76

VIII. Model I–CL n̂000g 96.3 (38.0) 146.9 (56.2) 166.9 (66.7) 196.5 (76.8) 4

þCSGþSLG Deviance 16.27

‘Saturated’: {CSG, n̂000g 246.3 (0) 381.7 (0) 421.3 (0) 378.5 (0) 0

SLG, CLG} Deviance 0
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Model II), SL (i.e., Model III) or the CL (i.e., Model IV) interaction terms are all significant

and should therefore not be removed in this application.

Building on Model I, we try combinations of the three-way interactions (CSG, SLG,

CLG) and find that Models V, VI and VII are not significantly different from the saturated

model, while still giving contradictory estimates for some of the missing cells. As a final

check, we fit Model VIII, which removes the CL term from our best fitting model, Model

VI, removing any dependence between C and L after controlling for the grouping covariate

G. Notice that Model VIII, with a deviance of 16.27 on four degrees of freedom, is the

same as the model chosen to be best fitting model ({CS, SL}) when fitted to individual

post-strata.

There is a remarkable difference in fit between the models with all the two-way

interactions, specifically those between the three different lists (i.e., CS, SL, and CL). For

these models (namely, Models V, VI and VII), while the model fit (given by the deviance)

appears to be better, there are large differences in the estimated number of missing in the

post-strata. According to Darroch et al. (1993) and Zaslavsky and Wolfgang (1993) this

may be evidence that the no-three-way interaction term assumption is problematic.

Although there is (obvious) direct dependence between the lists, there is more complicated

dependence which may be due to differences in characteristics and behaviour between

individuals found on the different lists. Additionally, Model VIII implies that the

demographic characteristics of individuals will determine their list capture behaviour,

which essentially means that the conditional associations will not vary across the four

post-strata. This might be too strong an assumption.

In reality, there is a radical difference in the way the census, survey and administrative

lists were constructed. According to Zaslavsky and Wolfgang (1990) the administrative

list was assembled through an exhaustive search of all admininstrative registers (e.g.,

drivers licence registry, employment records, Internal Revenue Service records, and

Veterans Administration records) for a particular geographical area covered by the census

and survey areas. This makes it plausible that there will be lower or negative association

between being found on the administrative list, and being found on the census or the

survey. Put differently, the probability of being found on the list given you were found on

the census and survey varies from individual to individual.

One simple way of ensuring that there is homogeniety of capture on the third list, might

be to replace the administrative list with another field sample, for example, a pre-

enumeration survey (as suggested by Darroch et al. 1993), and this would most likely

produce data that would allow us to (realistically) assume that there is no three-way

interaction. In the absence of this, we propose to fit the model under a latent class

framework, and assume that the latent variable can be used to account for the unobserved

heterogeniety, and in effect relaxing the (untestable) no three-way-interaction assumption.

The basic premise is that the variation observed among the Census, Survey and Third List

is due to each of the three variables’ relationship with a latent variable, and this latent

variable ‘explains’ the relationships between the (observed) variables. Consequently,

controlling for this latent variable results in a better understanding of the ‘true’

characterisation of the observed relationships (Lazarsfeld and Henry 1968; Goodman

1974; Haberman 1979). Next, we investigate how a latent class model can be fitted to the

data to offer an alternative solution.
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4. Framework for Latent Class Modelling in a Census Allowing for Local

Dependence

4.1. The Log-Linear Latent Class Model

In the previous section, it was noted that the dependence between any pair of samples can

be accounted for through log-linear modelling, but the assumption is that the individuals

within the contingency table are homogeneous. Usually, post-stratification can be used to

subdivide the population (by demographic, socio-economic, housing, etc. characteristics)

such that within each post-stratum the individuals are homogeneous. However, the choice

of these characteristics to use for post-stratification can be difficult in practice, particularly

for human populations. As will be illustrated in Subsection 4.2, a failure in the post-

stratification mechanism can lead to biased population estimates.

If these post-strata are not known a priori, a latent class model can be used to identify

these groups. The aim of latent class analysis here is to define a latent (unobservable)

variable with a set of classes within which the observed (manifest) variables are locally

independent, implying that within a latent subgroup the manifest variables are independent

of each other. Latent class analysis and post-stratification can achieve the same purpose of

ensuring homogeneity of capture within groups. The heterogeneity is caused by some

characteristics which could be assumed to be known (and therefore post-stratification can

be used) or unknown (and therefore characterised as a latent variable). Our approach first

uses post-stratification based on known covariates that influence capture, and then fits a

latent class model to account for any remaining heterogeneity. Under the log-linear

modelling framework, this capture-recapture model is simple to write down.

The standard latent class model assumes local independence between the latent and

manifest variables, where the manifest variables are independent of each other within

latent classes. In other words, the latent variable is taken to explain all the association

between the manifest variables. In the initial work by Lazarsfeld and Henry 1968,

Goodman 1974; Haberman 1979), the local independence assumption was essential for the

derivation of parameter estimates under latent class modelling: the criterion of local

independence provided a method for determining whether relationships among a set of

observed measures are due to some unmeasured explanatory variable (Lazarsfeld and

Henry 1968). However, the constraints imposed by local independence may be unrealistic,

and often untrue, in practice (Hagenaars 1993). Often manifest variables are in fact related

or dependent. For example, multiple indicators of poverty, or tests of related symptoms for

an underlying genetic condition. Such items are termed “conditionally dependent” or

“locally dependent” because there is some association within latent classes. A failure to

account for this leads to issues of mis-specification of the model (for example, we might

choose a model with four latent classes instead of two).

Under a local dependence latent class model, the residual association not explained by

the relationship between the latent and manifest variables can be directly included. In

essence, the local dependence model that accounts for any residual association not

explained by the latent model can be formulated. Hagenaars (1993) suggests either

including an additional latent variable or alternatively adding association terms between

manifest variables. Within the capture-recapture literature, these latent variable models
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have been used in Biggeri et al. (1999) and Stanghellini and Van der Heijden (2004), and

more relevant to the current article, Gerritse et al. (2015) and Di Cecco et al. (2018) have

advocated a similar approach in the use of multiple administrative lists for population

estimation.

To specify the latent model, let mijkx be the expected counts in the ði; j; k; xÞth cell, for the

observed manifest variables C, S, L, and the latent variable X. Then the latent class model

under local independence, on the one hand, is

logmijkx ¼ lþ l
ðCÞ
i þ l

ðSÞ
j þ l

ðLÞ
k þ lðXÞx þ l

ðCXÞ
ix þ l

ðSXÞ
jx þ l

ðLXÞ
kx : ð6Þ

This model is not identifiable: there are more unknown parameters to be estimated than

the known cell frequencies. Identifying restrictions on the parameters are therefore

necessary. The usual way, in log-linear modelling, is to express each effect in terms of

deviations from the average effect and impose the restriction that the l-parameters

summed over any of its subscripts equal to zero (this is referred to as ‘sum-to-zero

constraints’; Goodman 1974). As such, the identifying constraints are given as

i

X
l
ðCÞ
i ¼

j

X
l
ðSÞ
j ¼

k

X
l
ðLÞ
k ¼

x

X
lðXÞx ¼ 0;

i

X
l
ðCXÞ
ix ¼

j

X
l
ðSXÞ
jx ¼

k

X
l
ðLXÞ
kx ¼ 0;

and

x

X
l
ðCXÞ
ix ¼

x

X
l
ðSXÞ
jx ¼

x

X
l
ðLXÞ
kx ¼ 0:

On the other hand, when there is local dependence due to residual association between

the Census and Survey, for example, then we can use

logmijkx ¼ lþ l
ðCÞ
i þ l

ðSÞ
j þ l

ðLÞ
k þ lðXÞx þ l

ðCXÞ
ix þ l

ðSXÞ
jx þ l

ðLXÞ
kx þ l

ðCSÞ
ij ð7Þ

with identifying constraints

i

X
l
ðCÞ
i ¼

j

X
l
ðSÞ
j ¼

k

X
l
ðLÞ
k ¼

x

X
lðXÞx ¼ 0;

i

X
l
ðCXÞ
ix ¼

j

X
l
ðSXÞ
jx ¼

k

X
l
ðLXÞ
kx ¼

i

X
l
ðCSÞ
ij ¼

j

X
l
ðCSÞ
ij ¼ 0;

and

x

X
l
ðCXÞ
ix ¼

x

X
l
ðSXÞ
jx ¼

x

X
l
ðLXÞ
kx ¼ 0:

Note that when n000 is unobserved, both latent models (local independence, i.e.,

Equation (6) and local dependence, i.e., Equation (7)) are not identified since there are too

many parameters to be estimated for the data available, and as such additional constraints

are needed. Biemer et al. (2001) suggests using a two-step estimation process which first

estimates the missing cell and then fits a latent model to the ‘full’ contingency table, but

this will only work for the local independence case. Other ways of coping with non-

identifiability are to impose equality constraints on some of the parameters (Formann,
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2003) or simply increase the number of capture occasions (Brown et al. 2006a). In the next

section, we present a modelling strategy to address the issue of identifiability through

adding covariate information.

4.2. Latent Class Modelling to Account for Heterogeneity and Missingness

For capture-recapture log-linear modelling, recall that the overriding assumption is that

the most complicated model that can be fitted to the data is the homogeneous association

model, meaning that the conditional odds ratios between any two variables are identical

for each each category of the third variable. This is equivalent to assuming that the three-

way-interaction term is zero. Furthermore, it is expected that there is a less complicated

model that fits the data equally well. Under these conditions, the ‘saturated’ and best-

fitting models are anticipated to yield similar estimates of the missing counts.

The standard local independence latent model is expected to be a poor fit to the data for

two reasons. First, with only seven observed terms, additional identifying constraints are

required to fit the model. Second, there is the need to account for interaction effects between

the Census and Survey and the Survey and Third List. In other words, the latent variable does

not fully account for all dependence between the Census, Survey and List. This residual

dependence implies that a local dependence model is required. Obviously, this model is

non-identifiable, since it is over-parameterised. The suggested solution is to bring a

grouping covariate, such that the effect of each manifest variable is mediated through the

latent variable, pictorially represented in Figure 1 (under local independence) and Figure 2

(under local dependence), to ensure model identifiability. For the figures, the singleheaded

arrows are used to denote the causal direction between two variables, while the double-

headed arrows are used to specify that there is no causal direction between the two variables.

In the figures we see that the grouping variable G ‘acts’ through the latent class X to

drive the counts observed on each list. In Figure 1 there is no relationship between the

observed counts, after controlling for the latent class, while Figure 2 shows an additional

dependency between CS and SL.

C

XG S

L

Fig. 1. Path diagram of the local independence model.
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In our application, the proposed approach is to find a covariate G, that is only related to

the latent variable, X, but not the manifest variables, C, S and L. This has the benefit of

accounting for the unobserved heterogeneity as well as any list dependence. In the

simplest form, under local independence, this latent class model is given by

logmijkgx ¼ lþ l
ðCÞ
i þ l

ðSÞ
j þ l

ðLÞ
k þ lðXÞx þ lðGÞg þ l

ðCXÞ
ix þ l

ðSXÞ
jx þ l

ðLXÞ
kx þ lðGXÞ

gx ð8Þ

with additional constraints that

g

X
lðGÞg ¼

t

X
lðXÞx ¼ 0 and

x

X
lðGXÞ

gx ¼
g

X
lðGXÞ

gx ¼ 0:

The interpretation of this model is that the residual dependence is fully accounted for

through the post-strata and latent variable.

It is still possible to include further dependence terms. For instance, the model with path

diagram presented in Figure 2 can be written as

logmijkgx ¼ lþ l
ðCÞ
i þ l

ðSÞ
j þ l

ðLÞ
k þ lðXÞx þ lðGÞg þ l

ðCXÞ
ix þ l

ðSXÞ
jx þ l

ðLXÞ
kx þ lðGXÞ

gx

þ l
ðCSÞ
ij þ l

ðSLÞ
jk : ð9Þ

The latent class model as specified in this form does not have a closed form solution due

to the number of identifying constraints. However, Haberman (1979) showed that

maximum likelihood estimates for the log-linear model can be found using the iterative

proportional fitting algorithm, which is equivalent to the M(aximisation)-step of the EM

algorithm, since there is missing information as a result of the latent variable (Dempster

et al. 1977). This is similar to the approach suggested by Coull and Agresti (1999), Biggeri

et al. (1999) and Stanghellini and Van der Heijden (2004), among others. Initial values of

the parameter estimates are essential to the convergence and speed of the EM algorithm

(Dempster et al. 1977) (and this is particularly true in the context of the capture-recapture

C

XG S

L

Fig. 2. Path diagram of the local dependence model with two direct effects.
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latent class model). As such, the EM algorithm starts by finding some initial values mð0Þijkgx

which satisfy the log-linear model given by Equation (9). Now, given the data nijkg; with

n000g unobserved, the E-step consists of two sub-steps. Firstly, an estimate of the missing

cells is obtained for each group g,

n̂000g ¼
x

X
m̂000gx; ðE1Þ

that is, resulting in a ‘full’ observed contingency table. Secondly, the latent cells are

estimated by

n̂ijkgx ¼
nijkg

m̂ijkg

m̂ijkgx: ðE2Þ

Then the M-step fits the log-linear model given by Equation (9) to obtain m̂ijkgx. The

estimated observed frequencies m̂ijkg are identical to the observed frequencies nijkg when

summed over the latent variable, at convergence.

This process of computing the expectation of the complete data likelihood conditional

on the observed data and maximising, when repeated will converge to a solution that

maximises the (local) likelihood.

4.3. Population Estimates Under the Latent Class Model – 1988 US Census Dress

Rehearsal

An investigation was carried out to determine if fitting latent class models to the US census

data could improve the results. In particular, we wanted to examine whether using the age

and tenancy status of individuals as the grouping covariate, G improved the model fit.

Recall that this grouping covariate has four levels and allows us to fit identifiable locally

dependent latent class models. The interpretation of the grouping covariate is that once a

person’s age and gender status is accounted for, the relationship among the manifest

variables (here C, S and L) with the unobserved latent variable X, is the same in each of the

four sub-tables representing the Young Owners, Young Renters, Old Owners and Old

Renters. The assumption is that the effect of age and tenancy on C, S, L is completely

mediated through the latent variable X. This assumption is less restrictive than the no-

three-way interaction assumption required under the standard capture-recapture model

with three lists. The latent variable X explains the remaining (unexplained) heterogeneity,

that is not accounted for through the post-stratification scheme.

Various latent class models were fitted to the 1988 US census dress rehearsal data to

investigate if latent models can account for both missingness and heterogeneity, and these

results are compared to the previous results. Table 6 gives the estimates of the two latent

classes under the local dependence model {CS, SL, CX, SX, LX, GX}, and bootstrapped

standard errors. The R-code to perform this analysis can be found in Appendix (Section 6).

This model has 28 observations and 12 estimable parameters, and it is still possible to fit

more complex, but identifiable, local dependence models, for instance the models with

three-way interaction terms {SL, CX, SX, LX, GX, CSG} and {CS, CX, SX, LX, GX, SLG}.

However, these models were found to have qualitative similar results as the simpler model,

as well as issues with convergence during the bootstrapping. Although in our application it
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is only possible to have two latent classes due to identiability, the choice of the number of

classes plays a critical role, traditionally, in latent class modelling.

The first thing of note from the results in Table 6 is that the estimate of the missing cell

in the second latent class is always zero, with all those estimated to be missing (n000)

placed in the first latent class. This was found to be the case whichever way the model is

specified, whether under local independence or the various forms of local dependence. It

can also be noticed that every person who appears in the n001, n100 and n101 cell counts is

placed in the first latent class. However, every person who is counted in both the Census

and Survey, that is, n110 and n111 cell counts, is placed in the second latent class. The

remaining cell counts, n010, n011, representing those people who were counted in the

Survey, or the Survey and the Third list, are distributed by the latent model to both classes.

This leads us to conclude that the two latent classes represent an individual’s

catchability by the Survey. Put differently, a plausible interpretation is that the latent

variable suggests that the unobserved heterogeneity is due to enumeration difficulty.

Essentially, the observed contingency table data from the 1988 US census dress rehearsal

in St Louis shows a mixture of two latent subgroups – one group of people can be

described as being easy to count by the Survey, and the other subgroup are hard to count by

the Survey. Furthermore, the results provide evidence that the current post-stratification

mechanism fails to properly classify the population into suitably homogeneous groups

such that there is no heterogeneity of capture among individuals within the same post-

strata. The post-strata chosen on the basis of age, race and tenure is therefore inadequate,

and the latent class modelling shows that there is additional heterogeneity in the data.

Moreover, the estimates of the missing (roughly 155 Young Owners, 155 Young Renters,

150 Old Owners and 125 Old Renters) are closer [than/to] those from the best fitting model

Table 6. Latent class estimates of the US census data. The bootstrap standard errors are provided in

parenthesis.

n000 n100 n010 n110 n001 n101 n011 n111

Local dependence (with CS and SL interactions)

Latent Class 1
Young owners 153.34 31.00 6.56 0.00 59.00 19.00 10.84 0.00

(28.53) (5.61) (3.72) (0.00) (7.47) (4.13) (17.92) (0.00)
Young renters 155.34 41.00 26.14 0.00 43.00 12.00 5.42 0.00

(28.75) (6.37) (16.99) (0.00) (6.21) (3.53) (11.00) (0.00)
Old owners 149.35 62.00 7.70 0.00 35.00 13.00 4.94 0.00

(31.98) (7.36) (4.96) (0.00) (5.45) (3.58) (9.58) (0.00)
Old renters 127.26 32.00 17.06 0.00 43.00 7.00 5.43 0.00

(25.21) (5.79) (13.76) (0.00) (6.34) (2.77) (13.35) (0.00)
Latent Class 2

Young owners 0.00 0.00 1.44 13.00 0.00 0.00 8.16 79.00
(0.00) (0.00) (2.94) (3.53) (0.00) (0.00) (16.27) (8.62)

Young renters 0.00 0.00 7.86 69.00 0.00 0.00 5.58 58.00
(0.00) (0.00) (15.61) (8.09) (0.00) (0.00) (10.99) (7.51)

Old owners 0.00 0.00 2.30 36.00 0.00 0.00 5.06 91.00
(0.00) (0.00) (4.49) (5.67) (0.00) (0.00) (9.83) (8.73)

Old renters 0.00 0.00 6.94 69.00 0.00 0.00 7.57 72.00
(0.00) (0.00) (13.72) (8.31) (0.00) (0.00) (14.63) (8.52)
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({CS, SL}) rather than the ‘saturated model’ ({CS, SL, CL})when compared to the results

in Table 4. In this case, since the no-three-way interaction assumption cannot be justified

– mainly due to a failure in the post-stratification scheme leading to the observed data

being marginalised over a latent variable. As a consequence, there are issues surrounding

the correct estimation of the population size.

In sum, the observed contingency table data from the 1988 US census dress rehearsal in

St Louis, as they appear in Table 3, suffer from a failure in the post-stratification scheme.

As such there is some residual heterogeneity not fully accounted for by the age, race and

tenure post-strata. The consequence is that although the data have been post-stratified

using demographic, socio-economic and household factors, some individuals with

differing levels of catchability have been placed in the same post-stratum, leading to

biased population estimates. Fitting the usual capture-recapture models fails to account for

this, but the proposed latent class capture-recapture model offers an alternative and

flexible approach, as shown by results in Table 6.

5. Conclusion

There is definitely value in using a latent variable as a way of coping with unobserved

heterogeneity in the capture of individuals for population measurement when there are

multiple lists. This has been fairly standard in ecological experiments (Seber 1986), but

less so within human populations. The current techniques for dealing with heterogeneity of

capture rely on information being available on how sets of similar individuals are related

with respect to their capture behaviour. This is because it is often difficult to differentiate

between causal dependence, where an individual’s probability of appearing on one list

depends on their probability of appearing on another list, and apparent dependence, where

individuals do not have the same probability of appearing on a particular list. In theory an

extensive, and exhaustive, post-stratification scheme should account for heterogeneity of

individual capture. However, in practice, since post-stratification relies on creating

discrete classifications of continuous covariates (such as age), there could be ‘remaining’

heterogeniety that has not been accounted for (Chen et al. 2010; Wolter 1986).

In this article, we have proposed a latent variable approach to estimate the population

size when there is list dependence and unobserved heterogeneity of capture. Our main

contribution has been to extend the current log-linear modelling framework to use the

post-stratification information and, in so doing, expound a more flexible model. We also

shed new light on the role of stratification variables in coping with both observed and

unobserved heterogeneity. Our model provides a better way of examining the no-three-

way interaction assumption which underpins capture-recapture population estimation with

three lists. When applied to real-life census data from the US, our approach provides better

population size estimates, and evidence to show that the failure of the post-stratification

scheme induces dependence (i.e., heterogeneity) which invalidates the no-three-way

interaction assumption.

The standard latent class model, under local independence, assumes that the population

is composed of mutually exclusive latent classes such that, within these classes, the

observed variables are unrelated. If there is reason to believe that, notwithstanding the

relationships between the latent variable and the observed variables, there are relationships
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between the observed variables, then a local dependence model has to be considered.

Within a capture-recapture framework with information available from three sampling

occasions, this latent model is not identified. As such, the preferred solution is to rely on

covariate information collected about the individuals to ensure identifiability and to

improve the estimates of the population (Pollock 2002).

The crucial part of any latent class analysis lies in the interpretation of the latent

variable. In fact, in censuses there have been two interpretations, which lead to very

different and conflicting population estimates. In the first instance, the latent classes

represent enumeration difficulty, and so the estimate of the population total is the sum of

the latent groups. In the second instance, they represent enumeration error, and as such the

the total population is only those who are deemed to be real enumerations; any erroneous

enumerations need to be removed (Brown et al. 2006a). The decision as how to interpret

the latent classes after analysis can sometimes be challenging. However, in the context of

this article it is clear that neither class could contain the erroneous enumerations. On the

one hand, if latent class 1 contained them, then this would imply no true enumerations

(class 2) are missing from all lists, since n̂000g2 ¼ 0. On the other hand, if latent class 2

contained them, this would imply all people found on all three lists were erroneous, since

for the true enumerations n̂111g1 ¼ 0. More generally, in the example shown in article it is

clear that latent class analysis can provide valuable insight into how to create an efficient

post-stratification so as to produce unbiased estimates of the population.

We have demonstrated how the latent class approach could be applied to a census

setting using data from the US census. In the original observed data, fitting log-linear

models to the incomplete contingency tables and then using the capture-recapture

techniques to estimate the missing cells were shown to lead to inconclusive estimates of

the population size. The reason for this indecision is that a difference exists between the

‘saturated’ model with no three-way interaction term and the best-fitting model. When

there is some reason to believe that the conditional odds ratios between any two variables

might differ across the different categories of the third variable, the estimates of the

missing under different log-linear models might not be very reliable. Here, the latent class

model is beneficial in showing where the post-stratification scheme has not been adequate.

While capture-recapture techniques are increasingly being used in censuses and they

have, through the log-linear modelling framework, an appealing representation to allow

for dependency among the lists and heterogeneity in the population, they still rely on fairly

strong assumptions that cannot be tested from the data of the study. When there are two

lists, there is the assumption of independence, and when there are three lists, there is the

assumption of no three-way interaction. There is a very lengthy list of authors that have

proposed innovative ways of coping with the failure of the independence assumption

under dual-system estimation. Less is known about handling the failure of the no-three-

way assumption under triple system estimation. Our article has shown some insights into

the advantages of a latent class model over a simple log-linear model, and the merits of

using covariate information to cope with heterogeneity and dependence. The obvious

extension is to move to four-lists (i.e., quadruple system estimation): there is the

assumption here that the highest order interaction term is set to zero, implying there is no

four-way-interaction. In fact, with a larger number of captures, this assumption is more

likely to be correct (Fienberg 1972; International Working Group for Disease Monitoring

Journal of Official Statistics690



and Forecasting 1995) but four lists are rarely available in populations, hence the

importance of including covariates.

6. Appendix: A EM Algorithm – Latent Class Modelling (with Bootstrapped

Confidence Intervals)

##

### Code to run the bootstrap

##

## This code has been updated to run the bootstrap for the models

without the covariate

## We create 1000 bootstrap resamples

### Due to the fact we have missing data, simply using a standard

bootstrap will not ensure that the

### resampled data are ‘truly’ from the underlying data distri-

bution

set.seed(1234)

#

### Young Renters

#

#data ,- array(c(NA,31,8,13,59,19,19,79), dim ¼ c(2,2,2))

#dimnames(data) ,- list(c(“No”, “Yes”), c(“No”, “Yes”),

c(“No”, “Yes”))

#data ,- data.frame(expand.grid(census ¼ dimnames(data)[[1]],

# survey ¼ dimnames(data)[[2]], admin ¼ dimnames(data)[[3]]),

# count ¼ c(data))

#

### Young Owners

#

#data ,- array(c(NA,41,34,69,43,12,11,58), dim ¼ c(2,2,2))

#dimnames(data) ,- list(c(“No”, “Yes”), c(“No”, “Yes”),

c(“No”, “Yes”))

#data ,- data.frame(expand.grid(census ¼ dimnames(-

data)[[1]],

# survey ¼ dimnames(data)[[2]], admin ¼ dimnames(data)[[3]]),

# count ¼ c(data))

#

### Old Renters

#

#data ,- array(c(NA,62,10,36,35,13,10,91), dim ¼ c(2,2,2))
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#dimnames(data) ,- list(c(“No”, “Yes”), c(“No”, “Yes”),

c(“No”, “Yes”))

#data ,- data.frame(expand.grid(census ¼ dimnames(data)

[[1]],

#survey ¼ dimnames(data)[[2]], admin ¼ dimnames(data)[[3]]),

# count ¼ c(data))

#

### Old Owners

#

data ,- array(c(NA,32,24,69,43,7,13,72), dim ¼ c(2,2,2))

dimnames(data) ,- list(c(“No”, “Yes”), c(“No”, “Yes”), c(“No”,

“Yes”))

data ,- data.frame(expand.grid(census ¼ dimnames(data)[[1]],

survey ¼ dimnames(data)[[2]], admin ¼ dimnames(data)[[3]]),

count ¼ c(data))

### Initialise the data

data$em.data ,- data$count

####################

###### MODELS ###

####################

## I: Model I (independence)

#eqn ,- em.data~census þ survey þ admin

## II: Model II – L, CS

#eqn ,- em.data~census þ survey þ admin þ census:survey

## III: Model III: S, CL

#eqn ,- em.data~census þ survey þ admin þ census:admin

## IV: Model IV: C, SL

#eqn ,- em.data~census þ survey þ admin þ survey:admin

## V: Model VI: CS, CL

#eqn ,- em.data~census þ survey þ admin þ census:survey þ

census:admin

## VI: Model V: CS, SL

eqn ,- em.data~census þ survey þ admin þ census:survey þ

survey:admin

## VII: Model VI: CL, SL

eqn ,- em.data~census þ survey þ admin þ census:admin þ

survey:admin

####Begin the modelling and bootstrap code

#NA #index
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ii ¼ is.na(data$em.data)

## initialise data (with replacement of missing values)

data$em.data[ii] ,- 0

#only use non-NA, so that error should be less extreme model ,-

glm(eqn, data ¼ data[!ii,], family ¼ poisson)

#Residual based bootstrap, using log #difference

fit ¼ fitted(model)

error ¼ numeric(length(ii))

error[!ii] ¼ (log(data$count)[!ii]-log(fit))

EM.sim ¼ function(error,fit,data,ii,tol,eqn){

#simulate new data with #residuals

data$em.data[!ii] ¼ data$count[!ii] ¼ exp(log(fit) þ

error[!ii])

model ,- glm(eqn, data ¼ data, family ¼ poisson)

est ,- 1

est ,- cbind(est,model$coef)

fit ,- model$fitted

## this does the same thing

#fit ,- exp(model.matrix(model)%*%model$coef)

## E step

data$em.data[ii] ,- fit[ii]

i ,- 2

while(any(c(abs(est[, i] – est[, i – 1])) . tol,na.rm ¼ T))

{

model ,- glm(eqn, data ¼ data, family ¼ poisson)

est ,- cbind(est,model$coef)

## M step

fit ,- model$fitted

data$em.data[ii] ,- fit[ii]

i ,- i þ 1

}

est , -est

fit

}

#EM.sim(err,fit,data,ii,1e-5,eqn)

##

## It is better to use a for loop (more efficient)

##
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#for loop style

## first create matrix

tmp ¼ matrix(nrow ¼ 1000,ncol ¼ length(ii))

for (i in 1:1000) {

err ¼ numeric(length(ii))

err[!ii] ¼ error[!ii][sample(1:sum(!ii),sum(!ii),T)]

tmp[i,] ¼ EM.sim(err,fit,data,ii,1e-5,eqn)

}

##########################################################-

################################### ### Collection of the

bootstrap results to produce the estimates and precision

estimates ### ##############################################

################################################

##### Computation of the bootstrap means, standard errors and

confidence #intervals

### bootstrap mean

round(apply(tmp,2,mean),2)

#bootstrap sd

round(apply(tmp,2,sd),2)

## quantiles (to compute the 95% confidence intervals)

round(apply(tmp, 2, quantile, probs ¼ c(0.025,0.975)), 2)
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