
 J Vet Res 65, 253-264, 2021 

DOI:10.2478/jvetres-2021-0034 

 

Regional distribution of non-human H7N9  

avian influenza virus detections in China  

and construction of a predictive model 

Zeying Huang1, Haijun Li2, Beixun Huang1 

1Institute of Food and Nutrition Development,  

Ministry of Agriculture and Rural Affairs, 100081, Beijing, China 
2University of Sanya, 572000, Sanya, Hainan province, China 

huangzeying@caas.cn 

 

Received: January 4, 2021         Accepted: June 10, 2021 

Abstract 

Introduction: H7N9 avian influenza has broken out in Chinese poultry 10 times since 2013 and impacted the industry 

severely. Although the epidemic is currently under control, there is still a latent threat. Material and Methods: Epidemiological 

surveillance data for non-human H7N9 avian influenza from April 2013 to April 2020 were used to analyse the regional distribution 

and spatial correlations of positivity rates in different months and years and before and after comprehensive immunisation. In 

addition, positivity rate monitoring data were disaggregated into a low-frequency and a high-frequency trend sequence by wavelet 

packet decomposition (WPD). The particle swarm optimisation algorithm was adopted to optimise the least squares support-vector 

machine (LS-SVM) model parameters to predict the low-frequency trend sequence, and the autoregressive integrated moving 

average (ARIMA) model was used to predict the high-frequency one. Ultimately, an LS-SVM-ARIMA combined model based on 

WPD was constructed. Results: The virus positivity rate was the highest in late spring and early summer, and overall it fell 

significantly after comprehensive immunisation. Except for the year 2015 and the single month of December from 2013 to 2020, 

there was no significant spatiotemporal clustering in cumulative non-human H7N9 avian influenza virus detections. Compared 

with the ARIMA and LS-SVM models, the LS-SVM-ARIMA combined model based on WPD had the highest prediction accuracy. 

The mean absolute and root mean square errors were 2.4% and 2.0%, respectively. Conclusion: Low error measures prove the 

validity of this new prediction method and the combined model could be used for inference of future H7N9 avian influenza virus 

cases. Live poultry markets should be closed in late spring and early summer, and comprehensive H7N9 immunisation continued. 

 

Keywords: epidemiological survey, aetiological virus detection monitoring, wavelet packet decomposition,  

LS-SVM-ARIMA model, PSO algorithm. 

 

 

Introduction 

H7N9 avian influenza is a disease caused by the 

novel H7N9 recombinant avian influenza virus, which is 

mainly characterised by pulmonary inflammation and 

fever (7). In early 2013, human infection with H7N9 

avian influenza virus was discovered for the first time in 

China. Subsequently, birds infected with the virus were 

found in live poultry markets (25). At the beginning of 

2017, a highly pathogenic variant of it was found in 

poultry flocks in some Chinese provinces, which then 

caused a number of outbreaks (32). In order to control 

H7N9 avian influenza in commercial flocks, China 

imposed treatment with a bivalent inactivated vaccine of 

recombinant avian influenza virus (H5+H7) in September 

2017 (24). Both low-pathogenic and high-pathogenic 

strains of H7N9 avian influenza virus coexist and are 

still evolving at present (5). Therefore, the risk of its 

spread among various animals is not countered fully by 

vaccination and should not be ignored. 

It is very important to construct predictive models 

for the early detection of H7N9 outbreaks (22), and 

many studies have established them. For example, 

Gilbert et al. (9) constructed a spatial econometric model 

to predict the risk of H7N9 avian influenza infection in 

live poultry markets in Asia, Young et al. (33) constructed 

a niche model to predict the prevalence of H5N1 and 

H9N2 avian influenza in poultry flocks, and Li et al. (16) 

developed a Bayesian inference system to predict the 

infection rate of H7N9 also in poultry flocks. Qiang and 
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Kou (23) used the wavelet packet decomposition (WPD) 

method to predict the transmission of avian influenza 

virus between humans and various poultry species, 

Walsh et al. (28) adopted the gradient-boosted tree to 

build a model for predicting the probability of isolating 

avian influenza virus from wild bird samples, and lastly, 

Yang et al. (31) predicted the spread of H9N2 avian 

influenza with a system dynamics model. Although 

these previous studies achieved good results, most of 

them adopted the single-model prediction method. 

However, avian influenza virus infection is a complex 

biochemical process, characterised by periodicity, 

complexity and nonlinearity, which underscore the need 

for a combined model based on modern prediction 

theory to improve prediction accuracy (23). 

Continuous monitoring of the distribution and changes 

in the positivity rates of H7N9 avian influenza virus has 

been significant for eliminating infection sources (3). 

Positive virus detection indicates viral infection in 

poultry, and the higher the positivity rate (number of 

positive results/number of samples), the greater the 

avian influenza virus infection (26). Infected poultry 

have been the main source of avian influenza virus. After 

infection, the poultry shed the virus through saliva, nasal 

secretions and faeces, causing the spread of the epidemic 

(14). Also, it is possible that contacts of domestic poultry 

with migratory birds, which are natural reservoirs for avian 

influenza viruses, are a potential source of infection (12). 

Relevant studies have shown that the rate of avian 

influenza virus detection correlated with outbreaks to 

some extent, i.e. the higher the positive rate, the greater 

the possibility of an outbreak (10). Some studies have 

used positive samples of H7N9 to analyse the transmission 

regularity of the virus (1, 11) and to judge the effect of 

closing live poultry markets (29) and comprehensive 

H7N9 immunisation of at-risk animals (30). 

China has been a major exporter of poultry 

products, the trade in which may spread domestic avian 

influenza virus to importing countries (34). Furthermore, 

there is a wide range and distribution of bird migrations 

within and in proximity to China, which possibly causes 

the spread of domestic avian influenza to neighbouring 

countries (6). The outbreak risk of H7N9 avian influenza 

related to China has obliged the Chinese government to 

employ effective preparedness measures, including 

early detection and timely sharing of surveillance data 

(22). The Ministry of Agriculture and Rural Affairs of 

the People’s Republic of China has organised provincial 

veterinary departments to conduct special surveillance 

efforts against H7N9 avian influenza. Since April 2013, 

fixed virus monitoring points have been established on 

each province’s poultry farms and commercial livestock 

farms and in pig slaughterhouses and wild bird habitats. 

The collected samples are sent to the National Avian 

Influenza Reference Laboratory for testing. When a virus 

detection in animal or environmental samples occurs,  

a retrospective investigation is carried out in accordance 

with guidelines issued by the Ministry of Agriculture 

and Rural Affairs to identify the source of the virus and 

possible contaminated sites and implement culling or 

treatment of pathogen-positive poultry flocks (18). As 

the official monitoring data are relatively authoritative, 

some studies have tried to use the annual avian influenza 

monitoring data of the United States (28) or Southeast 

Asia (17) to predict the prevalence of the virus. This 

study regards China and also employs national 

monitoring data for the virus positivity rates to analyse 

the distribution characteristics of positive samples and 

construct a predictive model conforming to the trend of 

changes in the positive rate. We believe that this study 

has novelty and important practical significance for 

improving the prediction of major animal epidemics and 

curbing the spread of the virus. It could also provide  

an important insight into how the global known and 

future zoonotic influenza threats may be reduced. 

Material and Methods 

Monitoring efforts for H7N9 avian influenza by  

the Ministry of Agriculture and Rural Affairs of the 

People’s Republic of China involve collecting chicken, 

duck, goose, wild bird and pig samples from certain  

sites for serological and pathogenic analysis. It should 

be noted that since September 2017, China has 

implemented comprehensive H7N9 immunisation for all 

domestic poultry operations, and the original positivity 

rate of serological samples has been replaced by  

a qualified rate. Consequently, the statistical calibre of 

pathogenic monitoring data has not changed, so the data 

could be used as an observation indicator of positivity 

rates. The rates in samples from surveillance for this 

pathogen from April 2013 to April 2020 were collected 

from information published by the Ministry of 

Agriculture and Rural Affairs (see Supplementary 

Materials for details of raw data). In addition, the 

affected species, number of H7N9 avian influenza 

outbreaks, number of cases, number of fatalities and 

number of culled animals reported by the provinces were 

obtained from the animal epidemic monthly report in the 

ministry’s Veterinary Bulletin (19). In order to have  

a clear understanding of the distribution pattern of non-

human H7N9 virus detections in China and to conduct 

spatial autocorrelation analysis, the monthly positive 

rates greater than 0 were all set to 1, indicating that 

H7N9 virus had been detected. A value of 0 means that 

no virus detections were reported. 

Moran’s I. “Spatial autocorrelation” usually 

describes the correlation among the values of a given 

variable with respect to a dependence on the relative 

locations between spatial units (8). If “neighbours” tend 

to have similar values, it is generally accepted as  

a positive spatial autocorrelation and it is a negative 

spatial autocorrelation if they tend to have dissimilar 

values. One of the most prominent measures of spatial 

autocorrelation is Moran’s I index (MI), which is 

defined as the ratio between the local and global 

coherence (20).  
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Fig. 1. Hierarchical Structure of WPD 

 

 

Least squares support-vector machines model. 

Our study adopted ArcGIS 10.2 software (Environmental 

System Research Institute, Redlands, CA, USA) and MI 

to analyse the spatial correlation between the number of 

months of H7N9 avian influenza virus detection in 

different provinces. The MI values ranged from −1 to 1. 

Standardised statistics of Z and P values are generally 

used to test the significance of the spatial correlation. 

Wavelet packet decomposition. WPD is a method 

for decomposing the high-frequency signal obtained by 

wavelet transform layer by layer. Theoretically, the 

effective information in a signal can be extracted by 

WPD into three layers (15). As shown in Fig. 1, the 

signal Y = (0,0) represents the original data of positive 

rates of avian influenza virus detections. If the original 

data are non-stationary, they could be mapped into  

23 subspaces by three-level WPD, from low to high 

frequency from left to right. Y = (0, 1) and Y = (1, 0) 

respectively represent the low-frequency and high-

frequency components obtained from the first decomposition 

of the original data. Y = (2, 0) and Y = (2, 1) represent 

the low-frequency component obtained in the first 

decomposition, and then the low-frequency and high-

frequency components are obtained in the second 

decomposition, and finally the data are decomposed into 

a low-frequency trend sequence and a high-frequency 

trend sequence. 

Least squares support-vector machines (LS-SVM) 

is a simplified and improved version of the standard 

SVM model. Its greatest advantage is dealing with non-

stationary series and overcoming the problem of 

overestimated prediction results from traditional 

prediction methods (27). In this paper, Matlab 2018a 

software (MathWorks, Natick, MA, USA) and LS-SVM 

lab Toolbox version 1.8 (http://www.esat.kuleuven.be/ 

sista/lssvmlab) were used to model the positive sequence 

data of avian influenza virus. The algorithm principle is 

as follows: 

Suppose there are n groups of data points, and  

a sample set 

𝑆 = { (𝑥1, 𝑦1), ⋯ , (𝑥𝑙 , 𝑦𝑙), 𝑥𝑖 ∈ 𝑅𝑛 , 𝑦 ∈𝑖 𝑅 }𝑖=1
𝑙       

In the formula, l is the number of samples, xi is the 

input vector, and yi is the corresponding output value. 

The linear regression function of the sample set is 

𝑓(𝑥) = 𝜔𝑇𝜙(𝑥) + 𝑏 

In the formula, 𝜔 is the weight vector, 𝜔𝑖 ∈ 𝑅𝑛; the 

offset constant is 𝑏 ∈ 𝑅; and 𝜙(∙) is a kernel function for 

solving nonlinear problems. 

Based on the principle of structural risk 

minimisation, the optimisation problem is defined as 

𝑚𝑖𝑛𝐽𝐿𝑆(𝜔, 𝜉) =
1

2
∥ 𝜔 ∥2+

1

2
𝛾 ∑ 𝜉2

𝑙

𝑖=1

 

In the formula, ∥ 𝜔 ∥2  and 𝛾  represent model 

complexity and normalisation parameters, respectively. 

According to the Karush–Kuhn–Tucker conditions 

and Mercer’s condition, the optimisation problem of LS-

SVM is transformed into the solution of the linear 

equation, and the nonlinear regression equation of the 

LS-SVM model at the x moment is obtained which is 

𝑓(𝑥) = ∑ 𝑎𝑖

𝑙

𝑖=1

𝐾(𝑥, 𝑥𝑖) + 𝑏 

In the formula, x is the support vector; 𝑥𝑖  is the 

input of the i support vector; 𝑓(𝑥) is the predicted output 

value; and 𝐾(𝑥, 𝑥𝑖) is the kernel function mapping the 

sample to the feature vector. The kernel function adopts 

the RBF formula as follows: 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒−
∥𝑥𝑖−𝑥𝑗∥2

2𝜎  

In the formula, σ is the hyperparameter of the radial 

basis function kernel. 

Particle swarm optimisation algorithm. The 

prediction effect of the LS-SVM model is affected by the 

penalty factor C and the kernel function σ. If the values 

of C and σ are improper, then overlearning can easily 

occur, which is not conducive to sample regression. 

Particle Swarm Optimisation (PSO) is an intelligent 

algorithm based on population search, which is used to 

optimise the parameters of the LS-SVM model due to its 

simplicity and lack of many parameters that need to be 

adjusted. Our study intended to use the PSO algorithm 

source code of Matlab 2018a software to optimise the 

parameters of the LS-SVM model. The algorithm 

Y(0,0) 

Y(1,0) Y(0,1) 

Y(2,0) Y(2,1) Y(2,2) Y(2,3) 

Y(3,0) Y(3,1) Y(3,2) Y(3,3) Y(3,4) Y(3,5) Y(3,6) Y(3,7) 
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principle of PSO is as follows (13): a group of random 

particles is first initialised, and then the characteristics 

of the particles are represented by position, speed and 

fitness. The particles update the speed and position 

according to the formulas, and they are substituted into 

the optimisation objective function to calculate the 

corresponding fitness value in order to evaluate the 

advantages and disadvantages. In each iteration, 

particles are updated by the individual extremum Pbest 

and the population extremum Gbest. The individual 

extremum Pbest is the position with the best fitness 

value which the particle has had, while the population 

extremum Gbest is the best position which all particles 

in the group have had. These two extrema are used for 

the particle to find the optimal position in each iteration 

process, and then the particle will update the speed and 

fitness. 

𝑉𝑖
𝑘+1 = 𝜔𝑉𝑖

𝑘 + 𝑐1𝑟𝑎𝑛𝑑( )(𝑃𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑋𝑖

𝑘)

+ 𝑐2𝑟𝑎𝑛𝑑( )(𝐺𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑋𝑖

𝑘) 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1 

In the formulas, 𝑖 = 0,1, … , 𝑁, 𝑁  is the total 

number of particles; 𝑘 = 0,1, … , 𝑀, 𝑀 is the maximum 

number of iterations; 𝑉𝑖
𝑘 is the velocity of the i particle 

in the k iteration; 𝑋𝑖
𝑘  is the position of the i particle  

in the k iteration; 𝜔  is the inertia factor; 𝑟𝑎𝑛𝑑 ( )  is  

a random number between 0 and 1; and 𝑐1  and 𝑐2  are 

learning factors. 

Autoregressive integrated moving average 

model. In this article, the autoregressive integrated 

moving average (ARIMA) model was constructed by 

Eviews 10.0 software (IHS Markit, London, UK) 

combined with the time series of positivity rates of avian 

influenza virus. The model is a linear combination of 

past errors and past values of a stationary time series. It 

is a classical time series analysis method with high short-

term prediction accuracy (21). The general mathematical 

expression is as follows: 

𝑦𝑡̂ = 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 + ⋯ + 𝜑𝑝𝑦𝑡−𝑝 + 𝜀𝑡

− (𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞) 

In the formula, 𝑦𝑡̂  is the time series of t moment; 

𝜑1, 𝜑2, ⋯ , 𝜑𝑝  is the autoregressive coefficient; 

𝜃1, 𝜃2, ⋯ , 𝜃𝑝 is the moving average coefficient; 𝜀𝑡 is the 

time residual sequence; p is the autoregressive order; and 

q is the moving average order. 

Results  

Situation of H7N9 avian influenza epidemic in 

China. The first case of H7N9 avian influenza came to 

notice in Inner Mongolian chickens in June 2017, and  

a total of 10 outbreaks of H7N9 avian influenza had 

occurred by April 2020 (Table 1). Among them, there 

were 4, 5 and 1 outbreak of H7N9 avian influenza in 

2017, 2018 and 2019, respectively. The epidemic in 

2017 was the most serious, with the largest number of 

cases, fatalities and culled animals. In terms of the 

number of provinces, the most were affected in 2018. 

From the perspective of time, H7N9 avian influenza 

occurrences were mainly concentrated in a March-to-June 

period, in which June was the month with the largest 

number of outbreaks, cases, fatalities and culled animals. 

Chickens were vulnerable to avian influenza, and 90% 

of the outbreaks were related to this species. Once the 

poultry got sick, the mortality rate was relatively high, 

usually approximately 70%. 

The prevalence of H7N9 avian influenza virus in 

China and spatial autocorrelation. The high-risk 

regions of H7N9 avian influenza were mainly located in 

the southeast of China from 2013 to 2020 (Table 2). 

Among them, Guangdong, Fujian and Zhejiang were the 

three provinces with the most detections of H7N9 avian 

influenza virus. Except for Liaoning province with  

a cumulative number of virus positive months of more 

than three, the cumulative number of virus-positive 

months in other northern regions was less than three. 

 

 

 

 

 

Table 1. Situation of H7N9 avian influenza epidemic from April 2013 to April 2020 
 

Time Province 
Number 

of outbreaks 
Poultry 

Number 
 of cases 

Number  
of fatalities 

Number  
of animals culled 

June 2017 Inner Mongolia 2 Chicken 63,406 37,582 424,197 

June 2017 Heilongjiang 1 Chicken 20,150 19,500 16,610 

August 2017 Anhui 1 Chicken 1,368 910 74,463 

March 2018 Shaanxi 1 Chicken 1,000 810 1,000 

April 2018 Shanxi 1 Chicken 812 699 6,374 

April 2018 Ningxia 1 Chicken 1,200 585 13,578 

May 2018 Liaoning 1 Chicken 11,000 9,000 8,000 

May 2018 Ningxia 1 Chicken 3,000 2,210 86,000 

March 2019 Liaoning 1 Peacock 9 9 191 

 

Data source: Veterinary Bulletin 
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Table 2. Spatial autocorrelation analysis of H7N9 avian influenza virus detections in China 
 

Variable Moran’s I Z score P value 

From 2013 to 2020 −0.014 0.387 0.350 

In 2013 −0.019 0.259 0.398 

In 2014 −0.046 −0.362 0.359 

In 2015 0.042 1.783 0.037 

In 2016 −0.064 −0.992 0.161 

In 2017 −0.034 −0.075 0.470 

In 2018 −0.007 0.607 0.272 

In 2019 −0.021 0.239 0.406 

In 2020 — — — 

In January −0.008 0.507 0.306 

In February −0.008 0.526 0.299 

In March −0.006 0.563 0.287 

In April −0.004 0.586 0.279 

In May −0.040 −0.210 0.417 

In June −0.045 −0.350 0.363 

In July 0.009 1.103 0.135 

In August — — — 

In September −0.073 −0.996 0.160 

In October −0.036 −0.164 0.435 

In November −0.046 −0.366 0.357 

In December 0.072 2.320 0.010 

Before comprehensive animal H7N9 

immunisation 
−0.020 0.255 0.399 

After comprehensive animal H7N9 

immunisation 
−0.028 0.058 0.477 

 

No H7N9 avian influenza virus detections occurred in China in 2020 or in August of each year, so there 
are no spatial autocorrelation analysis results presented for them 

 
Fig. 2 Regional distribution of H7N9 avian influenza virus detections in China 

 

 

The annual regional distributions of H7N9 avian 

influenza virus detections in different years are shown in 

Fig. 3. In 2013, the virus was mainly detected in 

southeast China, and by 2016 the positive rate had 

reduced. Due to the large number of live poultry markets 

and frequent migration of wild birds, the time span of 

H7N9 virus detections in animals in Guangdong 

province exceeded six months in each year from 2013 to 

2016. In 2017, owing to the coexistence of low 

pathogenicity and high pathogenicity H7N9 influenza 

virus strains in various animals, the area of virus 

detection expanded, and the number of areas with virus 

detections recorded for more than six months increased 

to an unprecedented level. In 2018, only three southern 

provinces were found to be positive for the virus, while 

in 2019, the detection areas were mainly in Inner 

Mongolia and Liaoning provinces, and after 2020, no 

virus was detected. 
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Fig. 3. Regional distribution of H7N9 avian influenza virus in China from 2013 to 2020 

 

 
Fig. 4. Regional distribution of cumulative H7N9 avian influenza virus detections in China from January to December between 2013 and 2020 
 

 
 

Fig. 5. Regional distribution of H7N9 avian influenza virus detections before and after comprehensive H7N9 immunisation of at-risk animals in China 

 
 

Fig. 4 shows that March, April and May were the 

months in which samples often tested positive in many 

areas, while in August, September and October, the virus 

could be detected in fewer areas. This pattern indicates that 

the H7N9 virus was most prevalent in late spring and early 

summer. Although the temperature increased in this period, 

there was still a high risk of H7N9 outbreak in animals. 

As can be seen in Fig. 5, before the national animal 

comprehensive H7N9 immunisation programme began 

in September 2017, most regions were positive for 

H7N9 virus, especially Guangdong, Fujian and 

Zhejiang. The cumulative positive rate of H7N9 avian 

influenza virus was more than 10 months in these 

provinces. After immunisation, the poultry produced 

antibodies, which reduced the positivity rate. Other than 

Fujian province, there were no areas where H7N9 avian 

influenza virus had been detected for more than four 

months. This indicates that the comprehensive H7N9 

immunisation effort had a significant effect on reducing 

the positivity rate of H7N9 avian influenza. 
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Fig. 6. Temporal distribution of positive rate of animal H7N9 avian influenza virus detections in China from 2013 to 2020 

 

 
 

Fig. 7. Steps for constructing the LS-SVM-ARIMA combined model based on WPD 

LS-SVM – least squares support-vector machines; ARIMA – autoregressive integrated moving average 

 

 

The MI values of H7N9 avian influenza virus 

detections are shown in Table 2. There was no 

significant spatial autocorrelation among such 

detections in 31 provinces from 2013 to 2020. Moreover, 

the positive spatial correlation of avian influenza virus 

detections before and after the comprehensive H7N9 

immunisation programme was not significant. Among 

different years, only virus detections in 2015 had 

significant spatial autocorrelation (P < 0.05); and among 

different months, only December had (P < 0.05). 

WPD of time series data of H7N9 avian 

influenza virus detections. Fig. 6 shows that the overall 

positivity rate of the virus detections fluctuated 

dramatically, with a maximum of 0.14% (from April 

2015 to May 2017). However, all H7N9 avian influenza 

virus tests were negative for six consecutive months 

from November 2019 to April 2020, indicating that no 

animal was infected with H7N9 avian influenza virus in 

China during this period. 

The augmented Dickey–Fuller (ADF) test results 

showed that the time series of the positive rate of H7N9 

avian influenza virus detections failed the significance 

test of the coefficient at the significance levels of 1%, 

5%, and 10%. Since this indicated that the time series 
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was not smooth, an LS-SVM-ARIMA combined model 

based on WPD was then constructed. The specific 

modelling steps are shown in Fig. 7. 

Given the limited data, our study used the monthly 

data from April 2013 to April 2019 to build the 

combined model, and the data from May 2019 to April 

2020 as the prediction data. The monthly data from April 

2013 to April 2019 were decomposed by a three-layer 

wavelet packet by Db4 wavelet, and the positive rate 

data of eight decomposition spaces were obtained. 

Among them, the four low-frequency trend sequences 

(i.e. [3,0], [3,1], [3,2] and [3,3]) and waveforms are 

shown in Fig. 8, while the four high-frequency trend 

sequences (i.e. [3,4], [3,5], [3,6] and [3,7]) and 

waveforms are shown in Fig. 9. 

 

 
 

Fig. 8. Low-frequency trend sequence decomposition of positive rates of H7N9 avian influenza virus from April 2013 to April 2019 
 

 
 

Fig. 9. High-frequency trend sequence decomposition of positive rates of H7N9 avian influenza virus detections from April 2013 to April 2019 
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Fig. 10. Comparisons of predicted values from each model with the true values 
LS-SVM – least square support-vector machines; WPD – wavelet packet decomposition; ARIMA – autoregressive 

integrated moving average 

 
 

Table 3. Optimisation results of low-frequency trend sequence parameters 
 

Decomposition  

sequence 
Hyperparameters σ 

Normalisation  

parameters ɣ 

[3,0] 9506 7350.8 

[3,1] 2514.5 3946.2 

[3,2] 9113.6 9740.8 

[3,3] 818.709 7242.1 

 
Table 4. ARIMA model parameters 
 

Decomposition sequence ARIMA model parameters 

[3,4] ARIMA (1,0,0)*(2,0,0) [12] 

[3,5] ARIMA (3,0,0) 

[3,6] ARIMA (0,0,0) 

[3,7] ARIMA (3,0,0) 
 

ARIMA – autoregressive integrated moving average; ARIMA 

(1,0,0)*(2,0,0) [12] is the multiplicative seasonal model of ARIMA 

 

Modelling of low-frequency trend sequence  

of positive rates of H7N9 avian influenza virus. The 

LS-SVM model parameter optimisation calculation was 

used on the four low-frequency trend sequences of [3,0], 

[3,1], [3,2] and [3,3] by the PSO algorithm. The specific 

steps are as follows: first, the order of the model was 

adopted to determine the influence of the positive rates 

for the previous months on the positive rate of the 

current year. The minimum mean square deviation of the 

predicted results was taken as the standard for further 

order expansion. By calculation, the final order of the 

model was 12, indicating that the current data in the 

sequence were closely related to the data of the previous 

12 months (the 12-month data from before April 2019). 

Therefore, the data from May 2018 to April 2019 were 

used as the input values of the LS-SVM model to predict 

the data for May 2019 to April 2020. Then the PSO 

algorithm was used to optimise the hyperparameters σ 

and normalisation parameters ɣ of the radial basis 

function kernel of the model. The search ranges of the 

two parameters were set to 10−12–1012. The optimal 

combination of the two parameters was obtained which 

is shown in Table 3. 

Modelling of high-frequency trend sequence of 

positive rates of H7N9 avian influenza virus. For the 

four high-frequency trend sequence data of [3,4], [3,5], 

[3,6] and [3,7], the unit root test of each time period 

sequence was first conducted by ADF to verify whether 

the sequence was stable. If not, the model needed to be 

stabilised, and the P and Q values of the model were 

determined according to the autocorrelation function, 

partial autocorrelation function), minimum Bayesian 

information criterion and maximum R2 after 

stabilisation. As shown in Table 4, the ARIMA model of 

the four high-frequency trend sequences (i.e. [3,4], [3,5], 

[3,6] and [3,7]) were ARIMA (1,0,0) * (2,0,0) [12], 

ARIMA (3,0,0), ARIMA (0,0,0) and ARIMA (3,0,0). 

Evaluation of the prediction effectiveness of 

different models. The prediction value of each sequence 

was obtained by modelling with each decomposed time 

sequence. The final prediction value of the positive 

avian influenza virus sequence was the linear 

superposition of the predicted values of each 

decomposition sequence. The formula is as follows: 

𝑦̂ = 𝑦̂[3,0] + 𝑦̂[3,1] + 𝑦̂[3,2] + 𝑦̂[3,3] + 𝑦̂[3,4] + 𝑦̂[3,5]

+ 𝑦̂[3,6] + 𝑦̂[3,7] 

In the formula, 𝑦̂  is the predicted value of 

combined model; and 𝑦̂[3,𝑖] is the sequence data of time 

interval [3, 𝑖], 𝑖 = 0,1,2, … ,7. 

According to the formula above, the predicted 

values of each decomposed sequence were accumulated. 

As shown in Table 5, the prediction results of the  

LS-SVM-ARIMA combined model based on WPD were 

obtained. 
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Table 5. Prediction results of the LS-SVM-ARIMA combined model based on WPD 
 

Date Real value [3,0] [3,1] [3,2] [3,3] [3,4] [3,5] [3,6] [3,7] Predictive value 

05/2019 0 0 0 0.001 0 0 0.001 0 0 0.002 

06/2019 0 0 0 0 0 0 0 0 0.001 0.001 

07/2019 0 0 0.001 0 0 0 0 0 0 0.001 

08/2019 0 0.001 0 0 0.001 0.001 0 0 0 0.003 

09/2019 0 0 0 0 0.001 0 0.001 0 0 0.002 

10/2019 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0 0.001 0.010 

11/2019 0 0.001 0.001 0 0 0.001 0 0 0 0.003 

12/2019 0 0.001 0 0.001 0.001 0 0.001 0 0.002 0.006 

01/2020 0 0 0.001 0 0.001 0.001 0.001 0 0 0.004 

02/2020 0 0.001 0 0 0 0.002 0 0 0 0.003 

03/2020 0 0 0.001 0 0 0 0 0 0 0.001 

04/2020 0 0 0.001 0 0 0.001 0 0 0 0.002 
 

LS-SVM-ARIMA – least square support-vector machines–autoregressive integrated moving average, WPD – wavelet packet decomposition 

 
Table 6. Prediction results based on the three models: ARIMA, LS-SVM and ARIMA-LS-SVM  
 

Date Real value ARIMA model LS-SVM model LS-SVM-ARIMA model 

05/2019 0 0.014 0.013 0.009 

06/2019 0 0.007 0.006 0.011 

07/2019 0 0.004 0.005 0.016 

08/2019 0 0.011 0.012 0.012 

09/2019 0 0.009 0.008 0.008 

10/2019 0.008 0.014 0.013 0.020 

11/2019 0 0.017 0.010 0.008 

12/2019 0 0.020 0.015 0.016 

01/2020 0 0.005 0.006 0.007 

02/2020 0 0.010 0.007 0.003 

03/2020 0 0.011 0.005 0.005 

04/2020 0 0.018 0.012 0.010 
 

ARIMA – autoregressive integrated moving average; LS-SVM – least square support-vector machines 

 
Table 7. Evaluation of the prediction results of the different models 
 

Evaluation index LS-SVM-ARIMA combined model based on WPD 
ARIMA  

model 

LS-SVM  

model 

LS-SVM-ARIMA 

model 

MAE 0.024 0.119 0.098 0.077 

RMSE 0.020 0.067 0.059 0.041 
 

LS-SVM – least square support-vector machines; ARIMA – autoregressive integrated moving average; WPD – wavelet packet decomposition 

 

In order to verify the predictive effectiveness of the 

combined model, this study adopted the same data to 

predict the ARIMA model, the LS-SVM model and the 

LS-SVM-ARIMA model. The LS-SVM model and the 

LS-SVM ARIMA model were optimised by the PSO 

algorithm. Table 6 and Fig.10 show that the LS-SVM-

ARIMA combined model based on WPD had the highest 

degree of data fitting. 

In this section, the mean absolute error (MAE) and 

root mean square error (RMSE) of the true and predicted 

values were employed as evaluation indices of the 

prediction effectiveness of each model. The MAE and 

RMSE formulas are as follows: 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1

𝑛
 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦𝑖̂)

𝑛
𝑖=1

𝑛
 

In both formulas, 𝑦𝑖  is the true value; and 𝑦𝑖̂ is the 

predicted value, I =1,2,3,…,n. 

The values in Table 7 show that the MAE and 

RMSE of predictions from the LS-SVM-ARIMA 

combined model based on WPD were the smallest, 

which indicated that neither the single ARIMA model 

nor the LS-SVM model was likely to capture the linear 
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and nonlinear characteristics in the data of avian 

influenza virus detections. Although the LS-SVM-

ARIMA model had the advantages of both the ARIMA 

model and the LS-SVM model, the LS-SVM-ARIMA 

combined model based on WPD could more 

comprehensively extract the detailed information 

contained in the time series, so it better reflected the law 

of the positive rate change with time, and predicted the 

positive rate more accurately. 

Discussion  

The LS-SVM-ARIMA combined model based on 

WPD was a beneficial enhancement for the more 

accurate prediction of the positivity rate for H7N9 avian 

influenza virus. However, the prediction results of  

LS-SVM-ARIMA based on WPD model were not fully 

consistent with the real values. This difference arises 

because although the monitoring data of positivity rates 

are applicable to predicting the presence of avian 

influenza virus, they are limited by the number of 

monitoring sites and the effectiveness of sample 

collection nationwide. In addition, the virus-positive rate 

is cross-influenced by many factors, so it is difficult for 

a single data source to reflect the full complexity of the 

epidemic facts. Astill et al. (2) suggested that monitoring 

data, internet data and environmental data should be 

integrated to support the construction of an avian 

influenza prediction model. Therefore, we can propose  

a few improvements to the predictive ability for the 

positivity rate (1). Although the combined model has  

a better predictive ability than the single model 

generally, more combined models need to be produced 

and the prediction results compared among them, so as 

to further verify the effectiveness of the combined model 

based on WPD (2). Expanding the scope of monitoring, 

increasing the number of monitoring points, and 

improving the efficiency of sample collection and 

detection are necessary to make the published data more 

accurate (3). Predicting positive rates for the virus in all 

provinces will gradually facilitate the elimination of 

H7N9 avian influenza in different regions. 

According to the monitoring data from April 2013 

to April 2020, there was a greater risk of epidemics in 

late spring and early summer. After livestock at risk was 

comprehensively immunised against H7N9, the positive 

rates of infection with the virus were significantly 

reduced. Except for 2015 and December of each year, 

the positive samples did not have spatial clustering and 

were randomly distributed. Therefore, it is recommended 

that live poultry markets be closed in late spring and 

early summer, comprehensive animal H7N9 immunisation 

be continued, and monitoring programs strengthened. 

Although the tested positivity rate of the virus during 

2020 was lower than in recent years, H7N9 avian 

influenza may still threaten the poultry industry in 

China. Even with the measures of market closure, 

immunisation, and vigilant monitoring, H7N9 will not 

cease to be a latent threat and prediction capability is 

highly desirable for preparedness for this threat. 

Therefore, our epidemiological survey proposed  

a combined LS-SVM-ARIMA model based on WPD to 

improve predictive accuracy. The MAE of 2.4% and 

RMSE of 2.0% prove the validity of this new prediction 

method. 
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