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An effective and accurate methodology is developed to create an inverse surrogate model 
for the mass reduction analysis of the rod in the rod bundle inserted in the crossflow. The 
performance of two surrogate modelling approaches has been evaluated. These models are 
the Response Surface Method and Legendre polynomial approximations. The relationship 
between dominant frequencies, support stiffness and rod mass derived from Computational 
Fluid Dynamics simulations is used as input data for approximations. The selection of sample 
points is implemented with a new type of orthogonal design. The results have shown that the 
proposed methodology can reliably replace the finite volume model and drastically reduce 
computational time. 
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1. INTRODUCTION

For the safe operation of engineer-
ing equipment, it is necessary to continu-
ously monitor whether the system does not 
exceed its operational limits and does not 
compromise its structural integrity. Rela-
tively frequently it is not possible to mea-
sure changes in the internal elements of the 

system directly during the operation of the 
equipment, for example, in heat exchangers 
or nuclear reactor assembly. For complex 
systems, their behaviour as a function of the 
input parameters is generally not known. 
In such situations, physical and numerical 
experiments can often be the only way to 
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determine the relevant relationships. Nev-
ertheless, full-model simulations would 
require long calculations from several hours 
to several days or weeks, even using high-
performance computing resources. That 
approach is not applicable to the monitoring 
of the system during its operation. There-
fore, to reduce computing time, simplified 
models – surrogate models or metamod-
els – are used that approximate the origi-
nal model. Adequate mathematical models 
can be used to detect as early as possible 
changes in the typical behaviour of the sys-
tem that could indicate its malfunction and 
structural integrity problems.

This study focuses on heat exchangers 
consisting of a bundle of rods placed in a 
highly turbulent crossflow. Flow induces 
rod vibrations with a typical spectrum that 
can be used to indirectly detect changes 
in system parameters. The decrease in the 
mass of the rod may be one of the param-
eters indicating that damage has occurred in 
the installation. Therefore, Computational 
Fluid Dynamics (CFD) simulations and 
surrogate modelling approaches are used 
to find the relationship between the mass of 
the rod and the dominant frequencies.

In the literature, various types of 
engineering problems are solved through 
surrogate models such as design optimi-
zation, uncertainty quantification, param-
eter identification, sensitivity analysis 
or inverse problems. Available surrogate 
models include, e.g., Response Surface 
Method (RSM), Kriging (or Gaussian pro-
cess modelling), radial basis functions and 
artificial neural networks. RSM is predi-
cated on the assumption that many physi-
cal systems are smooth and continuous and 
can be well approximated, at least in the 
region of interest, by low-order polynomi-
als [1]. As follows from [2], the polynomial 
approximation is not applicable to highly 
non-linear functions, but in cases of low 

non-linearity and low dimensions, it is an 
effective approach. The Kriging method is 
of most use when the true function is par-
ticularly computationally intensive, e.g., a 
CFD-based calculation [3]. As an example, 
we can mention the minimization of vortex-
induced vibrations using Kriging described 
by Filho et al. [4]. Banyay et al. [5], [6] 
used Kriging surrogate for global sensitiv-
ity analysis of flow-induced vibrations. In 
the present paper, low-order (less than 4th 
order) polynomials and Legendre polyno-
mial were investigated. Two-factor forward 
and inverse surrogate models were created.

The training data set for the surrogate 
model development is generated by exercis-
ing complex high accuracy models such as 
finite volume or finite element models. The 
selection of sample points can be imple-
mented through the design of experiments. 
The design of experiments is very impor-
tant for a high-quality surrogate model. 
There are several metrics to determine the 
adequacy and goodness of fit of the model, 
such as a root mean square error, cross-vali-
dation error, T-tests or Pearson’s χ2 test, etc. 
As mentioned by Greenwood and Nikulin 
[7], when the amount of data is small, no 
test is very good, and when there are a lot 
of high-quality data almost any test, prop-
erly designed and applied, will give good 
results. However, when addressing prob-
lems with high computational costs, an 
effective sampling plan must be sought, 
which means a minimum number of points 
that provide a surrogate model with good 
precision. Techniques that are commonly 
considered are Latin Hypercube Sampling, 
Central Composite Design (CCD), orthogo-
nal arrays, factorial designs. In this study, a 
new type of orthogonal design [8] is used. 
Based on the obtained sample points, the 
selection of initial conditions for the full-
order model is carried out.

The paper is structured as follows. In 
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Section 2, the CFD approach applied to 
obtain the results of the full model is for-
mulated. Section 3 describes the types of 
employed surrogate models, the sampling 

method and the model accuracy metrics. 
Verification results are presented in Section 
4. Finally, concluding remarks are given in 
Section 5.

2. HIGH-FIDELITY COMPUTATION 

The full model uses the configuration 
of the rod bundle described in Upnere et al. 
[9], in which laboratory experiments were 
carried out to examine the vibrations of 
single flexible-mounted rod caused by the 
crossflow in the rigid rod array. The con-
figuration has a triangular array with pitch-
to-diameter ratio, P/d = 1.1. The rod diam-
eter is 8 mm and it is made of steel (in the 
laboratory experiment).

The open-source CFD tool OpenFOAM 
2.4.x was used to solve differential equa-
tions of mass and momentum. Unsteady 
Reynolds-Averaged Navier–Stokes 
(URANS) equations are solved using the 
k-ω SST turbulence model to ensure the 
closure of the equation system. A lowReyn-
olds turbulence model approach was used. 
The 2D problem was addressed to simplify 
numerical calculations.

2.1 Description of the Numerical Model

The investigation of an appropri-
ate computational domain was achieved 
through a decoupling approach. The num-
ber of cylinders was reduced by columns 
in the in-flow direction and by rows in the 
crossflow direction. Several computational 
domains were analysed to find an optimal 
case given both the accuracy of the results 
and the cost of computing. The columns and 
rows of the cylinder arrays were decreased 
step by step with a decrement 1. Other con-
ditions remained the same. The drag force 
Fx was used to compare the impact of array 
rows and columns.

The largest analysed domain was a 4×5 

cylinder array, see the domain A in Fig. 1. 
Decreasing rows from four to two changes 
the force Fx by less than 1 %. The boundary 
condition at the top and bottom is simplified 
as a symmetry condition. The reduction of 
columns in the direction of flow by remov-
ing one column behind the test cylinder 
causes a non-significant change in the calcu-
lated force. In contrast, the reduction of one 
column in the direction of upstream causes 
a change of approximately 4 %. Because 
of the above, the domain B (see Fig. 1) can 
be considered an optimal computational 
domain for the analysed Reynolds numbers 
and array configuration.

Fig. 1. Analysed computational domains. The centre of the test cylinder is marked with the red cross.
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As RANS-type calculations are per-
formed that are time-averaged, it is possible 
to determine a typical distribution of flow 
between two adjacent cylinders, see the 
green dotted line in the domain B. Using the 
found flow profile as an inflow boundary 
condition, the computational domain can be 
reduced to a 2×2 array of cylinders, see the 
domain C in Fig. 1. This approach is use-
ful because the developed surrogate mod-
els require a set of calculations that change 
only the mass and support stiffness of the 
test cylinder and not the characteristic of the 
inlet flow. Operating pressure p = 0 Pa was 
defined on the outflow boundary.

Different mesh refinements were stud-
ied to avoid the influence of the cell size on 
the numerical simulations. As a low-Reyn-

olds turbulence model was used, particular 
attention was paid to the correct description 
of the boundary layer around cylinders. The 
final version of the mesh contains 476 000 
cell elements. Around cylinders, it contains 
25 layers with an expansion ratio of 1.05, 
providing y+ less than 1.

Based on studies available in the lit-
erature, it is known that the largest oscilla-
tions are in a direction perpendicular to the 
flow and therefore the movement of the test 
cylinder is only allowed in the transverse 
direction. The rotation of the test cylinder 
is also not allowed. The movement of the 
test cylinder in crossflow was studied by 
mounting it as a massspring system, where 
m is the mass of the oscillating part and k 
is the stiffness coefficient of the mounting.

2.2 Verification and Validation of the Model

According to Roache [10], the quanti-
fication of uncertainty in numerical simu-
lations contains the three most important 
items: verification of codes, verification 
of calculations and validation. Since stan-
dard OpenFOAM solvers are used in the 
modelling process, the verification of the 
code is not carried out in this case. Solu-

tion verification is carried out using flow 
simulation around a single cylinder at Re = 
11000 and comparing integral parameters 
with data available in the literature. Table 
1 shows a summary of the drag coefficient, 

, where u is flow velocity, S 
is an area that interacts with the flow and 
Strouhal number, St, from the various studies.

Table 1. Comparison of the Modelled and Experimental Results  
of the Drag Coefficient Cd and Strouhal Number St

The study Cd St
Khan et al. [11], RANS, 2D 1.150 0.201
Khan et al. [11], RANS, 3D 1.210 0.203
Dong et al. [12], DNS 1.208 0.209
Wornom et al. [13], LES 1.22 0.20
Nguyen and Nguyen [14], DES 1.133 0.200
Gopalkrishnan [15], Exp 1.186 0.193
Norberg [16], Exp - 0.202
Present study, URANS, 2D 1.19 0.21

The analysis of the test case allows 
selecting the optimal turbulence model, 
boundary conditions and computational cell 
size.

The model validation was implemented 

by comparing the numerical results with 
the experimental drag force values, Cd, the 
natural frequency of the test rod in the flow, 
fn and the flow-induced frequency ft. The 
results obtained are summarised in Table 2.
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Table 2. Validation of the Full Numerical Model

The study fn ft Cd

Experiment (Upnere et al., 2020) 58.50 27.30 0.346
CFD, 2D 59.32 28.66 0.359
CFD, 3D - 28.56 0.352

As shown in Table 2, the difference 
between the results of CFD and the experi-

mental measurements obtained is less than 
5 %.

2.3 Dominant Frequencies

The dominant frequencies were deter-
mined using the movement of the test cyl-
inder and the calculated lift coefficient. The 
fast Fourier transform (FFT) and inverse 

FFT method were applied to time series 
obtained from numerical simulations. The 
FFT approach was implemented in Matlab.

3. SURROGATE MODELLING

3.1 Design of Experiments

The selection of sampling points has a 
major effect on building a reliable surrogate 
model. Space-filling designs become a pri-
mary consideration for the design of com-
puter simulation experiments [1]. Space-
filling design allows selecting those sample 
points that are distributed within the entire 
domain.

In this study, the new class of experi-
mental designs described in [8] is used. 
Unlike classical CCD designs, in this case, 
all design points are within the research 
domain. Orthogonal designs of this type are 
particularly suitable for use with orthogonal 
Legendre polynomials detailed in the next 
subsection. This approach allows avoiding 
problems related to the optimal selection 
of significant terms, for example, in cases 
where the number of points is not much 
larger than the total number of possible 
terms. The following constraints were used 
to develop the experimental design [8]: 1) 
all experimental points were located in the 
unit cube [-1, 1]l; 2) designs had central 
symmetry, axial symmetry and 90-degree 

rotation symmetry properties; 3) designs 
were invariant to the permutation of input 
variables; 4) designs gave replications of 
centre point; 5) designs were orthogonal; 6) 
designs were D-optimal.

Figure 2 shows the 13-point orthogonal 
design used in the study to create a surro-
gate model with mass m = [0.2765; 0.3253] 
and stiffness coefficient k = [15725; 18500] 
as factors.

Fig. 2. The two factors (mass m and stiffness 
coefficient k) orthogonal design with 13 points.
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3.2 Response Surface Method

Polynomial approximations produce 
surrogate models using low-order polyno-
mials in a relatively small region of param-
eter space [2]. If the response function to 

be studied is expected to be linear, the first-
order polynomial approximation can be 
used, defined as [17]:

  (1)

where ŷ is the system response, xi, i = 0, 1,…, n, are independent variables, the parameters βi 
are called the regression coefficients, ε represents the noise or error observed in the response 
y assumed to be independent and normally distributed with mean zero and constant variance 
σ2.

If the system under investigation is non-
linear, a higher-order polynomial should be 
used. For example, in the general case, a 

second-order polynomial regression model 
with n simulation inputs is as shown below:

  (2)

Regression coefficients β in Eq. (2) are 
estimated applying the least-squares crite-
rion

  (3)

where w denotes the n-dimensional vec-
tor with the simulation outputs. The least-
squares estimator  exists if and only if the 

inverse of X’X exists; e.g.,  exists if X is 
orthogonal [18]. The method of the least 
squares returns the vector of the regression 
model parameters, which minimizes the 
sum of squared errors between the predic-
tions of the regression model and the values 
of the true function.

3.3 Legendre Polynomial Approximation

The Legendre polynomials Pi(x) are 
defined over x ∈ [-1; 1] by the recurrence 
relation as [19]:

  (4)

The classic and discrete Legendre poly-
nomials are orthogonal. In this study, ortho-
normal Legendre polynomials are used, 
which means that all terms must be multi-

plied by . For onedimensional prob-
lem the first 4 orthonormal polynomials are:
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  (5)

The multivariable polynomial terms are 
the product of single variable polynomials 
and they are orthonormal. The property of 
orthonormality allows for optimal selection 
of significant terms in the approximation 
polynomial function [8]. This is useful in 
cases where multivariate high order polyno-
mials are used since in such situations the 

number of terms is rapidly increased and 
makes the application more difficult. The 
cross-validation criterion is used to decide 
whether to eliminate or keep the term with 
a small Euclid norm [8]:

  (6)

In surrogate models, assessment meth-
ods should be applied to check if the devel-
oped models are adequate. The selection of 
approximations here is based on strategies 
described in the next subsection.

3.4 Surrogate Model Adequacy and Fitting

Myers et al. [1] define two steps for 
checking the response surface: 1) to exam-
ine the fitted model to ensure that it provides 
an adequate approximation to the true sys-
tem and 2) to verify that none of the least-
squares regression assumptions is violated.

One of the techniques for checking 
model adequacy is residual analysis. In the 
context of surrogate modelling, the residual 
is defined as

 (7)

In the plot of residuals ei versus the 
predicted response , the residuals should 
scatter randomly, suggesting that the vari-
ance of the original observations is constant 
for all values of y.

To estimate the generalization error, 
leave-k-out cross-validations commonly 
used. The cross-validation error can be 
used for surrogate model parameter estima-
tion, model selection and validation when 
it is too costly to employ a separate vali-
dation data set [3]. Based on the study of 
Meckesheimer et al. [20], the value of k = 1 
is recommended for providing a prediction 
error estimate for low-order polynomials, 
and for Kriging surrogate models it is rec-

ommended to select k as a function of the 
fitting design size, for example, k = 0.1N 
or . In this study, the relative cross-
validation error is expressed as:

  (8)

where  denotes the prediction of the 
response using the surrogate model created 
without the point i (i=1, 2, …, n) and  is 
the average value of y.

For regression models, R2-type metrics 
(R2 is the coefficient of determination) are 
the commonly used goodness-of-fit mea-
sure. An adjusted coefficient of determina-
tion R2

adj is used to avoid the fact that add-
ing a variable to the model always increases 
the value of R2. Pearson’s χ2 test is another 
commonly used metric. The χ2 test is a 
goodness-of-fit test to see whether the data 
are in concordance with the null hypothesis 
H0 [7]. Pearson’s χ2 test indicates whether 
the frequency distribution of specific events 
observed in the sample corresponds to a 
theoretical distribution.
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4. RESULTS

CFD simulations are used to obtain 
the response values in the sampling points. 
The values from the high-fidelity model 

are applied to construct an approximation 
model that would indirectly detect a change 
in the mass of the rod.

4.1 Forward Model

Based on the results of the laboratory 
experiments described in Upnere et al. [9], 
the frequency ratio between the natural 
frequency of the rod in the flow fn and the 
flow-induced frequency ft is selected as a 
response for the surrogate modelling.

As the design of experiments (see Fig. 
2) is orthogonal, Legendre polynomials can 
be used as an approximation. The transfor-
mation from physical units to the unit cube 
[-1; 1]2 is as follows:

  (9)

where m = [0.2765, 0.3253] and k = [15725, 
18500].

Analysis of the significance of polyno-
mial terms based on Euclid norm in Eq. (6) 
shows that the coefficient per term does not 
depend on the number of terms used for 
approximation. This is due to the orthogo-
nality of the design of experiments. From 
the relative cross-validation error depend-
ing on the number of terms of the Legendre 
polynomials presented in Fig. 3a, it follows 
that half of the polynomial terms can be dis-
carded without affecting the outcome.

Fig. 3. Legendre polynomials: (a) the relative cross-validation error depending on the number of orthogonal 
terms; (b) response surface of 5-term Legendre polynomials in the unit cube.

The response surface of the 5-terms 
polynomial model in the unit cube is shown 

in Fig. 3b and the corresponding Legendre 
polynomial can be described as follows:

  (10)



58

In addition to Legendre polynomials, 
the first, second and third-order polynomials 
are investigated. The comparative results of 

the model quality metrics are summarised 
in Table 3.

Table 3. Approximation Quality Indicators of the Forward Model

Approximation σcr% R2
adj

First-order 8.31 0.996
Second-order 8.16 0.998
Third-order 22.96 0.998
Legendre 6.85 0.998

Table 3 shows that there is a small dif-
ference between the first- and second-order 
polynomial approximation which gives 
8.31 % and 8.16 % cross-validation error, 
respectively. From Fig. 3a and Table 3 it 
follows that the lowest error – 6.85 % is 
obtained by 5-term Legendre polynomials.

The adequacy of the model is also con-
firmed by plots of residuals that are ran-
domly scattered (see Fig. 4). The residual 
versus response ft/fn is shown in Fig. 4a. The 
residual values are not correlated with fac-
tors x1 and x2. The example of the residual 
versus input x1 is presented in Fig. 4b.

 

Fig. 4. The residual and regression line: (a) the residual values vs. response; (b) the residual vs. factor x1.

4.2 Inverse Model

The inverse surrogate model for predict-
ing changes of the oscillating cylinder mass 
was created using ft/fn and k as factors. The 
formulas for transformation to unit cube for 
Legendre polynomials are:

 (11)

where ft/fn = [0.746816665, 0.800498909] 
and k = [15934.5382978725, 
18290.4617021275].

As the design of experiments is not 
orthogonal, the coefficients for the terms of 
the Legendre polynomials vary depending 
on the number of terms. Therefore, the use 
of Legendre polynomials is not as effective 
as in the forward model. The comparative 
results of the model quality metrics are 
summarised in Table 4.
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Table 4. Approximation Quality Indicators of the Inverse Model

Approximation σcr% R2
adj

First-order 11.52 0.992
Second-order 11.37 0.996
Third-order 36.41 0.995
Legendre 8.95 0.997

As can be seen from Table 4, there is 
only one method of approximation, for 
which the crossvalidation error is less than 
10 %, the 4-term Legendre polynomials. 
Therefore, the Legendre polynomials were 

selected for building the surrogate model. 
Figure 5 presents response surfaces of 
4-term Legendre polynomials and the rela-
tive cross-validation error depending on the 
number of terms.

Fig. 5. Legendre polynomials of inverse surrogate model: (a) the response surface designed using 4 terms; (b) 
the relative cross-validation error vs. terms of the polynomial.

The residual graph shows the absence 
of correlation between the response and 

residual values. Examples of residuals are 
shown in Fig. 6.

Fig. 6. Residual values and regression line of the inverse surrogate model: (a) the residual versus predicted 
response; (b) residual values versus input x2.

The obtained model equation using 4-term Legendre polynomials is as follows:

 (12)
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The inverse model verification was 
implemented by selecting specific points 
and comparing the results of the model 
and numerical experiments at these points. 
The comparison graph is shown in Fig. 7. 
The confidence interval CI is determined 
to measure the uncertainty around the esti-
mated values:

 (13)

where σ is standard deviation and for 95 % 
CI z = 1.96. The upper and the lower con-
fidence bound can be seen in Fig. 7 with a 
dashed blue line.

From Fig. 7, it can be concluded that 
the resulting surrogate model can predict 

the behaviour of the analysed model system 
with high precision – when input factor val-
ues are changed within 15 %, the difference 
is less than 1.5 %.

Fig. 7. Verification of the inverse surrogate model if 
the stiffness coefficient is 17600 N/m.

5. CONCLUSIONS 

A methodology was developed for cre-
ating a surrogate model for the mass reduc-
tion analysis of the rod in the rod bundle 
inserted in the crossflow. The interaction 
between mass and stiffness as factors and 
frequency ratio as the response was applied 
to build the forward model. The inverse sur-
rogate model was created using mass as a 
function of stiffness and frequency ratio.

The new third-order orthogonal design 
of experiments was used to define sample 
points. Orthogonality of the experimental 
design allowed for simple elimination of 
insignificant terms in Legendre polynomial 
approximations.

Four methods of approximation were 
investigated: first-, second- and third-order 
polynomials and Legendre polynomials. 
The most appropriate approximation for 
both the direct and inverse models for the 

problem under study was obtained using 
Legendre polynomials. The corresponding 
cross-validation errors were 6.85 % and 
8.95 %. Verification of the inverse model 
showed that the difference between the 
results of the CFD calculations and the pre-
dicted values of the surrogate model was 
less than 1.5 %.

The analysis carried out showed that 
the developed method of approximation 
and the obtained factors-response relation-
ships had a good fit with numerical experi-
ments. The results also demonstrated that 
the surrogate model could reliably replace 
the finite volume simulations and drasti-
cally reduce computational time. Therefore, 
the proposed methodology is useful in the 
monitoring of cooling systems as well as in 
the design process of such systems.
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