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This work presents distributed predictor and filter without feedback for nonlinear stochastic uncertain system with correlated noises. Firstly,
for the problem that the process noise and measurement noise are correlated, the two-step prediction theorem based on projection theorem
is used to replace the one-step prediction theorem, and the two-step prediction value of a single sensor is obtained. Secondly, the two-step
prediction value of each sensor state is used as the measurement information to modify the distributed fusion predictor to obtain the
distributed fusion prediction value. Then, according to the projection theorem, the prediction value of distributed fusion is used as
measurement information to modify the filtering value of distributed fusion. Finally, the Cubature Kalman filter (CKF) algorithm is used to
implement the algorithm proposed in this paper. By comparison with existing methods, the algorithm proposed in this paper solves the
problem that existing methods cannot handle state estimation and prediction problems for nonlinear multi-sensor stochastic uncertain systems
with correlated noises.
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1. INTRODUCTION matrix, weighted by diagonal matrix, and weighted by scalar.
However, the above algorithm needs to calculate the cross-
covariance matrix, which puts forward higher requirements
on the prior information of the system. Therefore, literature
[13] give a new covariance cross fusion algorithm that does
multi-sensor systems can enhance the robustness of the  not need to calculate the cross-covariance information.
system and improve the estimation accuracy of the system  However, the weight calculation of the covariance
and accompanied by a large number of data processing intersection fusion algorithm needs to solve the multi-
algorithms. Multi-sensor data processing algorithms can be  dimensional optimization problem. Literature [14] designed a
roughly divided into centralized, distributed, and sequential. kind of sequential covariance intersection fusion algorithm
Considering that distributed fusion has the advantages of which transforms the multi-dimensional optimization
flexible structure, easy fault isolation, and small amount of = problem into multiple one-dimensional optimization
calculation, it has received widespread attention. problems, which can be solved by the golden section method

According to different fusion criteria, various distributed or the Fibonacci method [15]. In order to eliminate the
fusion algorithms have been formed. Literature [7]-[8] influence of the fusion sequence on the fusion result and
designed a federated filter based on information distribution  reduce the amount of calculation, literature [16] proposed a
criteria, which also has the advantages of distributed and sequence-insensitive covariance intersection-fusion
centralized fusion. Literature [9] gives the structure of the  algorithm, and introduced two fusion methods, namely batch
federated filter including the main filter. However, the fusion and sequential fusion. In the past two years, literature
federated filter involves weight distribution problems. [17] provided a novel data fusion algorithm, which is
Literature [10]-[12] carried out weighted fusion algorithm  different from the previous form of combining and weighting
design according to three different criteria, weighted by the corrected measurements of local sensors. Instead, it

In recent years, multi-sensor systems have been widely used
in target tracking and positioning [1]-[2], intelligent
perception [3]-[4], and pattern recognition [5]-[6] because
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regards the local estimation as measurement information
which is used to modify one-step prediction information.
Modifications, from a formal point of view, are more towards
centralized fusion algorithm processing ideas. Literature [18]
further studied the design of the optimal predictor and filter
with random parameter matrix and related noise for this
method. However, it did not consider the nonlinear situation.

Considering that most of the actual systems are nonlinear
systems, this paper is inspired by literature [18], based on the
minimum mean square error criterion, the distributed fusion
Gaussian predictor and filter design with random parameter
matrix and related noise are studied. The rest of the paper is
organized as follows: Section 2 describes the problem to be
studied, Section 3 introduces the design of the distributed
fusion predictor and filter, Section 4 gives the numerical
implementation of the algorithm, simulation verification is
carried out in Section 5, and the conclusion of this paper is
given in the last section.

2. PROBLEM FORMULATION

Considering the following discrete time nonlinear multi-
sensor stochastic uncertain systems:

=, f(x,)+T,0, (1)
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yi=Hh (x,)+Dju,,i=1+,N @)
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is the measurement of multi-sensors; @, € R" is the system
N the

Q.1 H ;,D,i are the correlated stochastic parameter

where x, € R"is the system state; y,i eR™,i= N

. j S . . .
noise; U, €R",i=1,-, is sensor  noise;

matrices with suitable dimensions at k£ epoch; N is the
number of sensors; Superscripti represents the jth sensor.

r

Assumption 1: Stochastic parameter matrices @, , i

ﬁ ,i and 1511, i=1,---N are correlated with each other at
the same epoch and are independent of system noise @), and
U,i , i=1,---N .They satisfy the following statistical
properties:
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where M 7 and G; “ represent the element at (i, ]) and

(S,u)in M . and éz , respectively.
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Assumption 2: @, and U,i,i =1,---, N are correlated

white noise and satisfied with

E {wk}[a) (vf )T} o 5, (@
Uk ! / (S/’( )T R;(/ Kl
Define M, =M,-M_,M=®,[,H,D , then

EI:M:I =0 . Define E[MkekUkTékT] = QkMé (qf”) ,
where, @k and77, are independent with M A andé , and
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o
we have g,

Notes: Derivating the matrix trace yields
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The system and sensor noises are refactored as
w, =fkmk+rkwk , i=1,---,N , and (1) and (2) are
rewritten as
Xk :q)kf(xk)+q)kf(xk)+W (%)
=H K (x )+ Hl (x,)+V,i=L,N ©
The refactored noises are satisfied as:
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3. DESIGN OF DISTRIBUTED FUSION PREDICTOR AND FILTER

The flowchart of the proposed algorithm for a two-sensor
scenario is shown as follows:
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Fig.1. The data processing flowchart for two-sensor scenario.

Lemma 1: The local predictor is designed as

i I x'y
xk+1\k - xk+1\k 1t Kk+1 Jlfe— € (®)

ii i i\l

Xy —pXYy e

ke+1,k[k—1 Pk+1,k\k-1 (Qk ) )

where,
i — i
xkﬂ\kq - Ly | kal]

— B[ f(a,)+ B f(a,)+ W, |1} ]

=, [ f(z,)N}dz,
(10)

where, Yk’;1 =L { yf )ty y,iH} represents the space formed
I)kl|k 1)

=B (xk+1 - xk+1k1)(yk o ykkl) |Yk>1
(fb Sl

(Hh () Bb (o )+V;)T

by the elements in [ and le =N (xk;xliclk 1>

T 7/
k1 k-1

+&>kf(xk)+Wk)

i
k\kq

YZ'

k-1

|nf‘_1](Hzi>T

:(I)k

7 )

—I—Q;IHff(a:k)(hl (:ck))T ledxk +SZVVZ

(11)

19

where, J;( l.c\k 1) f(xk) f(x/i{\k—l)
l;i(x,i‘k_l)=hi(xk)—hi (x;{‘k_l) According to the

definition of error, we have
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The other expected terms in equations (14) - (16) are the
same as the linear space of formula (17), so the probability

density function will not be repeated here.
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Taking V¥,%¥,,¥,

prediction covariance. Then, taking (10), (11) into (8), (9)
yields the mean of the one-step prediction.
Next, using the local one-step prediction to modify the prior

into (13) yields the one-step

information of the fusion center, let X ws1 = €X,,,. Then, we

can get the one-step prediction
T
X — |7 v gy -
Fk el ke and the one-step prediction
~ T
_ I B N
error X}m\k = [Pt xkﬂ\k’ T xkﬂ\k of
Xk+1’

Theorem 1: For the system (5) and (6), based on the

assumption 1 and 2, the distributed optimal fusion predictor
is designed as follows:
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The proof process of the above three formulas is shown in

represent the obtained  Appendix 1.

Lemma 2: For systems (5) and (6), innovation and its
covariance are calculated as follows:

1)

i

I S
Cor1 = Yrn yk+1‘k

where,
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Lemma 3: For systems (5) and (6), the local filter is

designed as follows:
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The cross-covariance matrix is calculated as follows
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The proof process of the above three formulas is shown in
Appendix 2.

4. THE NUMERICAL REALIZATION

In order to facilitate computer simulation, according to the
design process of predictors and filters in Appendix 1 and
Appendix 2, based on the third-order spherical-radial rule, the
numerical implementation format is given as follows.

Design of local predictor:

Assuming the information at k& —1epoch is known, let
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4) Calculate the local prediction mean and covariance

Let
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Taking (47) and (51) into (8) and (9), one can get the one-
step prediction mean and gain matrix of local predictor.
Taking (58)-(60) into (13) yields the one-step prediction
covariance matrix.

Design of distributed fusion predictor:

Assuming that the information at £ — 1 epoch is known, let
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4) Calculate the mean and covariance after fusion
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Taking the values of 4, B,C into A and L, yields the

prediction mean and covariance.
Calculation of innovation:

Assuming the information at k epoch is known, let
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(HIZ-H) + QkHJf Zakﬂ\k ( k+1k) ] T R::l/
©n



MEASUREMENT SCIENCE REVIEW, 22, (2022), No. 1, 17-31

The innovation cross-covariance is

2(n+n
1 ( )a_/z',l (U‘j7l )T
3 | 2<n + n) - ke \ 7 ke
Qk‘“ - Hk'H 2(n+n) 2(n+n) X
NS S o I o ety
o k1)K o k1[k
| 1 ) il Y vivi
j =i, =y
(Hk+1) + Qk+1 P Z Uk+1\k (Uk+1k) + Rk+1
2n I
92)
Design of local filter :
i ' 2!
xkﬂ\k ki
n4 = J 71—‘4 - J T b (93)
(L’ Pl T T
el ( k+1k) k+1k
1) Factorize
i i i T
[)k-v-l\k k+1\k( k+1\k) (94)
_ T
T, = MM 95)
2) Evaluate the cubature points
il Qi i _
Zkﬂ\k - Sk+1\k§l + xk+1\k 0=1,2,---,2n (96)
Z! N
Elk =Mg +n,,0=1,2,---,2(n+n) o7
//{kﬂ‘k
3) Propagate the cubature points
il _
k+1\k h(ZkJrl\k)’l =1,2,--,2n (98)
— L —
Gl = h(;(,m‘k),l_1,2,---,2(n+n) (99)
4) Calculate the covariance
z'y'
2n T
Z Xm\k ( k+1k) (100
- 1 2n ) 1 2n ) r (Hk+l>
S o L o wle
o2 k1) 2n = k1)

1 2(2n) T
Z >v(1'.l (6_/]1 )
N Q(QTL) — ket \ 7 ke
k+l‘1\ 2(2n 2(2n
2(2n> =1 i 2(271) =1 st
Fusion filter design:
¥ f a' X
B ka‘k r — k1K k1Jk
5 = 5 T | patx | XX
ke ife k1l k1l
f o
x}:‘k—l Pk\k-A kb1
— 1—‘ J—
Mg =1 i plte= i\" i
x r T rr
-1 Hi-1 K1
1) Factorize
T
]'—‘F — MVMV
9 9 Is]
L =MM'
6 676
2) Evaluate the cubature points
i
O =M Al =12, 2(n 4 n* N)
Xk

—fil
zl
{jl”} M & 41,0 =1,2,--,2(n+n)

Zk+1\k

3) Propagate the cubature points

Gl =h(Z ) =12, 2(n+n* N)
ABl= £ 2 ) 1=1.2,0,2(n+n)
By = F( 2y )1 =1.2,,2(n+n)
Gity =h( 7 ) =120, 2(n k)

4) Calculate the covariance

5) Let(I, — L, ) =1
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(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)
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2(n+nN) .
" 2(% + nN) lz; X{Lk( If:—llk) (112)
2(n-+nV)
T 2<n+nN) 121: Xlﬁl\k (113)
_ 1 2(n+nN) ™

. m 12:1: Tt (114)
5:;iﬁ” (,u )T (115)

2 (n + n) et Pt \ ke
0= ;iﬁéim (116)

2<n + n) -1

g B 1 2n it il T
- ( Z ﬂkﬂ\k (Jkﬂk) (117)

2(n+ n) =1

D= _ ¥ ' (118)
2(7?/ + n) = Is:+1‘k
1l I ’
%, 7, T 119
w= (n + n) ;ﬂkﬂ\k ('ukJrlk) (119)
Pif)z' _ szX — ny H ’

L I 2 (,u ) k+1]k (120)

k+1\k "’[)CD ( EQT)(I)T
_ . o T
- Ipq)k (19 B VT)T)( :—illk‘k 1H1)
+ 90, TP
. = A (121)
-0, (KY, )

_ T
+ ’(bQW IbSWV ( A+1k\k 1)
+ L PXT

k+1 A+1\A

5. SIMULATION

In order to verify the effectiveness of the proposed
algorithm, a strong nonlinear model is given as follows:

26

sl 3sin’ (5x§) 0.1
= |at | =@, |a! +e P 4+ 10[+]0.1]w,
3 E
Ty 0.2z (a7 +7) | |01

(122)
y = Al (cos(x;) + x?a:f) +u, (123
— A (x; + :z:,jxjj) + 0 (124)

@, = I, +&diag([0.01 001 001]) 29

AL =140.1¢, (126)
A2 =140.3¢, (127)
v; =cw, +1, (128)
vl =cw, + 1, (129)

G = b& +, (130)

where @,,17,,&, and y, are uncorrelated Gaussian white

noise, and the covariance is 1,0.5,0.1 and 0.3 ,

respectively, and ¢, = 0.5, c, = 0.6, b = 1. The initial
value of state is X, = [—0.7 1 I]T, and the initial value

of filter is X, = [—0.7 1 I]T,f_)o =1, ;. 30 independent

Monte Carlo simulations are carried out, and the
corresponding simulation results are as follows:

x1-proposed =*=*= x1-EKF |

R AR

x2-proposed =+ =+~ x2-EKF
0 5 10 15 20 25 30 35 40 45 50

Error of state

X3+ proposed === x3 EKF
T T

5 10 15 20 25 30 35 40 45 50
Time step

Fig.2. Error of the state.
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RMSE of state

Time step

Fig.3. RMSE of the state.

x1-true

===== x1-CKF

........... w1-EKF
30 35

20 25 40

5

K ! x3-true 1

= 3-CKF
........... x3-EKF

30 35 40

10 15 20 25 30

true state and estimate state

25 45
Time step

5 10 15 20 50

Fig.4. Ture state and estimate state.

It can be seen from Fig.2. and Fig.3. that the proposed
algorithm can obtain smaller estimation error and root mean
square error when compared with the algorithm in literature
to a nonlinear system. It is shown that in a nonlinear system,
compared with the conclusion of linear system based on EKF,
the nonlinear filter design is directly carried out for the
nonlinear system. Higher estimation accuracy can be
obtained.

6. CONCLUSION

For the nonlinear multi-sensor system with random
parameter matrix and correlated noise, the local estimation
state is regarded as a measurement and sent to the data
processing center to modify the prior information of the data
processing center. In this paper, the distributed fusion
predictor and filter are derived, and the numerical
implementation of the algorithm based on the third-order
spherical diameter volume rule is given. The simulation
results show that, compared with the EKF algorithm, the
estimator designed for nonlinear systems can achieve higher
estimation accuracy when dealing with nonlinear problems.

27
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Appendix 1
The proof of Theorem 1:
~f _ _
xk+1\k = Tpa xk+1\k
=T T (Ir L.e ) ( k\k 1) LA:+1Xk+1\k

. f
Hk—1

(1, = Bt (ol )+ (1, = B s (1)

+ (In - LA:+16>VVk + Lk+1Xk+1\k

(131)
=~ !
xkﬂ\k T k1)l
_ f %
=T~ (In - Lk+16>q>kf (xkkl) - Lk+1Xk+1\k
- (In Lk+16)(1)kf (x):kl) + (I o Lk+16)q)kf (xk)
+ (I o Lk+1e>I/Vk + Lk+1Xk+1\k

(132)

Sorting out local one-step prediction errors yields

Xkﬂ\A (‘ll f( ke~ 1) K/irl/\‘l« 1Hkh (Xk‘k—l))
+(\I!kef<x ) K}:—lk‘k 1Hkh (%)) + (eW Kklj—ll\‘k 1v)
(133)
where,
_ _ _ T
1 N
f(Xk\k_l) = f(%\k_l)?‘“»f(mk\k-l) (134)
v, = diag(®,,-, @, )
:11,k‘k—1 = diag (Kl:JrJlkk TR :Jrikkl) (135)
H, = dz‘ag(H;,---,Hk{V)

28

T

() = 2 el ()

(136)
\ifk = dz’ag(@k,---,cf)k)
H, = diag(H,- )
h(o,) = [0 () 2" (xk)r (137)
A

Then, the one-step prediction error covariance matrix is

PM—I‘k Elxkﬂk( k+1k) |Yw

flz
+Q‘N’E

¢ FE

k\kl fT( k\kl (I)T
fa) 7 (=) + Q™

B Lk+16)

T
(I _Lk+1 ) +L k+1\k k+1+A+A
(138)
where, =, e = (Pk)if‘;) means  that  all
Pk{j‘;{, [, j=1,---, N are arranged into a square matrix in
the order of row I and column j .
Let
aa = F f(x{kl)fT (ka 1)] (139)
bb = E|f %k_l)ﬁT ( ka_l)} (140)
T
cc=F f(xk)(ef (%)) (141)
dd = E[f(:z:k)hT (:z:k )} (142)
< ) o, aa\IfT —
A=(I —L Ll
n k+1 k+1
o bb( k+1k\k 1H )
o0 & 37\ T
+(I, = L e {0 ec - " ad" L LT,
+<I - LkJrl ){Q:VW ! SWV( ]:il—l,k k—1 ) }LZJA
(143)
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It is worth mentioning that, according to the definition of
matrix A, B later, A can be rewritten as

A=(I, - L )AL +(I - L, e)BL
+([;, Lk+le){QWWT SWV( ay )}LZ+1
) (144)
|7 (el )7 )
= [7 (:c,{kl)fT (x,fkl)N3dxk ()
Blf(z)f" (=)
_ | f;(xk) ff (a:]k)Ngda;k (40
Bl )7 (%)
(147)

o o

k

The other expected terms are the same as the linear space of
equation (147), so the probability density functions are all

N j . The integral formula for finding the expectation is

similar and will not be repeated here.

v 17
SV = |8V v (148)
where, N, = N(xk, X 1’Pk\k 1)
! X
\ T, xg‘k—l Pk\k 1 klk—1
N, =N ; , T .

4 X ||X px =

k k-1 k\k 1 Hk-1

Based on the minimum mean square error criterion, L, ,

is obtained as follows. Let

otr ( k+1fk )
oL B

k+1

=H+M=0

(149)

where, H and M represent the first-order term and
constant term after derivation, respectively. For the sake of

clarity, the derivation process of P is divided into three

k+1k
parts, including the derivation of the A part, the derivation

of the A , and the derivation of the rest, which correspond
to the first-order term and the constant term as

29

H,,H,,H;,M,,M,,M,. The details are as follows

T
H =L eA—1L_ (eA)
T
- Lk Be—1L, (Be) (150)
[26@ (eD) ]
Considering
otr(ABA") __ __ ot(AB"A")
—  J_AB+ AB' = = , one
0A 0A
can obtain
H,=H, (151)
H, =2L eCe + QLMeQWe +2L = =l (152)
where,
(I)kE f~ g;/f\kq)fT (Xk‘k—l )}\PZ
A = B 5 T
_q)kE f x,{{‘k—l)hT (kal)}(Kl:il,k:lek)
(153)
051 (a)(e(5)|
=1 St (154)
_QfHE[f (xk,)hT (xk )}( Iﬁl,kkl)
T f T
C - (I> £ f( Kffs— 1)f (xkkl)}q)k (155)
+OB|f(2,) £ (2,)]
WV !
D= S (Kk+1kk 1) (156)
Then,
H=H +H, +H,
=2H, +H,
T
_Lk+1eA - Lk+1 (eA)
T
=2|-L, Be— L, (Be)
[QeQWWeT —eD — (eD)T]
+2L eCe + 2Lk+1eQWW T+ 2LA+1 k+1lk
T
eA + (eA) + Be
=-2L +(Be) —eCe" k“‘
+[€QZVW€T —eD — (eD) ] (157)
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The local estimation error is rewritten as

WW T
M =A+B+Q e -D (158)
—— —— v —r =z  —x - K” el
Otr (BAT) tr (ABT> k1 k1fr+1 k1 k+1k k1l k1
Considering = = = = B, then g gy
0A 0A — .- x'y"" k!t \ Tl
K1k k1 .
S COY S TAY BT
M, =M, (159) B p—
o A+1\k ke ke xkﬂ\k
MA = -9 C—|— w eT (160) 'y’ i 'y’ i
’ { < } o K kt1fk k+1h ( k+1) - k:l‘k k+1

and

Sorting out local estimation errors yields

M =M, +M,+ M,
=2(4+B+Q¢" —D)—2{Cc+Q"}e" (6D

X ,:@, ~ K" H, NX »
_ 2<A LB - D— QZVeT) k41 k1 k1 k1) (165)

~ K[ H EE K Ve
Therefore,
H+M=0 Similar to the definition of K keldiol > W have
T T
eA+(eA) + Be+(Be
(ww )T ( )T k+1\k - dlag( k+1\k’ ’ Kk+1\k )
Lk“ T [eQ —eD - (6D> ] The error covariance matrix is
—eCe’ L+1\L ’
. WW T f _ ~f ~f
= (A + B+ Qk e — D) Pk+1‘k+1 - xk+1‘k+1 $k+1k+1) |Yk=+1
_2{0 + Q:VVI/}eT (162) y ) ’
. (A + B+ Q;VWeT — D) =E [((IH N Lkﬂe) mk+1\k + Lk+1Xk+1k+1) (.)
=L, = ww ) T f T
—2 {C +6, }e - (In - LA:+1 )PAH‘k (I Lk,+16)
T T - /X T T
eA+(eA) + Be+(Be) (L, = L) Bl (¢)
T T
X —F[eQw Vel —eD — (eD) ] + L, k+1\k+1LA+1
—eCe" (166)

k+1\k
Based on the minimum mean square error criterion, we have
Take L,,, and A4, B into (34) to get A. Take L, ,, and

/
Ainto (33) to get a one-step prediction covariance, and take 8t7“P kt1fk+1 op! 2L P ;T
L, ., into (26) to get a one-step prediction mean. oL - k+1\ke T 1© +1\k
k+1
Appendix 2 + (Pk+1k k41 2L eP k1JE, L+l)
The proof of Theorem 2: ; ; T
' X ' X T
Proof: + AR 2Lk+1 ( k+1k,k+1) €
~f _ o f + 2.[/
xkﬂ‘kﬂ =T xk+1‘k+1 kil k“\k“
— (7 _ f % =0
=T (In LA+16> x/ﬁ—l‘k Lk+1Xk+1‘1c+1 (167)
= (In - Lk,+1 ) k+1‘k + L 1%kl
Then,

(163)

30
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T
X X T =
L [eP 1\L R»+1‘k k41 (Pkﬂ\k,kﬂ) e+ “k+1k+1]
_ pf T /X
- Pk+1\k6 k1fk k41
f T _ palx
= Lk (P +1\k PA~,+1\A:,/<+1)
f T -
X o' X T —
eP +1\A E\H‘k k41 (Pk+1‘kxk+1) e + T+
(168)
where,
/X o ~f T
k41 E ka\k k1Jk+1
T
Ty -
—Bl# (Xkﬂ‘k KHl\kH h(X/m\k))
- k+1Jk - -
_Kkﬂ\AHkﬂh( k+1) - Kk+1‘kl/;'+1
T
— ~f Ty
=E xkﬂ\k (Xkﬂ\k KLH\kH h( k1Jk ))
Ix f T k+1 k+1 g
_ p= =~ Ty
Pk+l‘k fxml\kh (Xml\k)N d (Kul\kH )
+1
(169)
x X |: x i x/ N :|T
krile — | L a0 L ek
where, | | | , and let
I —L e=W
n k+1 , than
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Lyl p
L+1\k =ve ff k\k ) \k -1 Nd k
Z
2 s r T,
~wa, [ Fs, , (h (xkk_l)) Nyd| Fx
k
T X |~
i T k|RT
( k+1k\k 1H) —I_\I’(D ff Z f (%)Nsdx k
k
- T T
_\I’q)kff(xk)<h (xl)) Nsd Kk-i}lk‘k 1H )
wv' !
+\Il[Qk S ( k+1k\k 1) ]
+L PX’L
(170)
- f x/x!
X, xk"kfl By Ef\k I
where, N, = N 5|, R AT y
Yl | X ( kafl) é\rkil
From the definition of )~( ke s
T
Pk+1\k _[Pkii“k, . ,E{i&} . Obviously the information in

Pk)f;‘  has been calculated in the one-step prediction process,
so we can get the formula (169). Taking (169) into (168)
yields L,,, . Taking (168) and L,,, into (166) yields

corrected covariance. Taking Lk 41 into (34) yields corrected

estimation.
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