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Abstract

Phonocardiography is a technique for recording iatetpreting the mechanical activity of the hedie recordings
generated by such a technique are called phonaocpedins (PCG). The PCG signals are acoustic waweslieg a
wealth of clinical information about cardiac healffhey enable doctors to better understand heamdso when
presented visually. Hence, multiple approaches he&en proposed to analyze heart sounds based orréd0(lings.
Due to the complexity and the high nonlinear natfrthese signals, a computer-aided technique baisdtigher-order
statistics (HOS) is employed, it is known to beraportant tool since it takes into account the tinearity of the PCG
signals. This method also known as the bispectrechrtique, can provide significant information tchance the
diagnosis for an accurate and objective interpetaif heart condition.

The objective expected by this paper is to tesa ipreliminary way the parameters which can makgogsible to
establish a discrimination between the various agyrof different pathologies and to characterize tardiac
abnormalities.

This preliminary study will be done on a reducedgke (nine signals) before applying it subsequetdla larger
sample. This work examines the effectiveness afigusiie bispectrum technique in the analysis ofgathological
severity of different PCG signals. The presentedra@gch showed that HOS technique has a good paltefoti

pathological discrimination of various PCG signals.

Key words: phonocardiography; non-linearity; recordings;h@gorder statistics; bispectrum.

Introduction

Cardiovascular diseases (CVDs) or heart disordees the
major cause of morbidity and mortality for men, wemand
people of most ethnic and racial groups worldwitiéany
people die each year from CVDs than from any otlisease.
According to the latest report from the World Hbalt
Organisation (WHO), deaths due to CVDs have reaelradst
17.9 million worldwide® Early detection of CVDs is therefore
of paramount importance and is carried out throoggdical
devices for screening such as echocardiographemeiping
the heart sounds by a cardiologist during ausdoitat
Auscultation is the action of listening to the msighat occur
inside the body to make a diagnosis. However, tiayais of
cardiac sounds by auscultation, based solely omdingan ear,
remains insufficient for a correct diagnosis of telisease and
for medical doctors to obtain all the informatiaiated to the
mechanical activity of the hedrt.

Nowadays, the vast technological explosion pravidseful
tools for understanding and
pathological heart sounds and murmurs. Considerefitets
have been devoted to exploring the sounds prodtlwedigh

recognizing normal and

cardiac structures by means of a simple technigaepely,
phonocardiography. Phonocardiogram is a partiqulageful
diagnostic tool to detect and record cardiac souR@$ signal
is a graphic record of acoustical waves that thatheroduces
during a cardiac cycle. The analysis of PCG signalsg
advanced computer-based signal processing tectmigasa
provide clinicians with quantitative and qualit&iinformation
about the heart condition. This information carthee intensity
of the heart sound, its location, frequency, quadind rhythm
in the cardiac cycle.

In fact, the PCG signals are characterized by pwmocipal
acoustic events. The first heart sound (S1) is awmeg of
several high components. It is the result of thesate of
atrioventricular (mitral and tricuspid) valvésLike S1, the
second heart sound (S2) is also composed of manpa@oeents
and its origin is attributed to the closure of thertic and
pulmonic valves. Apart from these two principal sounds,
additional sounds may also be perceived such asnaorar
Heart murmurs are defined as sustained audiblesdisat are
produced during the cardiac-beat cytle.
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In the most recent studies, several techniques raathods features were calculated from the bispectral dgm@sitay based
have been proposed to study the PCG signal in ¢odenovide on the work§* from the non-redundant regida (illustrated
an aiding tool to help clinicians diagnose hearbbpems. in Figure 1), also known as the principal domain.
Meziani et al. proposed a set of features usingDlserete Linear features corresponding to the amplitudengha have
Wavelet Transform (DWT) to discriminate betweeniwvas been used commonly to discriminate between sinsibactra.
heart sound signafs. For this purpose, the mean {M), amplitude variability (A,

In this preliminary study, we focus on the anayef the maximum (Max), and minimum (Min) of the bispectrum
nonlinear characteristics of PCG signals througHSH@ethod. magnitude have been proposed recénil}* and described
Here, Bispectral-based features have been quantimddare below.

important for quantifying changes between normald an
pathological heart sounds. We will also provide ivas
bispectral graphs for different cardiac sounds.

1.The mean-magnitude of the bispectrum is defined by
Equation 2

Mamp =+ ZalB(fi, )] Eq. 2

2. Bispectrum-magnitude variability is given Bguation 3:

Materials and Methods
Materials: Bispectral analysis

Third-order spectral analysis or bispectrum is ohthe robust Avar = %Z”(lB(fl'fZ)l ~ Maye) Eq. 3
methods applied for non-linear signal analysthe Bispectral 3.The maximum and the minimum of the bispectrum
analysis is a modern signal processing techniqae ghrmits magnitude are defined Bquation 4 andEquation 5:

the extraction of non-linear characteristics andcks the

deviation of data from Gaussianftythe bispectrunB(f,,f,) of Max = max X0 (BI(f1, f2) Eq. 4

a real proces$x(k)} represents the two-dimensional Fourier Min = min).,|B(f1, )| Eq.5

transform of the third-order correlation functiof tbe signal

> ) In an attempt to measure the regularity or irregiylaf PCG
and is given b¥quation 1:

signals from bispectral plots, we proposed bispg¢entropies.
B(f1. f2) = EIX(f)X ()X (f1 + f2)] Eq. 1 They have been previously used for automatic disiogtion
of biomedical signal$;* and were employed in this work.
4.Bispectral entropies BE1, BE2, and BE3 are catedland
expressed bquations 6 8 as follows:

Where B represents the bispectrum evaluated at the two
frequenciesf,; and f,, X(f) is the Fourier transform of the
signal x(nK), ~ denotes the complex conjugation and E[.]

represents the statistical expectation operatardEterministic BE1 =-3,p,log p, Eq. 6
sampled signals, X(f) is the discrete-time Foutiansform and B(fuf2) ) . .
is computed as the discrete Fourier transform (DE&sing the wherep,, = lel;(lffle)l {2: the non-redundant region kig. 1.
FFT algqrithm. Frequgncies can be normalized tbdieeen 0 BE2 = —Y,,q, log q, Eq.7
and 1 using the Nyquist frequency. ,

Note that the bispectrurB(f;, f;) is a function of two wheregq,, =%ﬂ: the non-redundant region fiig. 1.
frequencies, and therefore it can detect the plasmpling
between two frequenciésUnlike the power spectrum, which ~ BE3 = —X.mlogr, Eq. 8
suppres_s the p_hase information. and can only d(esdjmar wherer, = K 2: the non-redundant region fig. 1
mechanisms, bispectrum exclusively measures theslation Lo lBULfP
of phases between the frequency compongptg, and 1+
f2). The bispectrum is calculated in the triangulaga, *
Namely the non-redundant region (ségure 1), This non-
redundant region is defined with the trianglg @, < f; < f1+
Fo< 17910

To_s —

Experiment i
HOS-Features extraction
Higher-order spectra are the spectral representat higher- Q
order moments or cumulants of a sighalThe third-order | -
spectrum, also called bispectrum can be used éoamialysis of 05 1 .
PCG signals. In order to discriminate the distiifnut of fi —»
bispectrum plots of these signals, a set of quativé features Figure 1. Non-redundant region ) for computation of the

must be defined. In this paper, several bispectrased bispectrum
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The normalization in Equations 6 8 above shows that
entropies were computed for a parameter that ledgden 0
and 1 (as required of probability).

Furthermore, bispectral phase entropy is also tieth in
order to measure the degree of data disorder, anputed
inside the bispectrum aréh
5. The phase entropy is given Byuation 9:*°

P, =Y, p(¥)log p(¥,) Eq. 9

where ¥, = {®|-t+ 2ntn/N<® < —nm+2n(n+1)/N} ,
n=01.. N—1,

p(¥n) = 1 Ta 1(P(b(fy, f2)) € W)

whereQ is the region as shown Figure 1, L corresponds to
the total number of points within the non-redundeagion, @
is the phase angle of the bispectrum and 1(.) seferthe
function which obtains a value of 1 whénis within the range
bin ¥, depicted irEquation 10.*°

In our work, we have also employed the Weightedt€&eof
Bispectrum (WCOB) in order to characterize the moimaf
the plot”*® From the non-redundant region, the WCOB are
derived and shown as follow:
6. the sum of logarithmic amplitudes of the bispactr

Hy = Yolog (BI(f1, f2)11) Eqg. 11

7. the sum of logarithmic amplitudes of diagonal elatean
the bispectrum:

Hy = Yo log (Bl(fi, fi) Eq. 12

8.the first-order spectral moment of amplitudes aigdnal
elements in the bispectrum:

Hy = ¥k=1k log (BI(fi fi))) Eqg. 13

Yogesh CK et al. employed these features (H1-H3) to
recognize emotion and stress from a speech stnal.

9. The following equations are used to calculate WEOB
and the absolute values of WC8Rsee Equation 14 and
Equation 15):

Eq. 10

20 iB(.j) 2o iB@)I

fim = S amwp om = Tawin Ea. 14
o=, St o1
fim = Weopx

fom = Wcoby

fam = aWeopx

fam = aWeopy

Note thati, j, denote the frequency bin index within the non-
redundant regionfi, fon represent the WCOB anidy,, fim
represent the absolute values of WCOB.
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Energetic ratio
To check the validity of the HOS-based parametsesln this
work, the energetic ratio (ER) is selected as @regice
parameter. It has been shown that ER is a reli@dnlameter for
monitoring the pathological severity of the hédff High
amplitude heart murmurs indicate a worrying sitnatsuch as
those in aortic stenosis and drum rumble.

ER provides an idea of the relative energy of ieard
murmurs relative to other heart sounds S1 and 82sagiven
by Equation 16:

E;: heart sounds energy

RE = —22— x 100 where {
E, : murmur energy

Eq+E;

} Eq. 16

The values given by the above equation ensurethieaER is
calculated as a percentage. A value of 100% casrefspto the
complete dominance of murmurs over heart sounds.

In this paper, previously classified signals cspanding to
normal and abnormal cardiac sounds have been Tiked®CG
recordings database was obtained ffof.

Results and Discussion

A phonocardiogram is a common clinical test usedh&asure
the mechanical activity of the cardiac valves dyiine systole
and diastole of the heart cycle. PCG is one of mhast
important tests used by practicians to evaluatdiaarhealth
with suspected or known cardiac disease. In ordldretp the
diagnosis and management of cardiac disorders, raleve
techniques such as STFT and DWT have been proparsed
applied for characterizing PCG signals. This paptoduces
an analysis of the different PCG signals based ispelotrum.
Another good advantage, bispectrum preserve phase
information of the signal, which is important faapturing the
changes in the quadratic phase coupling among ifferent
component of the signal.

In this preliminary study, the validation of theethod is
evaluated and proved using nine PCG signals orgdnan
three distinct groups, the PCG signals of the tlyeeips are
enlisted in thérable 1

Table 1. The values of the energetic ratio (RE) of theifferent
phonocardiogram signals used

PCG signals Abbreviation RE (%)
PCG signalswithout murmurs
Normal N
Innocent murmur M
Coarctation of the aorta CA
PCG signalswith clicks
Ejection click EC 1.548
Atrial gallop AG 2.826
Opening snap oS 13.175
PCG signalswith murmurs
Aortic stenosis AS 18.365
Drum rumble DR 44.075
Aortic Regurgitation AR 51.409
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1.The first group: PCG signals without murmurs shawa
morphology similar to that of the normal PCG sigriddrmal
(N), Innocent Murmur (IM), and Coarctation of therta (CA)
as given irFigure 12

2.The second group: PCG signals with short murmurskjc
Ejection Click (EC), Atrial Gallop (AG), and OpeirSnag
(OS) (sed-igure 14).

3. The third group: PCG signals with additive murmukertic
Stenosis (AS), Drum Rumble (DR), and Aortic Regiatiin
(AR) (seeFigure 16).

For the data acquisition, an electronic stethoscip
employed to record the PCG signals. The heart
recordings obtained were converted to digital dghg using
a 16bit A/D converter at a sampling frequency fs= 8HZ

The PCG signals are segmented into frames andedivitto
256 points with an overlap of 50% (1p8int segments). Tt
bispectrum was generated based on de direct fastief
transform and its graph was obtained using the elod
function available in ta Matlab HOSA toolbox.21 Then tl
bispectrumbased features for each frame are extracted
averaged over all frames at the nedundant regiof.

@)

Bispectrum estimated via the direct (FFT) method
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High order estimation using bispectrum
Figures 2-10show(a) the magnitude of the bispectrum &(b)
the twodimensional bispectral contour plot of typical nah
(N), innocent murmur (IM), coarctation of the aoit@A),
Ejection click (EC), atrial galop (AG), opening gné0S),
aortic stenosis (AS), drum rumble (DR), and ac
regurgitation (AR) respective. These plots are symmetric.
For the heart sounds signals of the first grouprria,
innocent murmur, and coarctation of the aorta). phaks ir
the bispectrum of the signal indicate the preseofic@hase
coupling. Figure 2 (a) and (b) represent the bispectrum
magnitude and its contour plot respectively for th@mal
heart sound signal. It can be seen frFigure 2(a) that the
bispectrum of normal heart sound has a main lokennor-
redundant region of significant magnitude. Furmore, the
bispectrum shows a magnitude distribution in tt-frequency
range from 0.04 to +0.04. The magnitude of the bispect
and its contour plot in the case of the innocentmun (IM)
are shown inFigures 3(a) and 3(b), respectively. It can be
obseved that the distribution of the bispectrum magphé is
different from the normal PC

(b)
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Figure 2. Typical plots for Normal (N) PCG: (a) Bispectrum,(b) Contour of (a)
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Figure 3. Typical plots for Innocent murmur (IM) PCG: (a) Bispectrum, (b) Contour of (a)
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Figure 4. Typical plots for Coarctation of the aorta (CA) PCG: (a) Bispectrum, (b) Contour of (a)
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Figure 5. Typical plots for Ejection click (EC) PCG: (a) Bispectrum, (b) Contour of (a

Similarly, Figures 4(a) and 4(b) show the magnitude of tt
bispectrum and its contour plot of the coarctatidrihe aorte
(CA) signal. InFigure 4(a), the bispectrum plot presents
distribution of magnitude in the bifrequency rariggher thar
then the normal and innocent murmur signals. Using
normal PCG as a benchmark, the range of the disiib of
the bispectrum magnitude has graiywidened

In addition, it can be noted that the bispectrunivibind CA
presents a morphological similarity to that of tttgmal cast
Figures 5-7show the bispectrum analysis of PCG signals
short murmurs (EC, AG, OS). In particul&igures 5 (a) and
(b) depict the magnitude of the bispectrum and itsmaninap
for the case of the ejection click, respectivelyhds been note
that the distribution of the bispectrum on the pldafy, f2)
shows a principal peak in the noedundant region ai other
regions of symmetry. As can be seen, the bispectrsi
distributed at phasesupled frequencies betwe-0.015< fy, f,
> +0.015. The bispectrum magnitude representatioatiéél
gallop (AG) and its contour plot are depictedFigures 6(a)

77

and 6(b). It can be observed that the bispectrum exhibits
peaks in the bifrequency range. In the case of iogesnar
(0OS) PCG (sed-igure 7(a) and 7(b)), it can be shown that
bispectrum patter is almost similar to that of ejection cli
signal. It can alste seen thethe bispectrum magnitude of OS
haspeaks at high frequencies whereas no peaks wengl fon
high frequencies for EC and AG signals. One notited the
signals of this group show a spread of bispectruagnitude ir
the bifrequency plane lowdhan that of the first group. The
magnitude of the bispectrum is mainly betwe-0.015<f1,
f2> +0.015 which is significantly lower than that b&tnormal
PCG. This signifies that all three signals canlbesified in the
same group.

For the PCG sigals of the third group AS, DR and AR he
sounds signals are selecté&igure 8(a) depicts the bispectrum
magnitude plot andrigure 8(b) represents the corresponding
bispectrum contour plot for aortic stenosis (ASYR@ can be
noticed from the figure that the magnitude of thepbctrum
plot provides peaks that are moved to lower freqiss
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Figure 6. Typical plots for Arial gallop (AG) PCG: (a) Bispectrum, (b) Contour of (a
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Figure 7. Typical plots for Opening snap (OSPCG: (a) Bispectrum, (b) Contour of (a)
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Figure 8. Typical plots for Aortic stenosis(AS) PCG: (a) Bispectrum, (b) Contour of (a
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Typical plots for Drum rumble (DR) PCG: (a) Bispectrum, (b) Contour of (a)
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Figure 10. Typical plots for Aortic Regurgitation (AR) PCG: (a) Bispedrum, (b) Contour of (a)

When observing bispectral amplitude distribution,can be
seen that the bispectrum peaks are in the bifrexyuesinge
between -0.0%k f;, f,> +0.01.Figures 9(a)and9(b) show the
bispectral magnitude of the drum rumble () signal and its
contour plot representation. It can be observet lispectra
peaks appear within the bifrequency plane-0.015< f;, f, >

+0.015. Figure 10(a) and 10(b) illustrate the bispectrur
magnitude and its corresponding contour plota patient with
aortic regurgitation (AR). One can clearly obsettvat there i
a larger magnitude distribution than in the cages®and DR,
where the magnitude of the bispectrum plot has pedkhe
bifrequency extent (range of frequencies)-0.035< f;, f, >

+0.035. compared with the normal case, the PCGE®f the
third group exhibit bispectral peaks in the lowrdifuency
range. Thus, these bispectrimased plots were able to anal
the nonlinearity of the PCG signals, and are thereforsetful

tool for discriminating between the various headrabsignals
These bispectrum plots are unique presentations fgiven
cardiac sound recording.
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Higher-order parameters extraction

The aim of this article is to study the phonocagdéon signals
(PCG) pesenting a different cardiac severity. To distis
the difference between the PCG signals and thusatst the
evolution of their pathological severity, histoganof the
variation of the abovesentioned parameters are given
Tables 2-4 In these thles, for each group of PCG sign:
only those HOSsased parameters that gave a good correl
with the increase in the severity of the pathologgre
displayed.

For the HOS features obtained from the bispectrtime,
results presented ifiable 2 can be schematically summariz
using the histograms iRigures 11to better identify each PCG
signal by welldefined amplitude. Figures 11(a-i) are
respectively the histograms of the mean of the dudd, the
maximum, the phase entropy, the bispectntropies (BEL,
BE2, and BE3) and the absolut of the weighted cewiteéhe
bispectrum (WCOBx and WCOBY) according to the défe
PCG signals of the first group (N, IM, and C
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According to the results found, for signals wittmarphology Table 2. The HOS parameters values extracted from PCGignals
similar to that of the normal PCG, it can be seen that of the second group (normal (N), innocent murmur (M), and
parameters mentioned as the mean of the bispectnoplitude coarctation of the aorta (CA)).
Mamp and the phase entropy Pe can be used. Thechisp- cont PCG signals without murmurs
based parameters variation clearly shows that ¢theal PCG eatures name N ™ CA
recording (N) has the lowesahe which is completely norm Mamp 0.005 0.014 0.028
meanwhile the highest value goes for the CA sic Avar -014: -0.414 -0.843
Consequently, this allowed us to conclude that ittrecent Max 0.024 0.126 0616
murmur case is less serious than the coarctaticheofiorta BEL 0.695 0.519 0.395
BE2 0.395 0.341 0.229
These _calculated parameters clea_rly show theerenc_:e that BE3 0.307 0276 0.139
can exist between the first group signals and hejuedify the Pe 1.206 2148 2.421
bispectral analysis as the most reliable methodnafysis tc absolut Wcobx 1821 10.474 6.493
assess the cardiac pathological severity. Thisisamplete absolut Wcoby 6.254 5.155 4.245
accordance with hat has been found by using DWT met.”
(a) (b) (c) (d)
0.03 IM CA 0.8 3
0
a 0.02 . 06 o2
1= -0.2 é it
@ = 0.4 E?..
< 001 I 5 0.4 s 1 I
= .
< -0.6
0 . 08 o — B 0
IM CA '1 N IM CA IM CA
PCG signals PCG signals PCG signals PCG signals
(e) (f) (8) (h)
5 8 3 0.2
4 6 & 0.15
o3 m 2 9
[13]
£ Q4 s g 01
— — 1 r
; . l I l - I I
0 0 0 0
IM CA IM CA IM CA IM CA
PCG signals PCG signals PCG signals PCG signals
(i)
0.25
Z 02
S 0.5
%-; 0.1
= 0.05
0
IM CA
PCG signals

Figure 11. (a-i) -bispectral parameters variation extracted from PCGsignals of the first group (normal (N), innocent mumur (IM), and
coarctation of the aorta (CA)), ((a) the mean of th amplitude Mamp, (b) bispectrum variability Avar, (c) maximum of the bisfectrum Max,
(d-f) inverse of normalized bispectral entropy 1/BE1,BE2, and 1/BES3, (g) phase entropy Pe, (h, i) inversd# weighted center 1/awCOBX,
1/awCOBYy).
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Figure 12. The PCG signal of the first group ((a) namal (N), (b) innocent murmur (IM), and (c) coarctation of the aorta (CA))

Concerning the selected PCG signals of the secooubgEC,
AG, and OS), the obtained HOS-based features haem b
illustrated inTable 3. Figures 13(a-g)give histogram plots of
the amplitude variation of the bispectral entropiB&1 and
BE2), the phase entropy, the sum of logarithmic langes,
the first-order spectral moment of amplitudes o&gdinal
elements (H1 and H2), and the weighted center & th
bispectrum (WCOBx and WCOBY), respectively as aslithe
graphs showing the variation of the energetic mat{&R).
According to previous work?the ER parameter is known to
be one of the most reliable parameters in the asitim of the
murmur energy. From the graphs illustrating theiateim of
the energetic ratio inFigures 13 (a-g) it is noticed a
progressive increase in the variation of the ERrelthe OS
signal has the greater value of 13.18% followedthry AG
signal 2.83% while the EC signal presents the lowedue
1.55% that allows considering this latter to be ld®s severe
compared to the other cases.

As expected, it can be seen that the selected pD&neters
can serve to assess the pathological severityeofttee PCG
signals in this group as they show a good cormiatvith the
variation in the amplitude of the energetic rattas observed
that these parameters evolve progressively fromejketion
click (EC) signal to the opening snap (OS). Thaiszan be
deduced that bispectrum parameters fully servdfterentiate
between these three different signals (EC, AG,@8)

For the analysis of the PCG signals presentingrgoortant
murmur (PCG of the third group AS, DR, and AR), the
bispectrum algorithm was also computed and the
corresponding parameters were extracted and displag
Table 4. For this group, five parameters have been coresitle
the mean of the amplitude, the amplitude variahilithe
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maximum, the bispectral entropy BE3, and the pleadsopy.
Figures 15 (a-e)llustrate the histograms that evolve according
to the amplitude variation of the selected HOS patars for
this heart sounds signals group.

These figures also depict the variation of thergetic ratio
which can be used as a reference parameter in ¢imiaring
of cardiac pathology. It can be seen that the AGRR signals
(Figure 16) present lower values 18.37% and 44.07%,
respectively than that of AR signal which reach&g15%. One
can clearly notice that the HOS-based parametemserh
evolve progressively from the aortic stenosis (Aighal to the
aortic regurgitation (AR). Consequently, the HOSdzh
parameters can faithfully give a clear view of médlgical
severity evolution as they show a relative propoadlity with
the variation of the energetic ratio (ER).

Table 3. The HOS parameters values extracted from PCGignals
of the second group (ejection click (EC), atrial gdbp (AG), and
opening snap (0S)).

PCG signals with clicks

Features name

EC AG oS
BE1 0.7196 0.7967 0.7972
BE2 0.0875 0.1079 0.4857
Pe 3.5786 3.5769 3.4528
H2 -337.0511 -332.0326 -254.0609
H3 -1011.1413 -996.0846 -762.1674
Wcobx 9.4133 20.2133 22.0821
Wcoby 1.4912 3.03655 7.1826
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Figurel3.(a-g) - bispectralparameters variation extracted from PCG signals ofhe second group (ejection click (EC), atrial gallogAG), and
opening snap (0OS)), ((a) normalized bispectral entpy BE1, (b) normalized bispectral squared entropy B2, (c) inverse of phae entropy
1/Pe, (d) sum log amplitude of diagonal element HZge) first order spectral moment of amplitude of dagonal element H3, (f, g) weghted
center WCOBXx, WCOBY), and the energetic (ER) ratio ariation

(a)
2 1 T T T T T
E
2o MWW i WU\N‘* i W\]W i
5 1 | | ! I I
1 15 2 25 3
time (s) % 104
(b)
2 1 T T T T
= \ MA
1S
T _q I I | I I
0.5 1 1.5 2 25
time (s) « 104
C
(4] 1 T | ( ) T T
E
£0 Wf\w 'WM OMN& ’\N\H* W :\N Wv
1S
s 4 I | I ! |
05 1 15 2 25
time (s) % 104

Figurel4 — The PCG signals of the second group ((@)ection click (EC), (b) atrial gallop (AG), and (c)opening snap (OS)),
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Figurel5. (a-e) -bispectral parameters variation extracted from PCGsignals of the third group (aortic stenosis (AS), Wim rumble (DR),
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Figure 16 —The PCG signals of the third group ((a) aortic stensis (AS), (b) drum rumble (DR), and (c) aortic regugitation (AR)) .
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Table 4. The HOS parameters values extracted from PCGignals
of the third group (aortic stenosis (AS), drum rumbe (DR), and
aortic regurgitation (AR)).

Table 5. The HOS parameters and the energetic ratiogpameter
values extracted from the mitral prolapse PCG (MP).

PCG signals
PCG signals with murmurs Features name MP1 MP2 MP3 MP4
Features name
AS DR AR ER 14,85 23,53 56,29 75,48
Mamp 3.298E-04 0.005 0.017 H1 1.1115 1.2313 1.6000 3.7904
Avar -5.249E-04 -0.163 -0.502 H2 154.8896  176.4188 229.4135 578.5698
Max 0.001 0.082 0.319
BE3 0.026 0.074 0.154
Pe 0.107 3.375 3.579
(a) (b)
? 5320 &7 0 = 600 53.29 0 <
— — [ —
T2 40 = T 400 / 40 =
23.53 = 23.53 =
14.85 - I 20 209 85 “o | I 20
0 0 0 0
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Figure 17 — The variation of the moment of the orde(H1 and H2) and the energetic ratio extracted fronthe Mitral prolapse PCG (MP1,

MP2, MP3, and MP4)

Severity degree analysis of the pathological Phonocardiogram
signals

In this part of our article we will carry on an &yss of the
severity degree of pathological phonocardiogranmalg of a
selected case with the calculation of certain petars
obtained from the application of the HOS
(bispectrum) such as moments of order (H1 and H2).

The PCG signal chosen here in our application igraM
Prolapse (MP) with four different and ascending esiy
degrees (MP1, MP2, MP3 and MP4). This growth waslena
possible by the use of the ER (Energetic Ratioqupater.

These two parameters H1 and H2 have been caldu@asee
if they can follow the evolution and variation diet pathology
(seeTable 5). From the values obtained and givernTable 5,
it is clear that the variation of the two chosemapaeters H1
and H2 effectively follow the variation of the patbgy (as
does the ER parameter).

Under these conditions, these two parameters earséd not
only to differentiate between different PCG signiailg also to
detect the degree of severity and its evolutionthie same
pathology.

To be effective, this must be verified againsteotPCG
signals of different degree of pathological severifhis
obviously requires a more thorough and targetediaitapn of
these pathologies or a rich and varied databaseetsoes
difficult to find.
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technique

Conclusion

In this work, the bispectral technique has beemiarirout to
analyse the cardiac sound signal. The bispectruoh it
derived features were computed and employed
discrimination among the PCG cases. The bispectraph
representations were able to provide a unique patte each
type of PCG signal. It is found that each of theaP<ignals has
a unique signature in bispectrum domain which fectifvely
used for the classification into different groujd¢ée have also
studied the different HOS features that can be usethe
analysis of PCG signals. By using the energetioras a
standard parameter, the derived bispectrum parasnetew a
relative proportionality with the increasing evadut of the
cardiac severity as they are able to increase heremt way
with the growing importance of the heart pathology.

We can therefore affirm that these preliminary utss
obtained from this study on a small nhumber of digraut
nevertheless of very different severity are vergnpising. A
future application on a larger sample may refirerésults and
comfort the user in the use of this method to disiciate
between various pathologies and ensure the impmtahthe
severity involved.
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