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Abstract 
Phonocardiography is a technique for recording and interpreting the mechanical activity of the heart. The recordings 
generated by such a technique are called phonocardiograms (PCG). The PCG signals are acoustic waves revealing a 
wealth of clinical information about cardiac health. They enable doctors to better understand heart sounds when 
presented visually. Hence, multiple approaches have been proposed to analyze heart sounds based on PCG recordings. 
Due to the complexity and the high nonlinear nature of these signals, a computer-aided technique based on higher-order 
statistics (HOS) is employed, it is known to be an important tool since it takes into account the non-linearity of the PCG 
signals. This method also known as the bispectrum technique, can provide significant information to enhance the 
diagnosis for an accurate and objective interpretation of heart condition.  
The objective expected by this paper is to test in a preliminary way the parameters which can make it possible to 
establish a discrimination between the various signals of different pathologies and to characterize the cardiac 
abnormalities.  
This preliminary study will be done on a reduced sample (nine signals) before applying it subsequently to a larger 
sample. This work examines the effectiveness of using the bispectrum technique in the analysis of the pathological 
severity of different PCG signals. The presented approach showed that HOS technique has a good potential for 
pathological discrimination of various PCG signals. 
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Introduction 

Cardiovascular diseases (CVDs) or heart disorders are the 
major cause of morbidity and mortality for men, women, and 
people of most ethnic and racial groups worldwide. Many 
people die each year from CVDs than from any other disease. 
According to the latest report from the World Health 
Organisation (WHO), deaths due to CVDs have reached almost 
17.9 million worldwide.1 Early detection of CVDs is therefore 
of paramount importance and is carried out through medical 
devices for screening such as echocardiographs or perceiving 
the heart sounds by a cardiologist during auscultation. 
Auscultation is the action of listening to the noises that occur 
inside the body to make a diagnosis. However, the analysis of 
cardiac sounds by auscultation, based solely on the human ear, 
remains insufficient for a correct diagnosis of heart disease and 
for medical doctors to obtain all the information related to the 
mechanical activity of the heart.2 
 Nowadays, the vast technological explosion provides useful 
tools for understanding and recognizing normal and 
pathological heart sounds and murmurs. Considerable efforts 
have been devoted to exploring the sounds produced through 

cardiac structures by means of a simple technique, namely, 
phonocardiography. Phonocardiogram is a particularly useful 
diagnostic tool to detect and record cardiac sounds. PCG signal 
is a graphic record of acoustical waves that the heart produces 
during a cardiac cycle. The analysis of PCG signals using 
advanced computer-based signal processing techniques can 
provide clinicians with quantitative and qualitative information 
about the heart condition. This information can be the intensity 
of the heart sound, its location, frequency, quality and rhythm 
in the cardiac cycle. 
 In fact, the PCG signals are characterized by two principal 
acoustic events. The first heart sound (S1) is composed of 
several high components. It is the result of the closure of 
atrioventricular (mitral and tricuspid) valves.3 Like S1, the 
second heart sound (S2) is also composed of many components 
and its origin is attributed to the closure of the aortic and 
pulmonic valves.3 Apart from these two principal sounds, 
additional sounds may also be perceived such as murmurs. 
Heart murmurs are defined as sustained audible noises that are 
produced during the cardiac-beat cycle.4 
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In the most recent studies, several techniques and methods 
have been proposed to study the PCG signal in order to provide 
an aiding tool to help clinicians diagnose heart problems. 
Meziani et al. proposed a set of features using the Discrete 
Wavelet Transform (DWT) to discriminate between various 
heart sound signals.5  
 In this preliminary study, we focus on the analysis of the 
nonlinear characteristics of PCG signals through HOS method. 
Here, Bispectral-based features have been quantized that are 
important for quantifying changes between normal and 
pathological heart sounds. We will also provide various 
bispectral graphs for different cardiac sounds.  
 

Materials and Methods  

Materials: Bispectral analysis 
Third-order spectral analysis or bispectrum is one of the robust 
methods applied for non-linear signal analysis.6 The Bispectral 
analysis is a modern signal processing technique that permits 
the extraction of non-linear characteristics and tracks the 
deviation of data from Gaussianity.7 The bispectrum B(f1,f2) of 
a real process {x(k)} represents the two-dimensional Fourier 
transform of the third-order correlation function of the signal 
and is given by Equation 1: 

����, ��� = 	
�����������∗��� + ���� Eq. 1 

Where B represents the bispectrum evaluated at the two 
frequencies �1 and �2, X(f) is the Fourier transform of the 
signal x(nK), * denotes the complex conjugation and E[.] 
represents the statistical expectation operator. For deterministic 
sampled signals, X(f) is the discrete-time Fourier transform and 
is computed as the discrete Fourier transform (DFT) using the 
FFT algorithm. Frequencies can be normalized to be between 0 
and 1 using the Nyquist frequency. 
 Note that the bispectrum B(f1, f2) is a function of two 
frequencies, and therefore it can detect the phase coupling 
between two frequencies.8 Unlike the power spectrum, which 
suppress the phase information and can only describe linear 
mechanisms, bispectrum exclusively measures the correlation 
of phases between the frequency components �1, �2 and (�1+ 
�2). The bispectrum is calculated in the triangular area Ω, 
Namely the non-redundant region (see Figure 1), This non-
redundant region is defined with the triangle 0 ≤ �2 ≤ �1 ≤ �1+ 
�2≤ 1.7,9,10 

 

Experiment 

HOS-Features extraction 
Higher-order spectra are the spectral representations of higher-
order moments or cumulants of a signal.11 The third-order 
spectrum, also called bispectrum can be used for the analysis of 
PCG signals. In order to discriminate the distribution of 
bispectrum plots of these signals, a set of quantitative features 
must be defined. In this paper, several bispectrum-based 

features were calculated from the bispectral density array based 
on the works13,14 from the non-redundant region Ω (illustrated 
in Figure 1), also known as the principal domain. 
 Linear features corresponding to the amplitude changes have 
been used commonly to discriminate between similar spectra. 
For this purpose, the mean (Mamp), amplitude variability (Avar), 
maximum (Max), and minimum (Min) of the bispectrum 
magnitude have been proposed recently9,13,14 and described 
below. 
 

1. The mean-magnitude of the bispectrum is defined by 
Equation 2: 

���� = �
�∑ |����, ���|�  Eq. 2 

2. Bispectrum-magnitude variability is given by Equation 3: 

���� = �
�∑ �|����, ���| −� ����� Eq. 3 

3. The maximum and the minimum of the bispectrum 
magnitude are defined by Equation 4 and Equation 5: 

��� = ��� ∑ ��|���, ���|�  Eq. 4 

�� = �� ∑ |����, ���|�  Eq. 5 

In an attempt to measure the regularity or irregularity of PCG 
signals from bispectral plots, we proposed bispectral entropies. 
They have been previously used for automatic discrimination 
of biomedical signals,9,13 and were employed in this work. 
4. Bispectral entropies BE1, BE2, and BE3 are calculated and 
expressed by Equations 6- 8 as follows: 

�	1 = −∑ "# $%& "##  Eq. 6 

where "# = |'�(),(*�|
∑ |'�(),(*�|+

 ,: the non-redundant region in Fig. 1. 

�	2 = −∑ .# $%& .##  Eq. 7 

where .# = |'�(),(*�|*
∑ |'�(),(*�|*+

 ,: the non-redundant region in Fig. 1. 

�	3 = −∑ 0# $%& 0##  Eq. 8 

where 0# = |'�(),(*�|1
∑ |'�(),(*�|1+

 ,: the non-redundant region in Fig. 1. 

 

 

Figure 1. Non-redundant region (Ω) for computation of the 
bispectrum 
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The normalization in Equations 6- 8 above shows that 
entropies were computed for a parameter that lies between 0 
and 1 (as required of probability). 
 Furthermore, bispectral phase entropy is also quantized in 
order to measure the degree of data disorder, and computed 
inside the bispectrum area ,.  
5. The phase entropy is given by Equation 9:15 

2� = ∑ "�3#�$%&	 "�3#�#  Eq. 9 

where Ψ# = 6Φ|−π + 29 :⁄ ≤ Φ < −9 + 2π�n + 1� :⁄ 	? , 
n = 0,1, … , N − 1 ,  

"�Ψ#� = �
�∑ 1�C�D���, ���� ∈ Ψ#�F  Eq. 10 

where Ω is the region as shown in Figure 1, L corresponds to 
the total number of points within the non-redundant region, Φ 
is the phase angle of the bispectrum and 1(.) refers to the 
function which obtains a value of 1 when Φ is within the range 
bin 3# depicted in Equation 10.16 
 In our work, we have also employed the Weighted Center of 
Bispectrum (WCOB) in order to characterize the moment of 
the plot.17,18 From the non-redundant region, the WCOB are 
derived and shown as follow: 
6.  the sum of logarithmic amplitudes of the bispectrum: 

G� = ∑ $%&� ��|���, ���|�� Eq. 11 

7.  the sum of logarithmic amplitudes of diagonal elements in 
the bispectrum: 

G� = ∑ $%&� ��|��H, �H�|� Eq. 12 

8. the first-order spectral moment of amplitudes of diagonal 
elements in the bispectrum: 

GI = ∑ J $%&��|��H, �H�|�KHL�  Eq. 13 

Yogesh CK et al. employed these features (H1–H3) to 
recognize emotion and stress from a speech signal.18 
9. The following equations are used to calculate the WCOB 
and the absolute values of WCOB18 (see Equation 14 and 
Equation 15): 

��� = ∑ M'�M,N�O
∑ '�M,N�O

	�I� = ∑ M|'�M,N�O |
∑ |'�M,N�|O

 Eq. 14 

��� = ∑ N'�M,N�O
∑ '�M,N�O

	�P� = ∑ N|'�M,N�O |
∑ |'�M,N�|O

 Eq .15 

��� = QRSTU 

��� = QRSTV 

�I� = �QRSTU 

�P� = �QRSTV 

Note that i, j, denote the frequency bin index within the non-
redundant region, f1m, f2m represent the WCOB and f3m, f4m 

represent the absolute values of WCOB. 
 

Energetic ratio 
To check the validity of the HOS-based parameters used in this 
work, the energetic ratio (ER) is selected as a reference 
parameter. It has been shown that ER is a reliable parameter for 
monitoring the pathological severity of the heart.19,20 High 
amplitude heart murmurs indicate a worrying situation such as 
those in aortic stenosis and drum rumble. 
 ER provides an idea of the relative energy of cardiac 
murmurs relative to other heart sounds S1 and S2 and is given 
by Equation 16: 

W	 = X*
X)YX* × 100	[ℎ]0]	 ^	�: ℎ]�0`	a%b ca	] ]0&d	� ∶ �b0�b0	] ]0&d f	 Eq. 16 

The values given by the above equation ensure that the ER is 
calculated as a percentage. A value of 100% corresponds to the 
complete dominance of murmurs over heart sounds. 
 In this paper, previously classified signals corresponding to 
normal and abnormal cardiac sounds have been used. The PCG 
recordings database was obtained from.22,23 
 

Results and Discussion 

A phonocardiogram is a common clinical test used to measure 
the mechanical activity of the cardiac valves during the systole 
and diastole of the heart cycle. PCG is one of the most 
important tests used by practicians to evaluate cardiac health 
with suspected or known cardiac disease. In order to help the 
diagnosis and management of cardiac disorders, several 
techniques such as STFT and DWT have been proposed and 
applied for characterizing PCG signals. This paper introduces 
an analysis of the different PCG signals based on bispectrum. 
Another good advantage, bispectrum preserve phase 
information of the signal, which is important for capturing the 
changes in the quadratic phase coupling among the different 
component of the signal. 
 In this preliminary study, the validation of the method is 
evaluated and proved using nine PCG signals organized on 
three distinct groups, the PCG signals of the three groups are 
enlisted in the Table 1. 
 
Table 1. The values of the energetic ratio (RE) of the different 
phonocardiogram signals used 

PCG signals Abbreviation RE (%) 

PCG signals without murmurs 
  

Normal N 
 

Innocent murmur IM 
 

Coarctation of the aorta CA 
 

PCG signals with clicks 
  

Ejection click EC 1.548 

Atrial gallop AG 2.826 

Opening snap OS 13.175 

PCG signals with murmurs 
  

Aortic stenosis AS 18.365 

Drum rumble DR 44.075 

Aortic Regurgitation AR 51.409 
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1. The first group: PCG signals without murmurs showing a 
morphology similar to that of the normal PCG signal: Normal 
(N), Innocent Murmur (IM), and Coarctation of the Aorta (CA) 
as given in Figure 12. 
2. The second group: PCG signals with short murmurs (click): 
Ejection Click (EC), Atrial Gallop (AG), and Opening Snap 
(OS) (see Figure 14). 
3. The third group: PCG signals with additive murmurs: Aortic 
Stenosis (AS), Drum Rumble (DR), and Aortic Regurgitatio
(AR) (see Figure 16). 
 For the data acquisition, an electronic stethoscope is 
employed to record the PCG signals. The heart sounds 
recordings obtained were converted to digital signals by using 
a 16-bit A/D converter at a sampling frequency fs= 8012 Hz.
 The PCG signals are segmented into frames and divided into 
256 points with an overlap of 50% (128-point segments). The 
bispectrum was generated based on de direct fast Fourier 
transform and its graph was obtained using the bispecd 
function available in the Matlab HOSA toolbox.21 Then the 
bispectrum-based features for each frame are extracted and 
averaged over all frames at the non-redundant region 
 

(a) 

Figure 2. Typical plots for Normal (N) PCG: (a) Bispectrum, (b) Contour of (a)

(a) 

Figure 3. Typical plots for Innocent murmur (IM)
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The first group: PCG signals without murmurs showing a 
morphology similar to that of the normal PCG signal: Normal 
(N), Innocent Murmur (IM), and Coarctation of the Aorta (CA) 

The second group: PCG signals with short murmurs (click): 
Ejection Click (EC), Atrial Gallop (AG), and Opening Snap 

The third group: PCG signals with additive murmurs: Aortic 
Stenosis (AS), Drum Rumble (DR), and Aortic Regurgitation 

For the data acquisition, an electronic stethoscope is 
employed to record the PCG signals. The heart sounds 
recordings obtained were converted to digital signals by using 

bit A/D converter at a sampling frequency fs= 8012 Hz. 
The PCG signals are segmented into frames and divided into 

point segments). The 
bispectrum was generated based on de direct fast Fourier 
transform and its graph was obtained using the bispecd 

e Matlab HOSA toolbox.21 Then the 
based features for each frame are extracted and 

redundant region Ω. 

High order estimation using bispectrum
Figures 2-10 show (a) the magnitude of the bispectrum and 
the two-dimensional bispectral contour plot of typical normal 
(N), innocent murmur (IM), coarctation of the aorta (CA), 
Ejection click (EC), atrial galop (AG), opening snap (OS), 
aortic stenosis (AS), drum rumble (DR), and aortic 
regurgitation (AR) respectively
 For the heart sounds signals of the first group (normal, 
innocent murmur, and coarctation of the aorta). The peaks in 
the bispectrum of the signal indicate the presence of phase 
coupling. Figure 2 (a) and 
magnitude and its contour plot respectively for the normal 
heart sound signal. It can be seen from 
bispectrum of normal heart sound has a main lobe in the non
redundant region of significant magnitude. Further
bispectrum shows a magnitude distribution in the bi
range from -0.04 to +0.04. The magnitude of the bispectrum 
and its contour plot in the case of the innocent murmur (IM) 
are shown in Figures 3(a) and 
observed that the distribution of the bispectrum magnitude is 
different from the normal PCG.

 

 

 

2. Typical plots for Normal (N) PCG: (a) Bispectrum, (b) Contour of (a) 

 

 

 

Innocent murmur (IM)  PCG: (a) Bispectrum, (b) Contour of (a) 

Bispectrum estimated via the direct (FFT) method

-0.04 -0.03 -0.02 -0.01
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Bispectrum estimated via the direct (FFT) method

-0.04 -0.03 -0.02 -0.01

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Pol J Med Phys Eng 2021;27(1):73-85 

der estimation using bispectrum 
the magnitude of the bispectrum and (b) 

dimensional bispectral contour plot of typical normal 
(N), innocent murmur (IM), coarctation of the aorta (CA), 
Ejection click (EC), atrial galop (AG), opening snap (OS), 
aortic stenosis (AS), drum rumble (DR), and aortic 
regurgitation (AR) respectively. These plots are symmetric. 

For the heart sounds signals of the first group (normal, 
innocent murmur, and coarctation of the aorta). The peaks in 
the bispectrum of the signal indicate the presence of phase 

and (b) represent the bispectrum 
magnitude and its contour plot respectively for the normal 
heart sound signal. It can be seen from Figure 2(a) that the 
bispectrum of normal heart sound has a main lobe in the non-
redundant region of significant magnitude. Furthermore, the 
bispectrum shows a magnitude distribution in the bi-frequency 

0.04 to +0.04. The magnitude of the bispectrum 
and its contour plot in the case of the innocent murmur (IM) 

and 3(b), respectively. It can be 
rved that the distribution of the bispectrum magnitude is 

different from the normal PCG. 

 (b) 

 

(b) 

 

Bispectrum estimated via the direct (FFT) method

0 0.01 0.02 0.03 0.04

f1 (Hz)

Bispectrum estimated via the direct (FFT) method

0 0.01 0.02 0.03 0.04

f1 (Hz)
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(a) 

Figure 4. Typical plots for Coarctation of the aorta (CA) 

(a) 

Figure 5. Typical plots for Ejection click (EC) PCG: (a) Bispectrum, (b) Contour of (a)

 
Similarly, Figures 4(a) and 4(b) show the magnitude of the 
bispectrum and its contour plot of the coarctation of the aorta 
(CA) signal. In Figure 4(a), the bispectrum plot presents a 
distribution of magnitude in the bifrequency range higher than 
then the normal and innocent murmur signals. Using the 
normal PCG as a benchmark, the range of the distribution of 
the bispectrum magnitude has gradually widened.
 In addition, it can be noted that the bispectrum of MI and CA 
presents a morphological similarity to that of the normal case.
Figures 5-7 show the bispectrum analysis of PCG signals with 
short murmurs (EC, AG, OS). In particular, Figures
(b) depict the magnitude of the bispectrum and its contour map 
for the case of the ejection click, respectively. It has been noted 
that the distribution of the bispectrum on the plane (
shows a principal peak in the non-redundant region and
regions of symmetry. As can be seen, the bispectrum is 
distributed at phase-coupled frequencies between 
≥ +0.015. The bispectrum magnitude representation of atrial 
gallop (AG) and its contour plot are depicted in 
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Coarctation of the aorta (CA) PCG: (a) Bispectrum, (b) Contour of (a) 

 

 

 

PCG: (a) Bispectrum, (b) Contour of (a) 

show the magnitude of the 
bispectrum and its contour plot of the coarctation of the aorta 

, the bispectrum plot presents a 
distribution of magnitude in the bifrequency range higher than 
then the normal and innocent murmur signals. Using the 
normal PCG as a benchmark, the range of the distribution of 

ally widened. 
In addition, it can be noted that the bispectrum of MI and CA 

presents a morphological similarity to that of the normal case. 
show the bispectrum analysis of PCG signals with 

Figures 5 (a) and 
depict the magnitude of the bispectrum and its contour map 

for the case of the ejection click, respectively. It has been noted 
that the distribution of the bispectrum on the plane (�1, �2) 

redundant region and other 
regions of symmetry. As can be seen, the bispectrum is 

coupled frequencies between -0.015 ≤ f1, f2 

 +0.015. The bispectrum magnitude representation of atrial 
gallop (AG) and its contour plot are depicted in Figures 6(a) 

and 6(b). It can be observed that the bispectrum exhibits new 
peaks in the bifrequency range. In the case of opening snap 
(OS) PCG (see Figure 7(a) 
bispectrum pattern is almost similar to that of ejection click 
signal. It can also be seen that 
has peaks at high frequencies whereas no peaks were found on 
high frequencies for EC and AG signals. One noticed that the 
signals of this group show a spread of bispectrum magnitude in 
the bifrequency plane lower 
magnitude of the bispectrum is mainly between 
f2 ≥ +0.015 which is significantly lower than that of the normal 
PCG. This signifies that all three signals can be classified in the 
same group. 
 For the PCG signals of the third group AS, DR and AR heart 
sounds signals are selected. Figure
magnitude plot and Figure 8(b)
bispectrum contour plot for aortic stenosis (AS) PCG. It can be 
noticed from the figure that the magnitude of the bispectrum 
plot provides peaks that are moved to lower frequencies.
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(b) 

 

(b) 

 

t can be observed that the bispectrum exhibits new 
peaks in the bifrequency range. In the case of opening snap 

 and 7(b)), it can be shown that 
n is almost similar to that of ejection click 
be seen that the bispectrum magnitude of OS 

peaks at high frequencies whereas no peaks were found on 
high frequencies for EC and AG signals. One noticed that the 
signals of this group show a spread of bispectrum magnitude in 

 than that of the first group. The 
magnitude of the bispectrum is mainly between -0.015 ≤ f1, 

 +0.015 which is significantly lower than that of the normal 
PCG. This signifies that all three signals can be classified in the 

als of the third group AS, DR and AR heart 
Figure 8(a) depicts the bispectrum 
8(b) represents the corresponding 

bispectrum contour plot for aortic stenosis (AS) PCG. It can be 
noticed from the figure that the magnitude of the bispectrum 
plot provides peaks that are moved to lower frequencies. 

Bispectrum estimated via the direct (FFT) method
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(a) 

Figure 6. Typical plots for Arial gallop (AG) PCG: (a) Bispectrum, (b) Contour of (a)

(a) 

Figure 7. Typical plots for Opening snap (OS) PCG: (a) Bis

(a) 

Figure 8. Typical plots for Aortic stenosis (AS) PCG: (a) Bispectrum, (b) Contour of (a)
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PCG: (a) Bispectrum, (b) Contour of (a) 

 

 

 

PCG: (a) Bispectrum, (b) Contour of (a) 

 

 

 

(AS) PCG: (a) Bispectrum, (b) Contour of (a) 
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(b) 

 

(b) 

 

(b) 
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(a) 

Figure 9. Typical plots for Drum rumble (DR) PCG: (a)

(a) 

Figure 10. Typical plots for Aortic Regurgitation (AR) PCG: (a) Bispectrum, (b) Contour of (a)

 
When observing bispectral amplitude distribution, it can be 
seen that the bispectrum peaks are in the bifrequency range 
between -0.01 ≤ f1, f2 ≥ +0.01. Figures 9(a) and 
bispectral magnitude of the drum rumble (DR
contour plot representation. It can be observed that bispectral 
peaks appear within the bifrequency plane of 
+0.015. Figure 10(a) and 10(b) illustrate the bispectrum 
magnitude and its corresponding contour plot for 
aortic regurgitation (AR). One can clearly observe that there is 
a larger magnitude distribution than in the cases of AS and DR, 
where the magnitude of the bispectrum plot has peaks at the 
bifrequency extent (range of frequencies) of 
+0.035. compared with the normal case, the PCG signals of the 
third group exhibit bispectral peaks in the low bifrequency 
range. Thus, these bispectrum-based plots were able to analyze 
the non-linearity of the PCG signals, and are therefore a useful 
tool for discriminating between the various heart sound signals. 
These bispectrum plots are unique presentations for a given 
cardiac sound recording. 
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9. Typical plots for Drum rumble (DR) PCG: (a) Bispectrum, (b) Contour of (a) 

 

 

 

plots for Aortic Regurgitation (AR) PCG: (a) Bispectrum, (b) Contour of (a) 

When observing bispectral amplitude distribution, it can be 
seen that the bispectrum peaks are in the bifrequency range 

and 9(b) show the 
bispectral magnitude of the drum rumble (DR) signal and its 
contour plot representation. It can be observed that bispectral 
peaks appear within the bifrequency plane of -0.015 ≤ f1, f2 ≥ 

illustrate the bispectrum 
magnitude and its corresponding contour plot for a patient with 
aortic regurgitation (AR). One can clearly observe that there is 
a larger magnitude distribution than in the cases of AS and DR, 
where the magnitude of the bispectrum plot has peaks at the 
bifrequency extent (range of frequencies) of -0.035 ≤ f1, f2 ≥ 
+0.035. compared with the normal case, the PCG signals of the 
third group exhibit bispectral peaks in the low bifrequency 

based plots were able to analyze 
linearity of the PCG signals, and are therefore a useful 

ool for discriminating between the various heart sound signals. 
These bispectrum plots are unique presentations for a given 

Higher-order parameters extraction
The aim of this article is to study the phonocardiogram signals 
(PCG) presenting a different cardiac severity. To distinguish 
the difference between the PCG signals and thus estimate the 
evolution of their pathological severity, histograms of the 
variation of the above-mentioned parameters are given in 
Tables 2-4. In these tables, for each group of PCG signals, 
only those HOS-based parameters that gave a good correlation 
with the increase in the severity of the pathology were 
displayed. 
 For the HOS features obtained from the bispectrum, the 
results presented in Table 2 can be schematically summarized 
using the histograms in Figures 11
signal by well-defined amplitude. 
respectively the histograms of the mean of the amplitude, the 
maximum, the phase entropy, the bispectral e
BE2, and BE3) and the absolut of the weighted center of the 
bispectrum (WCOBx and WCOBy) according to the different 
PCG signals of the first group (N, IM, and CA).
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order parameters extraction 
The aim of this article is to study the phonocardiogram signals 

resenting a different cardiac severity. To distinguish 
the difference between the PCG signals and thus estimate the 
evolution of their pathological severity, histograms of the 

mentioned parameters are given in 
bles, for each group of PCG signals, 

based parameters that gave a good correlation 
with the increase in the severity of the pathology were 

For the HOS features obtained from the bispectrum, the 
can be schematically summarized 

Figures 11 to better identify each PCG 
defined amplitude. Figures 11(a-i) are 

respectively the histograms of the mean of the amplitude, the 
maximum, the phase entropy, the bispectral entropies (BE1, 
BE2, and BE3) and the absolut of the weighted center of the 
bispectrum (WCOBx and WCOBy) according to the different 
PCG signals of the first group (N, IM, and CA). 
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According to the results found, for signals with a morphology 
similar to that of the normal PCG, it can be seen that the 
parameters mentioned as the mean of the bispectrum amplitude 
Mamp and the phase entropy Pe can be used. The bispectrum
based parameters variation clearly shows that the normal PCG 
recording (N) has the lowest value which is completely normal 
meanwhile the highest value goes for the CA signal. 
Consequently, this allowed us to conclude that the innocent 
murmur case is less serious than the coarctation of the aorta. 
These calculated parameters clearly show the diff
can exist between the first group signals and hence qualify the 
bispectral analysis as the most reliable method of analysis to 
assess the cardiac pathological severity. This is in complete 
accordance with what has been found by using DWT method
 

 

 

Figure 11. (a-i) - bispectral parameters variation extracted from PCG signals of the first group (normal (N), innocent murmur (IM), and 
coarctation of the aorta (CA)), ((a) the mean of the amplitude Mamp, (b) bispectrum variability Avar, (c) maximum of the bisp
(d-f) inverse of normalized bispectral entropy 1/BE1,1/BE2, and 1/BE3, (g) phase entropy Pe, (h, i) inverse of
1/aWCOBy). 
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According to the results found, for signals with a morphology 
at of the normal PCG, it can be seen that the 

parameters mentioned as the mean of the bispectrum amplitude 
Mamp and the phase entropy Pe can be used. The bispectrum-
based parameters variation clearly shows that the normal PCG 

alue which is completely normal 
meanwhile the highest value goes for the CA signal. 
Consequently, this allowed us to conclude that the innocent 
murmur case is less serious than the coarctation of the aorta. 
These calculated parameters clearly show the difference that 
can exist between the first group signals and hence qualify the 
bispectral analysis as the most reliable method of analysis to 
assess the cardiac pathological severity. This is in complete 

hat has been found by using DWT method.5 

Table 2. The HOS parameters values extracted from PCG signals 
of the second group (normal (N), innocent murmur (IM), and 
coarctation of the aorta (CA)). 

Features name 
PCG signals without murmurs

N 

Mamp 0.005

Avar -0.143

Max 0.024

BE1 0.695

BE2 0.395

BE3 0.307

Pe 1.206

absolut Wcobx 18.821

absolut Wcoby 6.254

 

  

  

 
bispectral parameters variation extracted from PCG signals of the first group (normal (N), innocent murmur (IM), and 

coarctation of the aorta (CA)), ((a) the mean of the amplitude Mamp, (b) bispectrum variability Avar, (c) maximum of the bisp
f) inverse of normalized bispectral entropy 1/BE1,1/BE2, and 1/BE3, (g) phase entropy Pe, (h, i) inverse of
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Table 2. The HOS parameters values extracted from PCG signals 
of the second group (normal (N), innocent murmur (IM), and 

 

PCG signals without murmurs 

IM CA 

 0.014 0.028 

143 -0.414 -0.843 

 0.126 0.616 

 0.519 0.395 

 0.341 0.229 

 0.276 0.139 

 2.148 2.421 

821 10.474 6.493 

 5.155 4.245 

 

 

bispectral parameters variation extracted from PCG signals of the first group (normal (N), innocent murmur (IM), and 
coarctation of the aorta (CA)), ((a) the mean of the amplitude Mamp, (b) bispectrum variability Avar, (c) maximum of the bispectrum Max, 

f) inverse of normalized bispectral entropy 1/BE1,1/BE2, and 1/BE3, (g) phase entropy Pe, (h, i) inverse of weighted center 1/aWCOBx, 
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Figure 12. The PCG signal of the first group ((a) normal (N), (b) innocent murmur (IM), and (c) coarctation of the aorta (CA)) 

 
Concerning the selected PCG signals of the second group (EC, 
AG, and OS), the obtained HOS-based features have been 
illustrated in Table 3. Figures 13(a-g) give histogram plots of 
the amplitude variation of the bispectral entropies (BE1 and 
BE2), the phase entropy, the sum of logarithmic amplitudes, 
the first-order spectral moment of amplitudes of diagonal 
elements (H1 and H2), and the weighted center of the 
bispectrum (WCOBx and WCOBy), respectively as well as the 
graphs showing the variation of the energetic ration (ER). 
According to previous work,20,22 the ER parameter is known to 
be one of the most reliable parameters in the estimation of the 
murmur energy. From the graphs illustrating the variation of 
the energetic ratio in Figures 13 (a-g), it is noticed a 
progressive increase in the variation of the ER where the OS 
signal has the greater value of 13.18% followed by the AG 
signal 2.83% while the EC signal presents the lowest value 
1.55% that allows considering this latter to be the less severe 
compared to the other cases. 
 As expected, it can be seen that the selected HOS parameters 
can serve to assess the pathological severity of the three PCG 
signals in this group as they show a good correlation with the 
variation in the amplitude of the energetic ratio. It is observed 
that these parameters evolve progressively from the ejection 
click (EC) signal to the opening snap (OS). Thus, it can be 
deduced that bispectrum parameters fully serve to differentiate 
between these three different signals (EC, AG, and OS). 
 For the analysis of the PCG signals presenting an important 
murmur (PCG of the third group AS, DR, and AR), the 
bispectrum algorithm was also computed and the 
corresponding parameters were extracted and displayed in 
Table 4. For this group, five parameters have been considered: 
the mean of the amplitude, the amplitude variability, the 

maximum, the bispectral entropy BE3, and the phase entropy. 
Figures 15 (a-e) illustrate the histograms that evolve according 
to the amplitude variation of the selected HOS parameters for 
this heart sounds signals group. 
 These figures also depict the variation of the energetic ratio 
which can be used as a reference parameter in the monitoring 
of cardiac pathology. It can be seen that the AS and DR signals 
(Figure 16) present lower values 18.37% and 44.07%, 
respectively than that of AR signal which reaches 51.41%. One 
can clearly notice that the HOS-based parameters chosen 
evolve progressively from the aortic stenosis (AS) signal to the 
aortic regurgitation (AR). Consequently, the HOS-based 
parameters can faithfully give a clear view of pathological 
severity evolution as they show a relative proportionality with 
the variation of the energetic ratio (ER). 
 
Table 3. The HOS parameters values extracted from PCG signals 
of the second group (ejection click (EC), atrial gallop (AG), and 
opening snap (OS)). 

Features name 
PCG signals with clicks 

EC AG OS 

BE1 0.7196 0.7967 0.7972 

BE2 0.0875 0.1079 0.4857 

Pe 3.5786 3.5769 3.4528 

H2 -337.0511 -332.0326 -254.0609 

H3 -1011.1413 -996.0846 -762.1674 

Wcobx 9.4133 20.2133 22.0821 

Wcoby 1.4912 3.03655 7.1826 

 

 

 

. 
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Figure13.(a-g) - bispectral parameters variation extracted from PCG signals of the second group (ejection click (EC), atrial gallop (AG), and 
opening snap (OS)), ((a) normalized bispectral entropy BE1, (b) normalized bispectral squared entropy BE2, (c) inverse of phase entropy 
1/Pe, (d) sum log amplitude of diagonal element H2, (e) first order spectral moment of amplitude of diagonal element H3, (f, g) weighted 
center WCOBx, WCOBy), and the energetic (ER) ratio variation 

 

 

Figure14 – The PCG signals of the second group ((a) ejection click (EC), (b) atrial gallop (AG), and (c) opening snap (OS)), 
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Figure15. (a-e) - bispectral parameters variation extracted from PCG signals of the third group (aortic stenosis (AS), drum rumble (DR), 
and aortic regurgitation (AR)), ((a) mean of the amplitude M
bispectrum Max, (d) normalized bispectral cubed entropy BE

 

Figure 16 – The PCG signals of the third group ((a) aortic stenosis (AS), (b) drum rumble (DR), and (c) aortic regurgitation (AR))
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bispectral parameters variation extracted from PCG signals of the third group (aortic stenosis (AS), drum rumble (DR), 

and aortic regurgitation (AR)), ((a) mean of the amplitude M amp, (b) inverse of bispectrum amplitude variability 1/A
spectrum Max, (d) normalized bispectral cubed entropy BE3, (e) phase entropy Pe), and the energetic (ER) ratio variation.

The PCG signals of the third group ((a) aortic stenosis (AS), (b) drum rumble (DR), and (c) aortic regurgitation (AR))
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bispectral parameters variation extracted from PCG signals of the third group (aortic stenosis (AS), drum rumble (DR), 

, (b) inverse of bispectrum amplitude variability 1/Avar, (c) max of 
), and the energetic (ER) ratio variation. 

 

The PCG signals of the third group ((a) aortic stenosis (AS), (b) drum rumble (DR), and (c) aortic regurgitation (AR)) . 
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Table 4. The HOS parameters values extracted from PCG signals 
of the third group (aortic stenosis (AS), drum rumble (DR), and 
aortic regurgitation (AR)). 

 Features name 
PCG signals with murmurs 

AS DR AR 

Mamp 3.298E-04 0.005 0.017 

Avar -5.249E-04 -0.163 -0.502 

Max 0.001 0.082 0.319 

BE3 0.026 0.074 0.154 

Pe 0.107 3.375 3.579 

Table 5. The HOS parameters and the energetic ratio parameter 
values extracted from the mitral prolapse PCG (MP). 

 
PCG signals 

Features name MP1 MP2 MP3 MP4 

ER 14,85 23,53 56,29 75,48 

H1 1.1115 1.2313 1.6000 3.7904 

H2 154.8896 176.4188 229.4135 578.5698 

 

 

Figure 17 – The variation of the moment of the order (H1 and H2) and the energetic ratio extracted from the Mitral prolapse PCG (MP1, 
MP2, MP3, and MP4) 

 

Severity degree analysis of the pathological Phonocardiogram 
signals 
In this part of our article we will carry on an analysis of the 
severity degree of pathological phonocardiogram signals of a 
selected case with the calculation of certain parameters 
obtained from the application of the HOS technique 
(bispectrum) such as moments of order (H1 and H2). 
 The PCG signal chosen here in our application is Mitral 
Prolapse (MP) with four different and ascending severity 
degrees (MP1, MP2, MP3 and MP4). This growth was made 
possible by the use of the ER (Energetic Ratio) parameter. 
 These two parameters H1 and H2 have been calculated to see 
if they can follow the evolution and variation of the pathology 
(see Table 5). From the values obtained and given in Table 5, 
it is clear that the variation of the two chosen parameters H1 
and H2 effectively follow the variation of the pathology (as 
does the ER parameter). 
 Under these conditions, these two parameters can be used not 
only to differentiate between different PCG signals but also to 
detect the degree of severity and its evolution in the same 
pathology. 
 To be effective, this must be verified against other PCG 
signals of different degree of pathological severity. This 
obviously requires a more thorough and targeted acquisition of 
these pathologies or a rich and varied database, sometimes 
difficult to find. 
 

Conclusion 

In this work, the bispectral technique has been carried out to 
analyse the cardiac sound signal. The bispectrum and its 
derived features were computed and employed for 
discrimination among the PCG cases. The bispectrum-graph 
representations were able to provide a unique pattern for each 
type of PCG signal. It is found that each of the PCG signals has 
a unique signature in bispectrum domain which is effectively 
used for the classification into different groups. We have also 
studied the different HOS features that can be used in the 
analysis of PCG signals. By using the energetic ratio as a 
standard parameter, the derived bispectrum parameters show a 
relative proportionality with the increasing evolution of the 
cardiac severity as they are able to increase in coherent way 
with the growing importance of the heart pathology. 
 We can therefore affirm that these preliminary results 
obtained from this study on a small number of signals but 
nevertheless of very different severity are very promising. A 
future application on a larger sample may refine the results and 
comfort the user in the use of this method to discriminate 
between various pathologies and ensure the importance of the 
severity involved. 
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