
Adjustable Coins

Shlomo Moran and Irad Yavneh

Computer Science Department, Technion. Israel

Abstract

In this paper we consider a scenario where there are several algorithms for solving
a given problem. Each algorithm is associated with a probability of success and a
cost, and there is also a penalty for failing to solve the problem. The user may run
one algorithm at a time for the specified cost, or give up and pay the penalty. The
probability of success may be implied by randomization in the algorithm, or by as-
suming a probability distribution on the input space, which lead to different variants
of the problem. The goal is to minimize the expected cost of the process under the
assumption that the algorithms are independent. We study several variants of this
problem, and present possible solution strategies and a hardness result.

1 Introduction

Some optimization problems concern optimal ordering of certain tasks that aim at
achieving some common goal (see, e.g., [1]). A possible scenario can be described as
follows: the king’s daughter is approaching marrying age. The miser king, who cares
about money more than anything else, estimates that if she doesn’t marry then he will
need to spend E gold pieces to continue supporting her for the rest of their lives. There
are n princes he can invite to try to win her heart, and he must choose the order, knowing
that the cost of travel room and board for princei is µi, and the probability that he will
win the princess’s heart is Pi. What order minimizes the king’s expected cost? In a more
challenging scenario, there are n kingdoms with several eligible princes in each kingdom,
each with his own µ and P , and the king must also decide which prince he should invite
from each kingdom (he cannot invite more than one).

Such problems can be described as one player games, which we call adjustable coins
games. An adjustable coin—A-coin in short—is a coin whose bias can be controlled
by the user: the probability of success (rolling on one) can be increased, for a price.
Formally, an A-coin is defined by a monotone increasing function µ : Dµ → R+ where
Dµ ⊆ (0, 1] contains the possible success probabilities, and for P ∈ Dµ, µ(P) is the
nonnegative fee for tossing the coin with success probability P . If |Dµ| = 1 then µ is a
simple coin, or just coin, denoted by a pair c = (P, µ). Thus an A-coin µ can be viewed
as a set of the simple coins {(P, µ(P)) : P ∈ Dµ}.

Recreational Mathematics Magazine, pp. 27–39
DOI 10.2478/rmm-2021-0009

28 AdjustableCoins

In the games studied in this paper the player is given a set C of A-coins and a penalty
E > 0, and in each step she may select an A-coin µ ∈ C, and a probability P ∈ Dµ, and
toss the coin for the fee µ(P) . If the coin rolls on one the player terminates the game
without paying a penalty, else she either takes another step, or terminates the game and
pays the penalty E. Thus, a strategy for an A-coin game maps each pair (C, E) of the
set of A-coins and a penalty to a sequence SEQ of the coins tossed by the player when
the outcomes of all tosses are zeros. The goal is to minimize the expected cost—the total
amount paid. Variants of this game are determined by the nature of the coins in C, the
rules by which coins can be selected at each step, possible restrictions on the termination
rule, etc. Specifically, we distinguish between reusable coins, which can be tossed many
times, and one time coins, which can be tossed only once. The latter case corresponds
to a scenario where one or more deterministic tests should be taken on a single item
selected at random from a known distribution—repeating a test on the selected item
just reproduces the initial outcome.

In Section 2 we study variants of the game for simple coins. In Section 3 we study the
case where the A-coins are discrete, i.e., defined for finitely many values. In Section 4
we study the game for A-coins which are piecewise continuous functions.

2 Simple coins

In this section we study optimal strategies for the game where all A-coins are simple.
A useful property of a simple coin c = (P, µ) is its rate, given by the ratio r = µ/P . The
notation c ∼ (P, r) means that the simple coin c has probability P and is of rate r, i.e.,
c = (P, rP).

2.1 Single simple coin, single toss

In the simplest scenario we are given a simple coin c = (P, µ) and a penalty E, and
we must decide whether tossing the coin c is beneficial, i.e., reduces the expected cost of
the game.

The expected payment when c is tossed is given by

COST (c, E) = µ+ (1− P)E = E − (PE − µ) (1)

which means that the benefit of using c w.r.t. E is (PE−µ) (see Figure 1). COST (c, E)
as a function of the rate r of c is given by

COST (c, E) = Pr + (1− P)E = E − P (E − r) (2)

implying that the benefit of c w.r.t. E is P (E− r). This means that an optimal strategy
for this case is to toss c if and only if its rate is smaller than E.

Recreational Mathematics Magazine, pp. 27–39
DOI 10.2478/rmm-2021-0009

ShlomoMoranandIradYavneh 29

0 0.1 0.2 0.3 0.4 0.5

P

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Benefit w.r.t. E

Benefit of c
2
 w.r.t. E

Benefit of c
1
 w.r.t. E

>

<
 c

1
=(P

1
,

1
)

 c
2
=(P

2
,

2
)

 =PE

Figure 1: Benefit for a given penalty. A coin c = (P, µ) is beneficial for penalty E
iff (P, µ) lies below the line µ = PE, and the benefit of c w.r.t. E is PE−µ. Thus both
c1 and c2 are beneficial for E. The benefit of c2 is larger since it is further away from
the line µ = PE, i.e. µ2−µ1

P2−P1
< E.

In a natural extension of the “single coin single toss” game we are given a sequence
of coins SEQ = (c1, . . . , cn) and a penalty E. Our task is to decide for each coin, in the
given order, if it should be tossed or skipped, so that the expected cost of the implied
game is minimized. For n = 1 this is the single coin single toss game. For n > 1 we use
backwards induction: Suppose we have an optimal strategy for SEQ′ = (c2, . . . , cn) and
E, whose cost is E′. Then, by a simple calculation, an optimal strategy for SEQ and
E is: toss c1 iff r1 < E′, and then, if the coin rolls on tail, continue with the optimal
strategy for SEQ′ and E.

2.2 Multiple simple coins, single toss

Suppose next that we are given a (finite) set C of simple coins and a penalty E, and
we wish to select an optimal coin c ∈ C which minimizes COST (c, E), the cost of the
single toss game. Let c = (P, µ). By Equation (1), COST (c, E) is minimized if and only
if the point c = (P, µ) lies below the line µ = PE and at a maximal distance (see Fig. 1).

Recreational Mathematics Magazine, pp. 27–39
DOI 10.2478/rmm-2021-0009

30 AdjustableCoins

2.3 Reusable simple coins, multiple tosses

Suppose now that the coins in C are reusable, that is, we may toss each coin in C
multiple times. An elementary calculation shows that if there is no bound on the number
of tosses, then tossing a coin of minimal possible rate rmin until it rolls on one yields an
expected cost rmin. Thus an optimal strategy is: if rmin < E then toss a coin cmin of
rate rmin until it rolls on one, else pay the penalty E and terminate.

Assume now that we are allowed to make no more than k tosses for some k ⩾ 0.
Given a set of reusable simple coins C and a penalty E, if rmin ⩾ E then do nothing and
pay the penalty E. Else an optimal strategy is obtained again by a backwards induction:

If k = 0 or E ⩽ rmin then do nothing and pay the penalty E. So assume that
E > rmin, and let Ek = Ek(C, E, k) be the expected cost of an optimal strategy for set
of coins C, penalty E and k tosses (in particular E0 = E). Then Ek > rmin and an
optimal strategy for k+1 tosses is obtained by first selecting and tossing a coin ck+1 ∈ C
which minimizes COST (ck+1, Ek) as in Section 2.2 (note that COST (ck+1, Ek) < Ek

since Ek > rmin); if ck+1 rolls on one then stop, else execute the optimal strategy for
C, E and k. Thus Ek+1 = COST (ck+1, Ek) > rmin.

2.4 One-time simple coins, multiple tosses

We now assume that each coin in C can be tossed at most once, and we are allowed
to toss as many coins as we wish.

Consider first a variant of this game in which termination is possible only if either
some coin rolls on one, or after all coins rolled on zero. We note that this variant is, in
fact, the problem of optimal ordering of independent tests that was studied in [1], where
each coin corresponds to a test, and it is needed to check if at least one test fails.

A strategy for this latter game is a permutation of all the available coins. Thus given
a set of n one-time simple coins C = {c1, . . . , cn}, where ci = (Pi, µi), and a nonnegative
penalty E, we need to find an optimal ordering of the coins in C, which minimizes the
expected cost.

The expected cost for ordering SEQ = (c1, c2, ..., cn) and penalty E is given by:

COST (SEQ,E) = P1µ1 + (1− P1)P2(µ1 + µ2)
+. . .+ (1− P1)(1− P2) · · · (1− Pn)(µ1 + . . .+ µn + E)

(3)

By straightforward induction, COST (SEQ,E) can also be expressed as the following
convex combination of the coin rates r1, . . . , rn and E.

COST (SEQ,E) = P1r1 + (1− P1)P2r2 + . . .+ (1− P1) · · · (1− Pi−1)Piri
+. . .+ (1− P1) · · · (1− Pn)E

(4)

Equation (4) implies the following useful lemma:

Recreational Mathematics Magazine, pp. 27–39
DOI 10.2478/rmm-2021-0009

ShlomoMoranandIradYavneh 31

Lemma 1. Let SEQ = (c1, . . . , cn), where ck ∼ (Pk, rk), k = 1, . . . , n, and let SEQ′ be
obtained from SEQ by interchanging ci and ci+1. If ri ⩾ ri+1 then COST (SEQ′, E) ⩽
COST (SEQ,E), with equality iff ri = ri+1.

Proof. By substituting in Equation (4) we get

COST (SEQ′, E)− COST (SEQ,E) =

(i−1∏
k=1

(1− Pk)

)
PiPi+1(ri+1 − ri)

which is negative for ri > ri+1, and equals zero iff ri = ri+1.

Lemma 1 implies:

Lemma 2. Let C = {c1, . . . , cn} be a set of one-time simple coins, where the rate of ci
is ri. Then for each penalty E and each permutation π, (cπ(1), . . . , cπ(n)) is an optimal
ordering of C w.r.t E if and only if rπ(i) ⩽ rπ(i+1) for i = 1, . . . , n− 1.

Observe that the optimal orderings of a set of coins are independent of the value of the
penalty E. We note that Lemma 2 is equivalent to Theorem 1 of [1] which considered
optimal ordering of independent tests.

Assume now that the player can terminate the game at any time (i.e., even if no coin
rolled on one and some coins were not tossed yet). By Lemma 2 and the comment at the
end of Section 2.1, an optimal strategy is obtained by an optimal ordering of the coins
in C whose rates are smaller than E.

Lemma 3. The optimal strategies for a set C of one-time simple coins and a penalty E
are obtained by the optimal orderings of the coins in C whose rates are smaller than E.

2.4.1 One-time simple coins, bounded number of tosses

Assume now that the coins are not reusable, and we may use at most k coins for some
k ⩾ 0. This problem can be solved by the following dynamic programming algorithm.
First sort the coins whose rates are smaller than E by increasing rates (ties are broken
arbitrarily). Let the sorted list be (c1, . . . , cn), where ci = (Pi, µi).

For i = 1, . . . , n and j = 0, . . . ,max(k, n − i + 1), let OPT (i, j) be the value of the
optimal strategies for the sequence (ci, ci+1, . . . , cn) and penalty E which use at most
j coins. Thus our task is to find OPT (1, k). This can be done in kn steps by setting
OPT (i, 0) = E for i = 1, . . . , n, OPT (n, j) = µn + (1− Pn)E for j ⩾ 1, and then using
the following recursive formula for i = n− 1, n− 2, . . . , 1, j = 1, 2 . . . k:

OPT (i, j) = min

(
OPT (i+ 1, j), µi + (1− Pi)OPT (i+ 1, j − 1)

)
This implies the following.

Recreational Mathematics Magazine, pp. 27–39
DOI 10.2478/rmm-2021-0009

32 AdjustableCoins

Lemma 4. Given a set C of n one-time simple coins and bound k on the number of
tosses, an optimal strategy for the implied game can be found in O(kn) time.

The results for simple coins are summarized in Table 1.

#coins Reuse Tosses Discussed Comments

1 No 1
Section 2.1

Toss if rate < E
1 Yes Unlimited rate < E → toss until success
n No Unlimited, order given Backwards induction

n Yes Unlimited
Section 2.3

Toss cmin until success
n Yes Bounded Backwards induction

n No Unlimited Lemma 3 Toss by increasing rates

n No Bounded Lemma 4 Backwards dynamic programming

Table 1: Optimal solutions for Simple Coins

3 Discrete coins

An A-coin µ is discrete if its domain Dµ is finite and contains at least two simple
coins. Given a penalty E > 0, COST (µ,E) is naturally defined as

COST (µ,E) = min
c∈µ

COST (c, E)

An A-coin µ can be viewed as the set of the simple coins {(P, µ(P)) : P ∈ Dµ}. We
assume that this set does not contain redundant coins, in the sense of the following
definitions.

Definition 1. A coin c ∈ µ is essential for µ (or just essential when µ is clear) if there
is a penalty Ec s.t. for any other coin d ∈ µ, COST (c, Ec) < COST (d,Ec). Given such
c and Ec, the supporting line for c and Ec is the line Lc which contains c and is parallel
to the line µ = PEc (see Fig. 2).

Note that if c is not essential then for each E > 0, COST (µ\{c}, E) = COST (µ,E),
meaning that c can be removed from µ without reducing its quality. Hence, we assume
from now on that a discrete coin contains only essential simple coins.

Definition 2. A discrete coin µ is efficient if each coin in µ is essential.

Efficient discrete coins posses nice geometrical properties, depicted in Fig. 2:

Lemma 5. Let µ be an efficient discrete coin. Then

Recreational Mathematics Magazine, pp. 27–39
DOI 10.2478/rmm-2021-0009

ShlomoMoranandIradYavneh 33

0 0.2 0.4

P

0

2

4

6

8

A

 = PE
 d

 c

 f

 d

 L
 d

0 0.1 0.2 0.3 0.4

P

0

0.2

0.4

0.6

0.8

1

1.2

B

 = PE
 c

 L
 c

 c

 d

Figure 2: A: Ld, the supporting line for d and Ed, is a supporting line of the convex hull
of µ = {c, d, f}. B: The rate of c (i.e., the slope of the dashed line segment connecting
c to the origin) is smaller than the rate of d, (the slope of the line connecting d to the
origin).

1. µ is a strictly convex function on Dµ, and

2. The function r(P) = µ(P)/P is strictly increasing on Dµ.

Sketch of proof. Let c ∼ (Pc, rc) be any coin in µ. Then Lc, the supporting line for c
and Ec, is a supporting line of the convex hull of µ which contains c but no other coin
in µ (see Fig. 2A). This proves (1).
To show (2), let d ∼ (Pd, rd) be another coin in µ, where Pc < Pd. Then rc < Ec (since
c lies below the line µ = PEc), and d lies strictly above Lc, the supporting line for c and
Ec, whose slope is Ec. Hence rc < rd (see Fig. 2B).

3.1 Reusable discrete coins

Optimal strategies for reusable discrete coins are implied by such strategies for sets
of simple coins: Given a set C of discrete coins and a penalty E, let C′ be the union of the
discrete coins in C. Applying the optimal strategies for reusable simple coins presented
in Section 2.3 on C′ and E yields optimal strategies for C and E. For example, when the
number of tosses is unbounded, Lemma 5 implies the following strategy for a reusable

Recreational Mathematics Magazine, pp. 27–39
DOI 10.2478/rmm-2021-0009

34 AdjustableCoins

efficient discrete coin µ: Let cmin ∼ (Pmin, rmin) be the coin with the minimum success
probability in µ. If E > rmin then repeatedly toss cmin until it rolls on one, else pay the
penalty E and terminate.

3.2 One-time discrete coins

Suppose we are given a sequence of one-time discrete coins and we need to decide for
each coin µ, in its turn, whether to toss a simple coin from µ, and if so which one. Then
we can use a simple extension of the strategy for simple coins in Section 2.1: Given an
optimal strategy for a sequence (µ2, . . . , µn) with optimal cost E′, an optimal strategy
for (µ1, µ2, . . . , µn) is obtained by skipping µ1 if COST (µ1, E

′) ⩾ E′, and tossing a coin
c ∈ µ1 which minimizes COST (µ1, E

′) and upon failure executing the optimal strategy
for (µ2, . . . , µn) otherwise.

Finding an optimal strategy for one-time discrete coins when the sequence is not
given is complicated by the fact that we need to decide which simple coin should be
selected from each discrete coin (if any) before the order of tosses is known. Once these
coins are selected, all we need to do is to toss them in an increasing order of their rates,
until some coin rolls on one (or all coins roll on zero), as discussed in Section 2.4. Thus,
the strategy is determined by the way the simple coins are chosen from the given discrete
ones. We next show that such a selection is NP Hard even in a highly restricted variant
of the problem.

3.2.1 The {0, 1} discrete coins problem

We now present a restricted version of the A-coins problem—the {0, 1} A-coins
problem, and prove that it is NP hard. An instance (C, E) for this problem consists
of a set C = {A1, . . . , An} of one-time discrete coins, where each Ai contains two coins
ci, di, s.t. the rate of all ci coins is 0 and the rate of all di coins is 1, i.e., ci = (0, Pi,0)
and di = (Pi,1, Pi,1), where 0 ⩽ Pi,0 < Pi,1 ⩽ 1, i = 1, . . . , n. Let hi = 1 − Pi,0 and
ℓi = 1−Pi,1; then h = (h1, . . . , hn) and ℓ = (ℓ1, . . . , ℓn) are the failure probability vectors
of ci’s and di’s (note that hi > ℓi for all i).

NP Hardness of the {0, 1} discrete coin problem

Consider an instance to the {0, 1} problem with penalty E > 1, and let D = E − 1.
By Lemma 3 an optimal strategy for this instance is obtained by selecting a set S ⊆ In
of indices i for which the coin ci is chosen, and tossing the coins in S first. The cost
of this strategy can be calculated as follows: charge each event (sequence of tosses) in
which the first |S| tosses are zero by one, and in addition charge the event in which all

Recreational Mathematics Magazine, pp. 27–39
DOI 10.2478/rmm-2021-0009

ShlomoMoranandIradYavneh 35

tosses are zero by D. The resulting cost is

COSTh,ℓ,D(S) =
∏
i∈S

hi

1 +D ·
∏

i∈In\S

ℓi

 (5)

For a vector a = (a1, . . . , an), let prod(a) be the product
∏n

i=1 ai. Then
∏

[i∈In\S] ℓi =
prod(ℓ)∏

i∈S ℓi
. Hence, letting bi =

ℓi
hi

< 1 and b = (b1, . . . , bn), we can rewrite (5) as a function

of h and b:

COSTh,b,D(S) =
∏
i∈S

hi +
D · prod(ℓ)∏

i∈S bi
(6)

Let HS =
∏

i∈S hi and BS =
∏

i∈S bi. Then Equation (6) can be rewritten as

COSTℓ,b,C(S) = HS +
C

BS
(7)

where C = D · prod(ℓ). Consider now the case h = b (i.e., ∀i : ℓi = h2i).Then we get

COSTh,C(S) = HS +
C

HS
(8)

Since the function f(x) = x + C
x has a unique minimum at x =

√
C, we get that

COSTh,C(S) ⩾
√
C + 1√

C
, with equality iff Hs =

√
C. This implies the following:

Lemma 6. Let C = {Ai : i = 1, . . . , n} be a set of A-coins with Ai = {ci, di} where

ci ∼ (0, 1− hi), di ∼ (1, 1− h2i)

and let C = D ·(prod(h))2. Let further OPT (C, D+1) be the value of the optimal solution
to the {0, 1} A-coins problem for C and penalty D + 1. Then

OPT (C, D + 1) ⩾
√
C +

1√
C

with equality iff for some S ⊆ In it holds that HS =
√
C.

Lemma 6 now implies:

Theorem 7. The {0, 1} A-coins problem is NP Hard.

Outline of proof. By a reduction from the NP hard subset product problem [2]:
Input: An n+ 1 tuple of natural numbers (m1, . . . ,mn, N)
Property: There is a subset S ⊆ In such that

∏
i∈S

mi = N .

Recreational Mathematics Magazine, pp. 27–39
DOI 10.2478/rmm-2021-0009

36 AdjustableCoins

Given an instance (m1, . . . ,mn, N) to the subset product problem, we reduce it to
an instance (C, D + 1) to the {0, 1} problem in which C = {A1, . . . , An}, where for each
i, ci ∼ (0, 1 − 1

mi
) and di ∼ (1, 1 − 1

m2
i
) - i.e., hi =

1
mi

and ℓi =
1
m2

i
. In addition, we set

D to
(
prod(m)

N

)2
.

Let C = D ·(prod(h))2 = D
(prod(m))2

. Then from Lemma 6 it follows that OPT (C, D+

1) ⩾
√
C + 1√

C
, and OPT (C, D + 1) =

√
C + 1√

C
iff there is a subset S ⊆ In such that∏

i∈S
mi = N . The theorem follows.

Note: The rates 0 and 1 in Theorem 7 could be replaced by any pair of distinct rates
0 ⩽ a < b.

A summary of the results for discrete coins appears in Table 2 below.

#Coins Reuse Tosses Discussed Comments

1 No 1 Lemma 5
n Yes Unlimited

Section 3.1
Extensions of solutions

n Yes Bounded for simple coins
n No Unlimited, order given Section 3.2

n No Unlimited Theorem 7 NP hard even for {0,1} coins

Table 2: Solutions and hardenss results for Discrete Coins

4 Continuous coins

A continuous adjustable coin, or CA-coin, enables the user to smoothly and continu-
ously adjust the desired success probability. As a possible example, assume an algorithm
which gets a composite integer n as an input, and repeatedly attempts to find a divisor
of n. µ(P) is the cost (e.g. running time) of finding a divisor with probability P , and the
penalty E is the loss implied by failing to find a divisor. The reusable version assumes
that the algorithm is randomized, and the one time version assumes that the composite
number is selected at random from a given distribution.

In general, a CA-coin is defined by a non-decreasing cost function µ(P) : [Pmin, Pmax] →
R where 0 < Pmin < Pmax ⩽ 1 are the minimum and maximum success probabilities
supported by the coin. The (optimal) cost of a CA-coin for a penalty E is naturally
defined as

COST (µ,E) = min
P∈[Pmin,Pmax]

COST (P, µ(P)) = min
P∈[Pmin,Pmax]

µ(P) + (1− P)E

We assume, as in the case of discrete A-coins, that each CA-coin is efficient, that
is, for each P0 ∈ [Pmin, Pmax] there is a penalty EP0 s.t. COST ((P, µ(P)), EP0) has

Recreational Mathematics Magazine, pp. 27–39
DOI 10.2478/rmm-2021-0009

ShlomoMoranandIradYavneh 37

a unique minimum at P = P0. By arguments similar to the ones used in Lemma 5,
this implies that a CA-coin µ is a nonnegative convex function on [Pmin, Pmax], and that
r(P) = µ(P)/P is a strictly increasing function of P . We restrict our attention to regular
CA-coins µ(P) which are defined and twice continuously differentiable on the segment
[Pmin, Pmax]. This implies that

dµ

dP
> 0 and

d2µ

dP 2
> 0, P ∈ (Pmin, Pmax)

4.1 Single CA-coin, single toss

Suppose we are given a single (efficient) CA-coin and are allowed to toss it once at
most. That is, given E we must decide whether we wish to use our CA-coin at all, and
if we do, which value of P we should choose so as to minimize the expected cost. Recall
that the expected cost is given by

COST (µ(P), P, E) = µ(P) + (1− P)E = P · r(P) + (1− P)E

where r(P) = µ/P . Differentiating COST with respect to P we obtain

dCOST

dP
=

dµ

dP
− E

Differentiating r(P) and noting that it is strictly increasing yield

dr

dP
=

1

P

(
dµ

dP
− r

)
> 0

Observe that for P0 ∈ (Pmin, Pmax), for each coin c0 = (P0, µ(P0)) there is a unique
supporting line, namely, the tangent to µ at c0. This yields the following conclusions.
Let rmin = r(Pmin), Elow be the derivative of µ at Pmin, and Ehigh be the derivative of
µ at Pmax—see Fig. 3. Then

1. If E ⩽ rmin then the coin is not beneficial for E, i.e., COST (µ,E) = E. Otherwise
the coin is beneficial for E, and the maximum benefit for a given penalty E is
attained as follows:

2. If rmin < E ⩽ Elow then the benefit is maximized at Pmin.

3. If Elow < E < Ehigh then the maximal benefit is attained at the unique internal

value Popt ∈ (Pmin, Pmax), where
dµ
dP = E.

4. If Ehigh ⩽ E then the benefit is maximized at Pmax.

Recreational Mathematics Magazine, pp. 27–39
DOI 10.2478/rmm-2021-0009

38 AdjustableCoins

0 0.1 0.2 0.3 0.4 0.5 0.6

P

0

5

10

15

20

25

Continuous A-coin

O p
min

O P
max

CA coin
 = P r

min

 = P E
low

 = P E
high

Figure 3: cmin = (Pmin, µ(Pmin)), cmax = (Pmax, µ(Pmax)), and rmin = µ(Pmin)
Pmin

. If
E < rmin then cmin lies above the line µ = PE, meaning that the CA-coin is not
beneficial for E. For E ∈ (rmin, Elow] any supporting line of µ = PE passes through
cmin. For E ∈ (Elow, Ehigh) there is a unique supporting line that passes through an
internal point of the coin, and for E ∈ [Ehigh,∞) any supporting line passes through
cmax.

4.2 Reusable CA-coins

Suppose next that we are given a single regular CA-coin which we may toss multiple
times, selecting P for each toss. The optimal strategy for minimizing the expected cost
as a function of the number of tosses we are allowed, is obtained recursively from the
observations of the previous subsection 4.1. If the number of tosses is unlimited and
rmin < E, then we can reduce the expected cost to rmin by repeatedly tossing the coin
with P = Pmin until we succeed. If the number of tosses is bounded then we can use the
recursive approach described in Section 2.3.

When we are given a few regular CA-coins {µ1, . . . , µk} which we may toss multiple
times, we adapt a variant of strategies used in Sections 2.3 and 3.2: whenever we need
to toss a coin for a given penalty E, we select µj for which COST (µj , E) is minimized.
This can be done by computing COST (µi, E) for all i ∈ [1, k].

Recreational Mathematics Magazine, pp. 27–39
DOI 10.2478/rmm-2021-0009

ShlomoMoranandIradYavneh 39

5 Conclusion

We present the concept of adjustable coins, which aims to model a scenario in which
various algorithms for solving a given problem can be applied: each such algorithm is
modeled by an adjustable coin, which is characterized by a cost and a probability of
success. The related optimization problem is: given a set of independent A-coins and a
penalty for failing to solve the problem, find a sequence of coin-tosses which minimizes
the expected cost, subject to possible further restrictions.

We note that all our solutions are by offline algorithms, which require that the full
set (or sequence) of coins is given before the first coin is tossed. An interesting problem
is what conditions enable useful algorithms which use only partial information on the
available coins (e.g., that the coins are drawn from a known distribution, or that only a
limited number of coins is known ahead of time).

References

[1] D. Berend et al. “Optimal ordering of independent tests with precedence con-
straints”. In: Discrete Applied Mathematics 162 (2014), pp. 115–127.

[2] S. Moran. “General approximation algorithms for some arithmetical combinatorial
problems”. In: Theoretical Computer Science 14.3 (1981), pp. 289–303.

Recreational Mathematics Magazine, pp. 27–39
DOI 10.2478/rmm-2021-0009

	Introduction
	Simple coins
	Single simple coin, single toss
	Multiple simple coins, single toss
	Reusable simple coins, multiple tosses
	One-time simple coins, multiple tosses
	One-time simple coins, bounded number of tosses

	Discrete coins
	Reusable discrete coins
	One-time discrete coins
	 The {0,1} discrete coins problem

	Continuous coins
	Single CA-coin, single toss
	Reusable CA-coins

	Conclusion

