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“MATHEMATICS IS THE LOGIC OF THE INFINITE”:
ZERMELO’S PROJECT OF INFINITARY LOGIC

Abstract. In this paper I discuss Ernst Zermelo’s ideas concerning the pos-
sibility of developing a system of infinitary logic that, in his opinion, should
be suitable for mathematical inferences. The presentation of Zermelo’s ideas is
accompanied with some remarks concerning the development of infinitary logic.
I also stress the fact that the second axiomatization of set theory provided by
Zermelo in 1930 involved the use of extremal axioms of a very specific sort.1
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1. Introductory remarks

I am going to present here Zermelo’s ideas behind his project of in-
finitary logic developed over eighty years ago. At the time, the project was
innovative but drew little attention from logicians and mathematicians. Sys-
tematic research on infinitary logic was only to begin two decades later.
My considerations are based on Zermelo’s original papers (including his

Nachlaß) as well as the discussion of Zermelo’s ideas published by other au-
thors. The complete works of Ernst Zermelo were published quite recently
in German, with an accompanying English translation; see Ebbinghaus,
Fraser and Kanamori 2010. A few years ago I translated Zermelo’s papers
on the foundations of mathematics (from German to Polish). The transla-
tion, under the title Matematyka jest logiką nieskończonego. Prace Ernsta
Zermela z podstaw matematyki (Mathematics is the logic of the Infinite.
Ernst Zermelo’s works on the foundations of mathematics) remains unpub-
lished.

2. Ernst Zermelo: a few biographical remarks

Ernst Friedrich Ferdinand Zermelo (born 27 July 1871 in Berlin, died
21 May 1953 in Freiburg i. Br.) was one of the most prominent mathe-
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maticians of the twentieth century. He is known primarily as the author
of the first axiomatization of set theory. Other topics he covered include
the calculus of variations, applications of mathematics in physics, naviga-
tion problems, and the application of set theory to the game of chess. He
discovered Russell’s antinomy before Russell and was also a translator of
mathematical as well as literary works (fragments of Odyssey). He was the
editor of Georg Cantor’s collected works.
Zermelo worked at the universities in Göttingen, Zürich and Freiburg,

and presented the first course entitled mathematical logic. He was involved
in the investigations concerning the foundations of mathematics in two peri-
ods: in Göttingen (1899–1910), working with David Hilbert, and in Freiburg
(1921–1935). His project of infinitary logic was initiated in the second
of these periods.
Ernst Zermelo’s Collected works were published quite recently, in two

volumes, with the original German texts and English translations; see
Ebbinghaus, Fraser and Kanamori 2010. The first volume (Set Theory,
Miscellanea) contains Zermelo’s works on the foundations of mathemat-
ics. The book Ebbinghaus 2007 contains a very detailed biography of Ernst
Zermelo together with an elaborated analysis of his works.

3. Zermelo’s first axiomatization of set theory

By the turn of the twentieth century, mathematicians (Peano, Dedekind,
Veblen, Huntington, and Hilbert, among others) had been working inten-
sively on providing axiomatic foundations for several fundamental math-
ematical theories: arithmetic, algebra, geometry. Set theory, proposed by
Georg Cantor, has also been given an axiomatic treatment. Its first axioma-
tization was given by Ernst Zermelo in 1908, its goal being not only to secure
set theory from the danger of antinomies, but also to provide a solid back-
ground for the proof that any set can be well ordered. As is known, Zermelo
gave two such proofs, and it was the second one that was based on his ax-
ioms. Zermelo’s axiomatization has been discussed in detail in many places,
for instance: Fraenkel, Bar Hillel and Levy 1973, Hallet 1984, Kanamori
1996, 2004, Moore 1980, 1982, Ebbinghaus, Fraser and Kanamori 2010.
Other axiomatic systems for set theory were proposed in the presence of the
one given by Zermelo in 1908 (for instance in the works of Fraenkel, Bernays,
von Neumann, Gödel, and Quine). The same applies, of course, to additions
to Zermelo’s original system (by Skolem, Fraenkel, and Mirimanoff). Set
theory had been developing for about forty years as a mathematical theory,
and only later did investigations into models of this theory begin.
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It seems that there were two reasons for the predicate ∈ being trans-
ferred from the domain of logic into a separate mathematical domain.
The first of them was the growing interest in set theory and the fact the it
could be axiomatized, as shown by Zermelo in 1908. The second reason, I
believe, derived from the consequences of the Löwenheim-Skolem theorem
(Löwenheim 1915, Skolem 1919, 1920, 1922), which revealed the relativity
of certain set theoretical concepts (such as cardinality).
In this paper I am interested mainly in Zermelo’s ideas concerning infini-

tary logic, which were evidently influenced by his work in set theory. His first
axiomatization of set theory was created in accordance with the first phase
of Hilbert’s program; let us bear in mind that Zermelo was collaborating
with Hilbert in Göttingen at that time. But in his works from the nineteen
twenties and thirties, Zermelo does not accept the finitistic point of view
in mathematics. One must also remember that Zermelo’s ideas concerning
infinitary logic appeared at the time of interregnum in mathematical logic
and foundations of mathematics, that is between the paradigms of Principia
Mathematica and Grundlagen der Mathematik, and they did not belong to
the main stream of investigations in these domains. This was also a period
when certain fundamental metalogical concepts, such as categoricity and
completeness, were emerging.
The axioms for set theory proposed in Zermelo 1908 are well known.

However, it could be interesting to compare this list with the second ax-
iomatization, proposed in Zermelo 1930 and which I shall discuss a little
later. I am using the English translation proposed in Ebbinghaus, Fraser
and Kanamori 2010, 193–201:

1. Axiom of extensionality. If every element of a setM is also an element ofN
and vice versa, if, therefore M ⊆ N and N ⊆ M , then always M = N ;
or, more briefly: Every set is determined by its elements.

2. Axiom of elementary sets. There exists a (fictitious) set, the “null set” 0,
that contains no element at all. If a is any object of the domain, there
exists a set {a} containing a and only a as element; if a and b are any
two objects of the domain, there always exists a set {a, b} containing as
elements a and b but no object x distinct from both.

3. Axiom of separation. Whenever the propositional function C(x) is defi-
nite for all elements of a set M , M possesses a subset MC containing as
elements precisely those elements x of M for which C(x) is true.

4. Axiom of the power set. To every set T there corresponds another set UT ,
the “power set” of T , that contains as elements precisely all subsets of T .

5. Axiom of the union. To every set T there corresponds another set ST ,
the “union” of T , that contains as elements precisely all elements of the
elements of T .
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6. Axiom of choice. If T is a set whose elements all are sets that are different
from 0 and mutually disjoint, its unionST includes at least one subset S1

having one and only one element in common with each element of T .
7. Axiom of infinity. There exists in the domain at least one set Z that
contains the null set as an element and is so constituted that to each of
its elements a there corresponds a further element of the form {a}, in other
words, that with each of its elements a it also contains the corresponding
set {a} as an element.

The careful reader may note that these formulations of the axioms are
in principle the same as their modern formulations. The only exception is
the axiom of separation, in which Zermelo uses the term “definite property”.
The axiom of replacement and the axiom of foundation, absent on the above
list, were added later.

4. Zermelo on the concept of Definitheit

Many mathematicians attempted to define precisely the notion of “def-
inite property” (Zermelo, Fraenkel, Weyl, Skolem, von Neumann, and oth-
ers). Below I limit myself to the presentation of a solution given by Zermelo.
In the paper “Über den Begriff der Definitheit in der Axiomatik” (Zer-
melo 1929) Zermelo seeks to characterize this notion axiomatically. Definite
property is a notion that is crucial in the formulation of the axiom of sepa-
ration in set theory. Zermelo makes use of his axiomatization of set theory
from 1908 and considers three options:
1. The concept could be treated as useless, which is not a position taken by
Zermelo. It is important to add that Zermelo does not want to analyze
this concept in logic itself, thus outside of set theory.

2. A general characterization of this notion could be omitted, while focus-
ing on specification of the shape of formulas occurring in the axiom of
separation. This was done for instance by Fraenkel in the second edition
(Fraenkel 1923) of his Einleitung in die Mengenlehre. Zermelo rejects
this solution, because it presupposes the concept of a natural number,
while Zermelo considers the latter secondary with respect to pure set
theoretical concepts.

3. An axiomatical characterization of the notion in question could be at-
tempted. This is exactly the position taken by Zermelo. He pays atten-
tion to another solution of this kind, namely the one proposed by von
Neumann in 1925 which has the notion of a function (rather than a set)
as a primitive notion of set theory (von Neumann 1925).
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It should perhaps be added that Zermelo does not comment on the
solution proposed a few years earlier by Skolem. Zermelo’s first remarks
about Skolem can be found in a footnote to the paper Zermelo 1930. Skolem
himself wrote as follows on Zermelo’s solution:

Dabei fällt es mir besonders auf, daß er meinen Helsingforser Vortrag vom
Jahre 1922 nicht zu kennen scheint, worin ich genau dieselbe Idee zur Ver-
schärfung jenes Begriffes ausgesprochen habe wie Zermelo auf Seite 342
in seiner Arbeit. (Skolem 1930, 275)

After some preliminary explanations (concerning axiomatic systems,
models, consistency, categoricity, etc.), Zermelo claims that his understand-
ing of the notion of a definite property should be summarized as follows:

“Definite” is thus what is decided in every single model, but may be decided
differently in different models; “decidedness” refers to the individual model,
whereas “definiteness” itself refers to the relation under consideration and to
the entire system. (Zermelo 1929, 341–342; citing the translation in Ebbing-
haus, Fraser and Kanamori 2010, 361–363)

According to the above, by definite property one should understand any
property on which it can be decided whether the elements of any model of
the system of axioms in question do or do not possess this property. From
the point of view of contemporary logical standards such a formulation is
obviously imprecise. Zermelo does not formulate explicitly in which formal
language one should express such properties. Moreover, these properties are
characterized with respect to their content and not syntax. As examples of
properties which are not definite in his sense, Zermelo himself gives such
properties as: to be painted in green or to be an irrational number which can
not be defined in finitely many words in any Indoeuropean language.
It should be clear from the above that by definite properties (for a given

axiomatic system) Zermelo understands properties that are essential, natu-
ral, or meaningful. Zermelo insists that the following characterization of the
notion of definite property is not adequate:

A proposition is called “definite” for a given system if it is constructed from
the fundamental relations of the system only by virtue of the logical elemen-
tary operations of negation, conjunction and disjunction, as well as quan-
tification, all these operations in arbitrary yet finite repetition and composi-
tion. (Zermelo 1929, 342; citing the translation in Ebbinghaus, Fraser and
Kanamori 2010, 363)

The reason for the rejection of such characterization lies, according to
Zermelo, in the fact that the definition of this form does not refer to the
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sentences themselves but to the methods of their construction, and the latter
presupposes the notion of an arbitrary natural number, while such procedure
was not acceptable to Zermelo.
Finally, Zermelo gives his axiomatic characterization of the notion of

a definite property, in his opinion the only adequate description. For a given
domain B and fundamental relation defined on B and forming a system R

Zermelo proposes three axioms characterizing the meaning of “the sentence p
is definite with respect to R”, in symbols Dp. Firstly (Axiom I), all expres-
sions of the form r(x, y, z, . . .), for any relation r from R and any combina-
tion of variables from B, are definite sentences. Secondly (Axiom II), sen-
tences formed from definite sentences with the help of negation, conjunction,
disjunction and quantification (over B) are definite sentences. Furthermore,
Zermelo also admits second order quantification:

If DF (f) holds for all definite functors f = f(x, y, z, . . .), then D
⋂

f

F (f) and

D
f⋃
F (f) hold as well. (Zermelo 1929, 343; citing the translation in Ebbing-

haus, Fraser and Kanamori 2010, 365)

(this is exactly the condition which was criticized by Skolem in Skolem 1930).
Zermelo notices that the first two of the above axioms only say which

sentences are definite and provide no information regarding which sentences
are not definite. For this purpose he adds the following axiom:

Axiom III) If P is the system of all “definite” propositions, or, more generally,
any system of propositions p of the constitution Dp, then it has no proper sub-
system P1 that, on the one hand, contains all fundamental relations from R,
in accordance with I and II, while already including, on the other hand, all
negations, conjunctions, disjunctions and quantifications of its own proposi-
tions and propositional functions. (Zermelo 1929: 344; citing the translation
in Ebbinghaus, Fraser and Kanamori 2010, 367)

Zermelo is aware that the above formulation implicitly refers to itera-
tions of a syntactic operation finitely many times, but claims that he is able
to get rid of this restriction, promising the details in a later work (probably
in Zermelo 1935, his last printed text).

5. Zermelo’s second axiomatization of set theory

Zermelo’s very important paper “Über Grenzzahlen und Mengenbere-
iche. Neue Untersuchungen über die Grundlagen der Mengenlehre” (Zer-
melo 1930) can be considered in two aspects. For a start, it portrays the de-
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velopment of Zermelo’s views concerning set theory. I believe there are three
stages to this development: the papers Zermelo 1904 and Zermelo 1908,
the paper Zermelo 1930, and notes from Nachlaß. Secondly, it is a turning
point in the evolution of Zermelo’s views concerning the foundations of logic
and mathematics: it seems that up to 1930 Zermelo accepts the finitary
character of syntactic constructions, while after that date he begins work
on his proposal of infinitary logic which could be suitable for mathematical
inferences.
In this section I discuss the first of these aspects. As can be seen from his

correspondence with Baer, Zermelo is already familiar with Skolem 1922 and
thus is aware of the set-theoretical relativism observed by Skolem. He ac-
cepts the necessity of adding the axiom of replacement, uses the representa-
tion of ordinal numbers proposed by von Neumann, and makes an essential
use of strongly inaccessible cardinals, determining those levels in the hier-
archy of his normal domains which are natural models of the axioms of set
theory. He proves theorems that characterize up to isomorphism his normal
domains. The world of set theory is thought of in this paper as a transfinite
hierarchy of normal domains. Zermelo rejects the idea that this world can be
represented by a single model, and sets aside metatheoretical questions con-
cerning set theory for a possible later work.

5.1. Axioms of the system from Zermelo 1930

The system from 1930 has the following axioms (citing the translation
of Zermelo 1930 in Ebbinghaus, Fraser and Kanamori 2010, 403):

B) Axiom of extensionality: Every set is determined by its elements, provided
that it has any elements at all.

A) Axiom of separation: Every propositional function f(x) separates from
every set m a subset mf containing all those elements x for which f(x)
is true. Or: To each part of a set there in turn corresponds a set containing
all elements of this part.

P) Axiom of pairing: If a and b are any two elements, then there is a set that
contains both of them as its elements.

U) Axiom of the power set: To every set m there corresponds a set Um
that contains as elements all subsets of m, including the null set and m

itself. Here, an arbitrarily chosen “urelement” u0 takes the place of
the “null set”.

V) Axiom of the union: To every set m there corresponds a set Sm that
contains the elements of its elements.

E) Axiom of replacement: If the elements x of a setm are replaced in a unique
way by arbitrary elements x′ of the domain, then the domain contains also
a set m′ that has as its elements all these elements x′.
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F) Axiom of foundation: Every (decreasing) chain of elements, in which each
term is an element of the preceding one, terminates with finite index at
an urelement. Or, what amounts to the same thing: Every partial do-
main T contains at least one element t0 that has no element in T .

There are similarities as well as differences between this system and the
system from Zermelo 1908. Here Zermelo considers set theory which, be-
sides sets, also takes into account “indecomposable” elements or atoms,
with unknown structure (urelements, Urelemente). Their totality is de-
noted by U .
The separation axiom [A] looks as if it were formulated in a second-

order language, thus admitting quantification over propositional functions.
Zermelo himself does not specify the language in which properties of sets
should be expressed. He only writes that an arbitrary propositional function
can determine a subset of a given set; moreover, to each part (Teil) of a given
set there corresponds a set that has as its elements all elements of this
part. In addition, no limitations are imposed on the form of propositional
functions occurring in the axiom schema of replacement.
The axiom of foundation is new (with respect to the system from Zer-

melo 1908). Zermelo writes that this axiom is required in order to exclude
circular and non-founded („zirkelhafte” und „abgründige” Mengen) sets. The
axiom of infinity is not assumed here as (in Zermelo’s own words) not be-
longing to general set theory („allgemeinen” Mengenlehre). He shows that
a normal domain consisting of all finite sets satisfies all the axioms of such
general theory. The power set axiom states the existence of the family of all
subsets of a given set. The axiom of choice is assumed as a logical principle
and is not included in proper axioms of the system. Zermelo writes that this
axiom cannot be used for the limitation of the domains in question (Abgren-
zung der Bereiche). He adds that in all further considerations the fact that
any set can be well ordered is of the utmost importance.

5.2. Normal domains and isomorphism theorems

Systems consisting of sets and atoms with the fundamental relation
a ∈ b (meaning: a is an element of b) which satisfy the axioms BAPUVEF
are called by Zermelo the normal domains (Normalbereiche).
One can apply the same operations on normal domains as those which

are applicable to sets (unions, intersections); one can also investigate the re-
lationships between such domains (for instance the relation of being a sub-
domain). Particular normal domains are not sets in any absolute sense:
if a domain P1 is an element of a domain P2, then P1 is a set in P2. Do-
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mains that are sets in this sense are called closed. Domains that are not
closed are called open.
Zermelo introduces his Grenzzahlen (in modern terminology: strongly

inaccessible numbers) as fixed points of a certain function defined by transfi-
nite induction. Zermelo represents the set theoretical universe as a hierarchy
of normal domains. The internal structure of these domains is characterized
by three development theorems, the first of which is formulated (with Zer-
melo’s commentary) as follows:

First development theorem. Each normal domain P of characteristic π can be
decomposed into a well-ordered [[sequence]] of type π of non-empty and dis-
joint “layers” Qα, so that each layer Qα includes all elements of P which
occur in no earlier layer and whose elements belong to the corresponding “seg-
ment” Pα, that is, to the sum of preceding layers. The first layer Q0 includes
all the urelements.

For the partial domains, or “segments”, Pα are defined by transfinite
induction by virtue of the following stipulations:
1. P1 = Q0 = Q shall include the whole basis, the totality of urelements.
2. Pα+1 = Pα +Qα shall contain all sets of P that are “rooted” in Pα, that
is all those sets whose elements lie in Pα.

3. If α is a limit number, then Pα shall be the sum or union of all preceding Pβ

with smaller indices β < α.

(Zermelo 1930, 36; citing the translation in Ebbinghaus, Fraser and Kanamo-
ri 2010, 413)

Further, Zermelo establishes the cardinalities of the particular levels of
this hierarchy (Second development theorem). Finally, he proves that each
normal domain can be represented in some canonical form (Third develop-
ment theorem (theorem on “canonical” development)).
If α is a strongly inaccessible cardinal, then Pα satisfies all the axioms

of the system BAPUVEF. The basis of a normal domain is the totality of
its atoms, and the characteristic of a normal domain equals the least ordi-
nal number that is not a set in it. Zermelo proves the following theorems
characterizing normal domains up to isomorphism with respect to two pa-
rameters taken into account, namely the cardinality of the basis and the
characteristic of the domain:

First isomorphism theorem. Two normal domains with the same characteristic
and with equivalent bases are isomorphic. In fact, the isomorphic mapping of
the two domains onto one another is uniquely determined by the mapping of
their bases.

Second isomorphism theorem. Given two normal domains with equivalent bases
and different boundary numbers π, π′, one is always isomorphic to a canonical
segment of the other.
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Third isomorphism theorem. Given two normal domains with the same char-
acteristic, one is always isomorphic to a (proper or improper) subdomain of
the other. (Zermelo 1930, 36–39; citing the translation in Ebbinghaus, Fraser
and Kanamori 2010, 421–423)

At the end of the paper Zermelo includes some remarks concerning
models of set theory. He also presents the following argumentation for the
necessity of considering a transfinite hierarchy of strongly inaccessible num-
bers:

Let us now put forth the general hypothesis that every categorically determined
domain can also be conceived as a “set” in one way or another; that is that it
can occur as an element of a (suitably chosen) normal domain. It then follows
that there corresponds to any normal domain a higher one with the same basis,
to any unit domain a higher unit domain, and therefore also to any “boundary
number” π a greater boundary number π′. [...] Once again, this is of course
not “provable” on the basis of the ZF ′ axioms, since the asserted behavior
leads us beyond any individual normal domain. Rather, we must postulate the
existence of an unlimited sequence of boundary numbers as a new axiom for
the “meta-theory of sets”, where the question of “consistency” still requires
closer examination. (Zermelo 1930, 46; citing the translation in Ebbinghaus,
Fraser and Kanamori 2010, 429)

Zermelo stresses that one should not think of set theory as describing
a single intended model. He claims that the fact that domains with different
bases and characteristics are not isomorphic is a virtue of his system as far
as the intuitions concerning the concept of a set are concerned.

5.3. A digression: extremal axioms

The term extremal axiom was introduced in the paper Carnap and Bach-
mann 1936. Intuitively speaking, extremal axioms are axioms that should
uniquely characterize models of the underlying theory, and moreover as
maximal or minimal with respect to their internal structure. Early exam-
ples of such axioms include Peano’s axiom of induction in arithmetic and
the axiom of completeness in Hilbert’s system of geometry presented in
Hilbert 1899. The latter is summarized as follows: To a system of points,
straight lines, and planes, it is impossible to add other elements in such

a manner that the system thus generalized shall form a new geometry obey-
ing all of the five groups of axioms. An example of an early extremal axiom
in set theory is Fraenkel’s axiom of restriction, which says, roughly speak-
ing, that only those sets exist whose existence can be explicitly proven in
set theory. Neither Hilbert’s axiom of completeness nor Fraenkel’s axiom
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of restriction are statements formulated in the object language of the cor-
responding theory. Hilbert’s axiom expresses the idea of maximality of the
geometric universe, while Fraenkel’s axiom should be understood as a re-
quirement that the set theoretical universe should be as narrow as possible.
Carnap and Bachmann tried to provide a general description of extremal
axioms (maximal as well as minimal) in the formalism of the theory of types.
They considered one maximal axiom (Hilbert’s axiom of completeness) and
two minimal axioms (Dedekind’s characterization of the minimal infinite
chain and Fraenkel’s axiom of restriction). It is unclear, in my opinion
at least, why they did not consider maximal axioms in set theory. Zer-
melo formulated such an axiom in Zermelo 1930 (page 46), which is clear
from the citation at the end of the previous subsection. Postulating the exis-
tence of the transfinite hierarchy of strongly inaccessible numbers (boundary
numbers in Zermelo’s formulation) is exactly a certain condition expressing
maximality of the set-theoretic universe. Moreover, this was the first time
when such a maximality condition concerning this universe was formulated.
Felix Hausdorff had earlier expressed the opinion that strongly inaccessi-
ble numbers were so large that they would never be needed in “normal”
mathematics. Zermelo’s maximality condition is in agreement with the con-
temporary views concerning the universe of set theory. Indeed, Kurt Gödel
had already suggested that one needed to look for maximality conditions
in set theory, similar to the Hilbert’s axiom in geometry. And he did so
just after introducing his axiom of constructibility, a kind of restriction
axiom, being used in Gödel’s proof of consistency of axiom of choice and
the continuum hypothesis with the remaining axioms of Zermelo-Fraenkel
set theory.
Further examples of restriction axioms in set theory are John von Neu-

mann’s axiom of the limitation of size (von Neumann 1925) and Roman
Suszko’s axiom of canonicity (Suszko 1951). A sharp critique of restriction
axioms was presented in Fraenkel, Bar-Hillel and Levy 1973. Modern set
theory focuses attention rather on maximal axioms, namely axioms of the
existence of large cardinal numbers. Therefore I dare to claim that Zermelo
was prophetic in postulating the existence of the transfinite hierarchy of
strongly inaccessible numbers as the principle that should govern the set-
theoretic universe. The recent book Pogonowski 2019 discusses the issue of
extremal axioms in mathematics, including the circumstances of their origin
and their consequences.
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6. Zermelo’s anti-Skolemism

Zermelo became acquainted with Skolem’s works on set theory rather
late, as attested to in his correspondence (see Ebbinghaus 2001). He criti-
cized Skolem’s remarks on his axiomatization from Zermelo 1930 (the dis-
pute concerned Zermelo’s notion of Definitheit described in Zermelo 1929).
One may presume, in my opinion, that Zermelo’s critical attitude towards
Skolemism and “finitistic prejudicies” (Zermelo’s own term) were among the
inspirations for his project of infinitary logic.
Let me recall that the Löwenheim-Skolem theorem (formulated in con-

temporary terminology) states that if a theory in first-order language has
an infinite model, then it has a countable model. This theorem has the fol-
lowing seemingly paradoxical consequences: firstly, in first-order languages,
in which we have only countably many closed terms (which can name the
elements of the domain of a model), we are unable to give names to al-
most all elements in uncountable domains; secondly, Cantor’s theorem in
set theory states that no set is equinumerous with its power set – and when
applied to a countably infinite set it has as a consequence that its power set
is uncountable. The Löwenheim-Skolem theorem applied to set theory for-
mulated in a first-order language together with this result, in the presence
of the axiom of infinity (stating the existence of at least one infinite set),
may seem paradoxical: how could it be possible for a countable model of
set theory to admit the existence of an uncountable element in its domain?
This phenomenon is usually called Skolem’s paradox.
Explications of Skolem’s paradox are well known. As a matter of fact,

it is not a genuine paradox but rather an effect (of using first-order lan-
guages). See for instance Benacerraf and Wright 1985, Bays 2000, van
Dalen and Ebbinghaus 2000, George 1985, Klenk 1976, McCarthy and Ten-
nant 1987, Moore 1985, Myhill 1951, 1952, Putnam 1980, Quine 1966,
Resnik 1966, 1969, Shapiro 1996, Suszko 1951, Thomas 1968, 1971, and
Wang 1955, as well as the textbooks DeLong 1970, Mostowski 1948,
Hunter 1971, and Wang 1962. Briefly speaking, one has to remember that
an infinite set is uncountable if and only if there exists no bijection between
it and the set of all natural numbers. Now, if a given model does not include
enough bijections, then inside the model there may occur elements that are
uncountable from the point of view of this model. The Löwenheim-Skolem
theorem for systems of logic different from the first-order logic is discussed
for instance in Barwise and Feferman 1985, and Shapiro 1996.
Zermelo’s anti-Skolemism can be summarized as follows. Firstly, Zer-

melo did not endorse the idea that the properties taken into account in
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the axiom of separation should be formulated in a first-order language. Sec-
ondly, Zermelo did not endorse the idea that set theory should be connected
with a single model.
Skolemism was, in Zermelo’s opinion, a completely inadequate approach

to set theory. He considered the reduction of the world of sets to one count-
able model as a deformation of the Cantorian essence of this theory.
Skolem did not consider set theory a good candidate for the basis of all of

mathematics, contrary to Zermelo. In turn, Zermelo claimed that the proof
techniques used in mathematics should not be restricted by considering only
one finitistic system.
In his short note “Relativism in set theory and the so-called Skolem

theorem” Zermelo tried to show the inadequacy of the early set-theoretical
relativism in a purely mathematical way, attempting to prove that the as-
sumption that there may exist “bigger” and “smaller” sets playing the role
of continuum leads to a contradiction.2 However, his argument misses the
point. Dirk van Dalen and Heinz-Dieter Ebbinghaus show that the main
fault lies in an unwarranted assumption concerning closures with respect
to arbitrary unions and intersections, and they conclude:

So altogether Zermelo’s refutation amounts to a proof of the set-theoretical
statement saying that, given a denumerable set M , any subset of the power-
set K of M that is closed under arbitrary unions and intersections (and un-
der complements with respect to M) and whose union is M , either is finite
or of the same cardinality as K. (van Dalen, Ebbinghaus 2000, 156)

These authors also write that Zermelo’s faulty argumentation might
have been caused by his epistemological position with respect to set theory,
because Zermelo believed in the existence of an absolute hierarchy of sets.

7. Zermelo’s infinitary logic

In my opinion the following factors are essential to Zermelo’s motivation
for his project of infinitary logic:
1. Zermelo’s views on the nature of infinity: he claimed that Mathematics
is the logic of the Infinite.

2. Zermelo’s belief that his set theory is fundamental to the entirety of
mathematics. In particular, he conceived formulas and proofs as well-
founded constructs from the cumulative hierarchy of sets.

3. Zermelo’s rejection of Skolemism. Zermelo believed that investigations
into set theory should not be restricted to its single model and that
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one should not accept the finitistic standpoint in mathematical proof
procedures.

4. Zermelo’s belief that no restriction should be imposed on formulas oc-
curring in the axiom of separation (in particular the restriction to a first-
order language is not justified).
Zermelo was primarily a genuine mathematician and only rarely did

he express philosophical opinions, always stressing the fact that he was
mainly interested in mathematical aspects of the investigated problems. His
“Thesen über das Unendliche in der Mathematik”, a short note (included
in his Nachlaß) prepared in 1921 for his lectures in Warsaw in Spring 1929,
was analyzed in Taylor 2002 and van Dalen, Ebbinghaus 2000. The text
runs as follows:

17 July 1921
Theses concerning the infinite in mathematics
I) Every genuinely mathematical proposition is “infinitary” in character,
that is, is concerned with an infinite domain and is to be considered
a collection of infinitely many “elementary propositions”.

II) The infinite is not given to us physically or psychologically in reality, it
must be grasped as “idea” in Plato’s sense and “posited”.

III) Since infinitary propositions can never be derived from finitary ones, the
“axioms” of any mathematical theory, too, must be infinitary, and the
“consistency” of such a theory can be “proved” by no other means than
the presentation of a corresponding consistent system of infinitely many
elementary propositions.

IV) Traditional “Aristotelian” logic is, according to its nature, finitary, and
hence not suited for the foundation of mathematical science. Whence the
necessity of an extended “infinitary” or “Platonic” logic that rests on some
kind of infinitary “intuition” – as, e.g., in connection with the question of
the “axiom of choice” – but which, paradoxically, is rejected by the “in-
tuitionists” by force of habit.

V) Every mathematical proposition must be considered a collection of (in-
finitely many) elementary propositions, the “fundamental relations”, by
means of conjunction, disjunction and negation, and every deductio of
a proposition from other propositions, in particular every “proof”, is noth-
ing but a “regrouping” of the elementary propositions.

(Zermelo 1921; citing the translation in Ebbinghaus, Fraser and Kanamo-
ri 2010, 307)

How are these claims to be understood? One should bear in mind that
Zermelo never used formalized languages in the modern sense of the term.
The following passage is very often cited:

At the time, a universally acknowledged “mathematical logic” on which I could
have relied did not exist – nor does it exist today when every foundational
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researcher has his own logistic. (Zermelo 1929, 340; citing the translation in
Ebbinghaus, Fraser and Kanamori 2010, 359)

Zermelo used a metaphorical description of mathematics as the logic of
the Infinite – compare the following note from Nachlaß, related to the third
(Finite and infinite domains) out of nine his lectures presented in Warsaw
between 27 May and 8 June 1929:

A purely “finitistic” mathematics, in which nothing really requires proof since
everything is already verifiable by use of the finite model, would no longer
be mathematics in the true sense of the word. Rather, true mathematics is
infinitistic according to its nature and rests on the assumption of infinite do-
mains; it may even be called the “logic of the infinite”. (Zermelo 1929a; citing
the translation in Ebbinghaus, Fraser and Kanamori 2010, 383)

In my opinion the most important aspect of the “Thesen über das Un-
endliche in der Mathematik” is the ontological claim that mathematics deals
primarily with infinite structures. Any attempts at expressing mathemat-
ical dependencies with the help of finitary linguistic tools were considered
by Zermelo mere approximations.
According to Thesis I, the nature of mathematical statements is related

to the fact that they concern infinite domains and should be conceived of
as collections of infinitely many elementary statements.
Infinity should be understood in the Platonic sense, and it is neither

accessible physically or psychically: this is the content of Thesis II.
Zermelo argues in Thesis III that because from finitary sentences one

cannot infer statements of infinitary character (and such are, according
to Thesis I, all mathematical statements), then the axioms of any mathe-
matical theory should have an infinitary character. The consistency of such
theories can be proved only by providing an infinite set of elementary state-
ments free of contradictions.
Traditional (Aristotelian) logic has a finitary character and is not suit-

able as a basis of mathematical knowledge; such is Zermelo’s claim in The-
sis IV. An infinitary, Platonic logic appropriate for considerations of an in-
finitary character, as for instance those connected with the axiom of choice,
needs to be constructed.
Every mathematical statement is a collection of infinitely many ele-

mentary statements connected by negations, conjunctions and disjunctions.
Every inference of a mathematical statement from other such statements
is nothing other than a recombination of the elementary statements taken
into account. This is the content of Thesis V.
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The last paper published by Zermelo (Zermelo 1935) contains proposals
for applying the results from Zermelo 1930 to the reconstruction of funda-
mental logical concepts (to Beweistheorie). The starting point is the relation
of entailment:

We say “p follows from a, b, c, . . .” and write a, b, c, . . . → p if along with
the truth of a, b, c, . . . also that of p is supposed to be posited. And we call
the complex a, b, c . . . the “ground”, the proposition p the “consequence”,
and the sense inherent to this formula the “justification” of the proposi-
tion p. (Zermelo 1935, 139; citing the translation in Ebbinghaus, Fraser and
Kanamori 2010, 587–589)

Zermelo proves that if the relation introduced above is well-founded,
then it preserves validity. Then he gives a definition of the notion of (math-
ematical) proof, based on this relation:

A (direct) proof is a system of propositions well-founded by means of inference
(justification) to which the proposition to be proved belongs and whose basis
consists only of true propositions forming the presupposition of the propo-
sition. (Zermelo 1935, 140; citing the translation in Ebbinghaus, Fraser and
Kanamori 2010, 589)

A typical example of such a proof is an inference based on the princi-
ple of mathematical induction as explained in Zermelo 1935 on page 140.
The crucial point in this explanation refers to the fact that such proof con-
sists of a well-ordered sequence of propositions.
A detailed analysis of Zermelo’s views concerning his infinitary logic was

presented in Taylor 2002. In what follows I am going to use the notation
from that paper.
Every mathematical theory, writes Zermelo, refers to some (in general,

infinite) domain of elements such as numbers, points, and so on. This domain
is called the fundamental domain and denoted by D. Between elements of D
several relations may hold, for instance: a < b, a+b = c, a lies on the straight
line determined by b and c.
Zermelo calls such relations basic relations (Grundrelationen) and de-

notes their totality by R. From these relations one obtains further relations
by applying to them the operations of negation and arbitrary (also infinite)
conjunctions and disjunctions. Let the totality of relations obtained in this
way be denoted by CR. Elements of CR are called fundamental relations.
Zermelo implicitly assumes that the relation of being a subexpression

(part of a given expression) is well-defined and that it enables us to intro-
duce a well-founded ordering in the totality of all fundamental relations.
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Thus, the totality of expressions forms a hierarchy similar to the hierar-
chies of sets investigated in Zermelo 1930. Let this hierarchy be denoted
by HD,R. Some subdomains of this hierarchy may be sets (closed domains)
and some may be open domains. This dichotomy reflects the differences
between mathematical theories. The former case concerns arithmetic, real
and complex analysis, and geometry, while the latter is related to the “gen-
eral theory of fields”, general geometry or general set theory extended to all
normal domains (Zermelo 1935, 142).
To sum up – at this moment the initial steps in the formation of Zer-

melo’s system of infinitary logic are based on the following constructions:
1. Basic relations on D: R = {Rn1

1 , . . . , R
nj

j }.
2. Fundamental relations on D: the collection CR of atomic sentences of
the form Rni

i a1 . . . ani
(for Rni

i from R and a1, . . . , ani
from D).

3. Hierarchy of expressions: HD,R (where CR is the basis).
The next constructions introduce semantic notions. If any dichotomic

partition of the collection CR is given, then it can be extended to a partition
of all expressions from the hierarchy HD,R:
1. We use the standard conditions concerning negations, conjunctions and
disjunctions.

2. Suppose that there exist sentences in HD,R with non-determined log-
ical value. They should then form a subdomain, say S. In S there
must exist the first element (which followsfrom the well-ordering of
the hierarchy of expressions), say t0. This element does not belong
to CR and is constructed from expressions belonging to HD,R − S

only (by using negations, conjunctions and disjunctions). But these ex-
pressions already have determined logical values and hence we obtain
a contradiction. Therefore, all expressions in HD,R have uniquely de-
termined logical values (modulo the given partition of the sentences
from CR).
Let Π denote the totality of all dichotomic partitions of CR (that is

partitions into true and false sentences). Two sentences are logically equiv-
alent if and only if for any partition of the basic expressions they belong to
exactly the same classes in the partition of the entire hierarchy of expres-
sions. Zermelo shows that the De Morgan laws hold in his system. Logical
entailment is defined with the use of partitions from Π. The class of all sen-
tences from HD,R which are true under the given partition is a subdomain
of HD,R. For a given sentence s, the intersection V ∗(s) of all such classes
(indexed by the elements of Π) which contain the sentence s contains also
all sentences that are true if s is true. Thus, this intersection corresponds
to the class of all sentences that logically follow from s.
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Similarly, the intersection U∗(s) of all classes (subdomains of HD,R)
consisting of false sentences and containing the sentence s contains all sen-
tences from which s logically follows. In Zermelo’s own terminology V ∗(s) is
called der Folgebereich von s, and U∗(s) is called der Ursprungsbereich von s.
Sentences logically equivalent with s form the following class:

A∗(s) = V ∗(s) ∩ U∗(s)

Zermelo gives the following example:

If, e.g., s is a “system of axioms” of a mathematical theory that rests on the fun-
damental relations of, e.g., arithmetic or Euclidean geometry, then A∗(s) com-
prises all equivalent axiom systems, and V ∗(s) comprises all propositions of
the theory that follow from s, and in particular allmore general axiom systems,
and U∗(s) comprises all more particular axiom systems. (Zermelo 1935, 144;
citing the translation in Ebbinghaus, Fraser and Kanamori 2010, 595)

The next passage reflects Zermelo’s views about the connections be-
tween the notions introduced above, mathematical proofs, and the notion
of provability in general. In order to avoid misunderstanding, it would be
better to cite verbatim Zermelo’s own formulation:

If a proposition t lies in the consequence domain V ∗(s), that is, if it “fol-
lows” from s, then it is also “syllogistically derivable” from s. In particular,
it is so derivable already within the common “root domain”, or “definition
domain” W (s, t) of s and t. This is the intersection of all “root domains” W
containing s and t, namely of all those which along with every derived proposi-
tion contained in them also contain all of its “roots”, that is, along with every
negation a the negated proposition a, and along with every conjunction or
disjunction all of their terms. There corresponds then to any arbitrary truth
distribution of the entire system also one such of W (s, t), and every intersec-
tion V ′ with a truth domain V either fails to contain s or contains it along
with t. The domain W contains all intermediate propositions required for the
derivation of t, and their “valuation”, their truth distribution, proceeds in it
according to the syllogistic rules.
Accordingly, every proposition that follows from s would therefore be

“provable” as well, but, at first, only in the absolute, “infinitistic” sense. Such
a “proof” for the most part contains infinitely many intermediate propositions,
and it has yet to be determined to what extent and by what means it can be
rendered evident to our finite mind. Every mathematical proof, such as the
inference method of mathematical induction, is actually quite “infinitistic”,
and yet we are capable of grasping it. Firm limits on comprehensibility do not
seem to exist here. (Zermelo 1935, 144 citing the translation in Ebbinghaus,
Fraser and Kanamori 2010, 595–597)
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It can be seen from these passages that Zermelo wanted to understand
the notion of mathematical proof in an absolute sense, as a notion deter-
mined by semantic dependencies only. Proofs known in mathematical re-
search practice are only certain approximations of proofs in such an absolute
sense.
According to Zermelo, a mathematical theory is a system of a form:

T = 〈D,CR,Π〉.

Let V alΠ be the class of all sentences from HD,R which are Π-valid, that
is true under all partitions from Π. Then both V alΠ and HD,R are open
domains. If α is strongly inaccessible, then the domain V alΠ ∩ Pα is an ap-
proximation of T (here Pα is the level with index α of the hierarchy of sets
whose basis is CR). It is understood that the hierarchy HD,R is a subdomain
in the hierarchy of all sets.
Zermelo’s sentence

∧
(V alΠ ∩Pα) is an example of a true but not prov-

able sentence in the system 〈Pα,≺〉. Here ≺ is a syntactic relation corre-
sponding to the relation of being a subexpression. It is understood that this
relation has a set-theoretical representation.

8. Zermelo and Gödel

Correspondence between Zermelo and Gödel has been analyzed by sev-
eral authors, for instance Grattan-Guinness 1979, Dawson 1985, Buldt et al.
2002, Ebbinghaus, Fraser, Kanamori 2010. Zermelo and Gödel met each
other in Bad Elster, where they both gave lectures on September 15, 1931.
Gödel’s lecture, under the title “Über die Existenz unentscheidbarer arith-
metischer Sätze in den formalen Systemen der Mathematik” was not pub-
lished in the reports from the meeting, while the text of Zermelo’s lecture
“Über Stufen der Quantifikation und die Logik des Unendlichen” was pub-
lished in these reports, that is in Jahresbericht der Deutschen Mathematiker-
Vereinigung 41, 1932, 85–92. We know from Zermelo’s correspondence (see
Peckhaus 1990) that the first fragment of his text was not read and was
added only in print. In it, Zermelo expresses his condemnation of Skolemism,
of “finitistic prejudicies”, and the idea that set theory may be represented
by a countable model. He writes:

Mathematics, generally speaking, is not really concerned with “combinations
of signs”, as some assume, but with conceptually ideal relations among the ele-
ments of a conceptually posited infinite manifold. Our systems of signs are but
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imperfect expedients of our finite mind, which we, adapting them to the cir-
cumstances at hand, employ in order to at least gradually get a hold on the
infinite, which we can neither “survey” nor grasp immediately and intuitively.
(Zermelo 1932, 85; citing Ebbinghaus, Fraser and Kanamori 2010, 543–545)

In what follows Zermelo presents in brief his proposal of the understand-
ing of the notion of mathematical proof discussed in the previous section.
Mathematical proof is for him a well-founded system of propositions. The
term “levels of quantification” (Stufen der Quantifikation) used in this text
is explicated by a reference to the indices of the levels of the set-theoretical
hierarchy. Zermelo compares his proposal with Gödel’s results concerning
incompleteness:

From our point of view, every “true” proposition is therefore also “provable”,
and every proposition “definable” by means of a well-founded propositional
system S is also “decidable” without ascent to a higher level of quantifica-
tion being necessary. There are no (objectively) “undecidable” propositions.
On the other hand, Mr. Gödel (Wiener Monatshefte Bd. 38, S. 173) has tried
to prove the opposite. In order to do so, he tried to derive a proposition A,
given a “PM-system” of limited (namely finite) level of quantification, which
is supposed to be demonstrably (at least in this system) undecidable. But the
only reason Gödel’s proof works is because he applies the “finitistic” restric-
tion only to the “provable” propositions of the system and not to all propo-
sitions belonging to the system. Thus only the former, but not the latter,
form a countable set, and of course, when understood in this sense, there must
be “undecidable” propositions. But, as G. himself states, the very proposi-
tion constructed by him as an example of an “undecidable” proposition later
turns out to be “decidable” after all, even not in the sense of the original
definition. This whole argument, in my opinion, only serves as evidence for
the inadequacy of any “finitistic” proof theory without, however, providing
the means to remove this ill. Such relativistic considerations in no way touch
on the real question as to whether there are absolutely undecidable proposi-
tions or absolutely unsolvable problems in mathematics. (Zermelo 1932, 87;
citing Ebbinghaus, Fraser and Kanamori 2010, 547)

Zermelo and Gödel corresponded with each other in 1931, see Gödel’s
Collected Works, volume IV, 418–431. Zermelo writes in his letter from
21 September 1931 that he has found a gap in Gödel’s proof of the ex-
istence of true but unprovable sentences in systems like that of Principia
Mathematica. Gödel’s answer from 12 October 1931 contains an explanation
concerning the flaw in Zermelo’s argument (shortly speaking: Zermelo did
not distinguish between formulas and names of formulas). It may be added
that the letter contains Gödel’s remark about non-definability of the truth
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predicate (the fact usually related to the name of Tarski). Gödel is also in-
terested in the paper Zermelo 1930. In Zermelo’s opinion Gödel was one of
the few people who could fully appreciate the results of that paper.
Zermelo’s answer from 29 October 1931, contained in the letter that

was to be the last in this exchange, is rather short. The following passage
from it is important:

What do we mean by “proof”? Generally speaking, by “proof” we mean a sys-
tem of propositions so constituted that, under the assumption of the premisses,
the validity of the claim can be made obvious. The only remaining question is,
What all is considered “obvious”? Certainly not merely, as you yourself have
shown after all, the propositions of some finitistic schema, which, in your case,
too, can always be extended. But then we would actually agree, except that I,
at the very outset, proceed from a more general schema, which does not need
to be extended first. And in this system now really any proposition whatsoever
is decidable! (From Zermelo’s letter to Gödel [29 X 1931]; citing Ebbinghaus,
Fraser and Kanamori 2010, 501).

Zermelo adds that sentences undecidable in Gödel’s sense in some sys-
tem are decidable in a stronger system (Gödel himself was of course aware
of this fact), but this stronger system is obtained not by the addition of new
sentences but by expansion of the proof possibilities.

9. A few remarks about infinitary logic

At the time of preparation of Zermelo’s project of infinitary logic,
the project itself stood little chance of being developed by others. Systematic
investigations in infinitary logic only came about two decades later.
Zermelo was frustrated by there being practically no response to his

project of infinitary logic. He wrote on 1 October 1941 to Bernays, thanking
him for his birthday congratulations:

For as one finds oneself growing more and more lonely, one is all the more
grateful for anyone cherishing one’s memory. [...] Every mention of my name
is invariably connected only with the “principle of choice”, to which I have
never laid any special claim. [...] And I recall that my presentation on propo-
sitional systems had already been excluded from a discussion session during
the meeting of mathematicians in Bad Elster due to a plot engineered by the
Vienna Circle represented by Hahn and Gödel. Ever since, I have lost all in-
terest in speaking publicly on foundational matters. This apparently is the lot
of anyone who has no “school” or clique behind him. But perhaps a time
will come when even my papers will be rediscovered and read again. (citing
Ebbinghaus, Fraser and Kanamori 2010, 609)
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Several authors (for instance G.H. Moore, H.D. Ebbinghaus, and J. Fer-
reirós) have pointed out a very interesting fact from the history of mathe-
matical logic: investigations into infinitary logic initially conducted in a non-
systematic manner in the nineteen twenties and thirties were quickly set
aside, and only two decades later was there a revival of interest in them.
This is a topic that surely deserves more comprehensive treatment.
In what follows I am going to discuss very briefly some facts from

the history of infinitary logic, using information contained in Moore 1995,
Bell 2016, Keisler and Knight 2004, Barwise and Feferman 1985.
If we call a logic an infinitary logic, then it may refer either to the fact

that the formal language taken into account admits infinitely long formu-
las or that infinitary rules of inference are allowed and consequently also
infinitely long proofs are admissible (or both, of course). These properties
have a syntactic character. They presuppose a formal representation that is
adequate for talking about infinitary constructions. The best candidate in
this respect is set theory.

9.1. Infinitary logic: prehistory

According to G. H. Moore (Moore 1995, 109), the first uses of in-
finitary formulas in logic can be found in Mathematical Analysis of Logic
(Boole 1847), where arbitrary Boolean functions are developed into formal
MacLaurin series. Boole used such constructions also in his Laws of Thought
(Boole 1854). Peirce used infinitary formulas in 1885, when he introduced
symbolism for quantifiers:

Here ... we may use
∑
for some, suggesting a sum, and

∏
for all, suggesting

a product. Thus
∑

i xi means that x is true of some of the individuals denoted
by i or

∑
i xi = xi+xj +xk+ etc. In the same way,

∏
i xi means that x is true

of all these individuals, or
∏

i xi = xixjxk etc. ...
∑

i xi and
∏

i xi are only
similar to a sum and product; they are not strictly of that nature, because the
individuals of the universe may be innumerable. (Peirce 1885, 194–195; citing
Moore 1995, 110)

Ernst Schröder in his monumental Vorlesungen über die Algebra der
Logik (Schröder 1885) also used infinitely long formulas. Schröder’s notes
were elaborated by Müller and published in 1910 as Abriss der Algebra der
Logik (Schröder 1910). There one can find statements about equivalence of
formulas with quantifiers with infinitely long conjunctions and disjunctions.
Leopold Löwenheim (Löwenheim 1915) and Thoralf Skolem (Skolem

1919, 1920, 1922) wrote in the algebraic tradition, going back to Peirce
and Schröder. Löwenheim in 1915 used not only infinite conjunctions and
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disjunctions but also infinitely long quantifier prefixes. It seems justified to
claim that he also used infinitary rules of inference, when he wrote that if
an infinite number of sentences is true, then also its (infinitary) conjunction
is true.
Löwenheim’s logical protosystem thus used tools typical for second-

order infinitary logic and the same may be claimed about Skolem’s works
from 1919 and 1920; in contemporary terminology the formal languages in
question are Lω1ω and Lω1ω1

. Namely, Skolem allowed formulas in normal
forms with a finite number of general quantifiers followed by a countable
number of existential quantifiers. Skolem’s departure from infinitary logic is
his article Skolem 1922 in which he formulated for the first time the axioms
of set theory solely in the first-order language. That paper also contains
critical remarks about Zermelo’s system of set theory.
According to G. H. Moore some works by Hilbert and Lewis also be-

long to the prehistory of infinitary logic. Hilbert used infinitary expressions
in 1905, but he eliminated them in the late nineteen twenties. Neverthe-
less, he introduced an infinitary rule of inference in 1931. Lewis represented
quantified formulas as equivalent to infinite conjunctions and disjunctions
and was aware that his infinite expressions may also contain uncountably
many symbols (Lewis 1918).
Around 1940 infinitary systems were considered by Carnap, Nowikow,

and Bochwar, among others. Carnap considered infinitary rules of inference.
Also Ajdukiewicz in his Główne zasady metodologji nauk i logiki formalnej
(Ajdukiewicz 1928) wrote about the ω-rule. Remarks about Carnap’s pro-
posals can be found in Robinson 1951. In 1939 Nowikow investigated sys-
tems of logic with countable conjunctions and disjunctions. Bochwar was
interested in the metalogical properties of such systems.
When investigating definable ordering types, Kazimierz Kuratowski

used quantifiers of the form there exists a natural number n such that ϕn(x),
where ϕn(x) is a formula of the first-order predicate calculus, and claimed
that such an expression is equivalent to a countable disjunction (Kura-
towski 1937). Tarski modified Kuratowski’s approach by eliminating infinite
disjunctions and introducing instead a predicate P (x, n) with two variables,
equivalent to the formula ϕn(x).
Like Zermelo, Helmer also conducted his research of infinitary logic in

isolation (Helmer 1938). He took into account infinitely long formulas (being
well-ordered sequences of symbols of the ordering type less than ω2) and in-
finitely long numerical expressions (coding real numbers). He used the prin-
ciple of mathematical induction and a rule corresponding to the Dedekind’s
continuity axiom, and also formulated a theorem resembling Gödel’s incom-
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pleteness theorem. Helmer was considering two kinds of incompleteness:
deductive and definitional.
Around 1940 investigations into infinitary logic came to a halt. It is

likely that the decisive factor for that was the propagation of the standard
of the first-order (finitary) logic.

9.2. Infinitary logic: a few historical remarks

Systematic investigations into infinitary logic began around the nineteen
fifties. Alfred Tarski, who initiated these investigations, quoted the works
Jordan 1949 and Krasner 1938 as preceding his own research. Let us bear in
mind that Tarski had previously rejected the possibility of using infinitary
formulas when he was introducing mathematical foundations of semantics
in the nineteen thirties.
Inspirations for the systematic investigations of infinitary logic were pri-

marily mathematical. Logical systems were being sought with sufficiently
strong expressive power for characterizing fundamental mathematical con-
cepts. In 1951 Abraham Robinson used infinite conjunctions and disjunc-
tions in his algebraic works (the axiom of Archimedes, for instance, can be
formulated as an infinite disjunction). Infinitary formulas were applied in
the investigation of the problem as to whether the first strongly inaccessible
number was or was not measurable.
According to Moore (Moore 1995, pages 107 and 121) the borderline

between the prehistory and history of infinitary logic is determined by
the works Henkin 1955 and Robinson 1957. The algebraic inspiration for
Henkin’s work may be traced as follows:
1. Stone proved in 1934 his representation theorem for Boolean algebras:
every Boolean algebra is a homomorphic image of some field of sets.

2. Loomis extended Stone’s result in 1947 by proving that every σ-
complete Boolean algebra is a σ-homomorphic image of some σ-field
of sets.

3. Tarski, Chang and Scott proved further results concerning representa-
tions of Boolean algebras in the fifties.

4. At the same time Tarski inspired Henkin to work on generalizations of
his earlier results concerning cylindric algebras. One of Tarski’s main
results was a representation theorem for locally finite infinitely dimen-
sional cylindric algebras. Such algebras are algebraic counterparts of
first-order logic. Henkin worked on generalizations of the representation
theorem for ω-dimensional cylindric algebras and was looking for ex-
tensions of first-order logic being their counterparts. He used predicates
with an infinite number of arguments and obtained some metalogical
results concerning infinitary logic.
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In the late fifties Tarski and Scott investigated propositional calculi
with conjunctions and disjunctions of length less than an arbitrary infinite
regular cardinal number. In particular, they obtained completeness theorems
for such calculi (Scott and Tarski 1957, 1958). At that time Tarski was
considering systems of logic which in contemporary terminology are known
as Lω1ω1

. Systematic research of languages with formulas of infinite length
was conducted by Carol Karp, who was a doctoral student of Leon Henkin.
The first monographs devoted entirely to infinitary logic are Karp 1964

and Dickmann 1975. The monograph Keisler 1971 was also very influen-
tial. One should of course also mention the monumental work Barwise and
Feferman 1985.

9.3. Infinitary logic: a few recent results

Let me finish this section with a few remarks concerning the present
state of knowledge in the domain of infinitary logic. It may be interesting
to compare recent findings with the goal declared in Zermelo’s project.

9.3.1. How strong does expressive power need to be in logic?

What are the main methodological reasons why the first-order logic
(FOL) is – or should be – recognized as the standard system of logic? I be-
lieve that at least the following items should be distinguished:
1. FOL is sound and complete: the sets of its theses (in an axiomatic
approach) and tautologies are equal.

2. FOL is sound and complete also in a strong sense: syntactic derivability
reflects semantic entailment.

3. The same can be said about other proof systems proposed for FOL,
such as analytic tableaux, resolution, natural deduction, sequent calculi,
and so on.

4. FOL is consistent and compact.
5. FOL satisfies the theorem on the neutrality of non-logical predicates,
function symbols and individual constants.

6. FOL satisfies the Löwenheim-Skolem-Tarski theorem, that is, roughly
speaking, FOL does not distinguish infinite powers.

7. Zermelo-Fraenkel set theory can be expressed in FOL.
8. According to the Lindström theorem, any logic that is compact and
satisfies the Löwenheim-Skolem theorem (under some natural assump-
tions) is equivalent to FOL.
These properties are considered methodological ideals by logicians, and

they are connected to the finitary character of the process of deduction. They
also reflect the universal character of FOL. For these reasons, many logicians
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accept the First-Order Thesis claiming that FOL is the logic, the standard
and natural logical system (see for instance Woleński 2004).
On the other hand, the assumptions concerning syntax and inferences in

first-order language have important consequences for the expressive power
of such language: it appears to be very weak. This means, among others,
that many fundamental mathematical concepts are not expressible in a first-
order language by a single formula, for instance: infinity, continuity, a set
of measure zero, or the Archimedean axiom. Categorical characterizations
of mathematical structures are impossible in first-order languages. The fa-
mous limitative theorems (Gödel, Tarski, Rosser, Church) show incomplete-
ness and non-definability phenomena typical of theories formulated in such
languages.
Extensions of FOL that have greater expressive power are interesting

for both mathematicians and logicians. There are several possibilities for
such extensions:
1. New logical constants can be added to the standard collection, the latter
including truth connectives, quantifiers, and the identity predicate. In
this way we obtain several sorts of modal logics or logics with generalized
quantifiers.

2. Non-finitary syntactic constructions, for example infinite conjunctions,
disjunctions or quantifier prefixes, can be allowed.

3. New rules of inference, in particular infinitary rules (as for instance the
ω-rule), can be added.
All these possibilities have been exploited and the metatheoretical prop-

erties of such new logical systems have been investigated. Allow me to add
in the margins that there have also been situations of some predicates being
expelled from logic; this was the case of the relation ∈ which became a non-
logical relation after the development of set theory. The mereological relation
of being a part introduced in Leśniewski’s systems is no longer counted as
a logical constant, at least in the mainstream of logical investigations. The
problem of what constitutes a logical notion has been investigated by sev-
eral researchers; see for instance Lindenbaum and Tarski 1936, Tarski 1986,
Woleński 1997.
Andrzej Mostowski introduced generalized quantifiers in 1957 (Mostow-

ski 1957). The quantifier Qα has the following intended meaning: there
exist (in the domain of the model) at least ℵα objects (with a prop-
erty expressed by a formula of this extended language). Henkin intro-
duced branching quantifiers (Henkin 1957). Lindström’s works from the
nineteen sixties and Barwise’s works from the nineteen seventies created
a whole new domain of research, called abstract model theory (sometimes
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also called soft model theory); see for example Lindström 1966, 1969, Bar-
wise 1974. Detailed information can be found for instance in Barwise and
Feferman 1985, Shapiro 1996, Westerst̊ahl 1989, Krynicki, Mostowski and
Szczerba 1995.

9.3.2. Metalogic for infinitary logic

Interpreters of Zermelo’s works differ in their opinions regarding what
kind of contemporary infinitary logic could be the closest to his semi-
formal proposals. As candidates in this respect one can consider: logic L∞∞;
logic Lκκ, where κ is a strongly inaccessible cardinal number; logic L∞ω; and
second order logic. These systems of logic have different expressive power,
which is evident from the following examples:
1. The standard model of Peano arithmetic can be characterized in Lω1ω;
the same concerns the class of all finite sets.

2. The theory of ordered Archimedean fields is finitely axiomatizable
in Lω1ω.

3. The truth predicate for a language with a countable number of symbols
is definable in Lω1ω.

4. The notion of well-ordering is not definable in Lω1ω, but it is definable
(by a single formula) in Lω1ω1

.
Infinitary logics with infinite quantifier prefixes are close to second-order

logic and hence they do not satisfy the completeness theorem. In Lω1ω1
we

have Scott’s theorem about non-definability of the truth predicate in the
language of this logic. A distinguished place among infinitary logics is oc-
cupied by Lω1ω. It satisfies the completeness theorem, if the infinitary
rule which gives the conclusion

∧
Φ (the infinite conjunction) from the

set of premises Φ satisfies the condition that Φ is at most countable.
This condition is essential: there exists an uncountable set of sentences
of Lω1ω which does not have a model but whose every countable subset
has a model. This example shows that the compactness theorem does not
hold in either Lω1ω or in any of Lαβ, where α>ω1. Nevertheless, one can
define suitable generalizations of the compactness theorem which are ap-
propriate in such cases (they are related to the existence of large cardinal
numbers).
Any countable structure with a countable number of predicates can

be characterized up to isomorphism in Lω1ω, as shown in Scott’s theorem.
The semantic properties of models of Lαω and L∞ω can be characterized in
algebraic terms (Karp’s theorem about partial isomorphisms).
It is not the goal of this paper to systematically discuss the metatheo-

retical properties of recently-investigated infinitary logics. One may wonder

699



Jerzy Pogonowski

what Zermelo’s reaction would be to the fact that the downward Löwenheim-
Skolem theorem has its counterpart in Lω1ω and, in general, in all infinitary
logics. As the reader probably remembers, Zermelo did not accept that
theorem. The upward Löwenheim-Skolem-Tarski theorem does not hold in
infinitary logics.

9.3.3. Admissible sets and generalized recursion

Formulas of the first-order logic Lωω allow coding by natural numbers
or, equivalently, by hereditary finite sets, that is, elements of H(ω). In turn,
formulas of the logic Lω1ω allow coding by elements of H(ω1), that is, by
hereditary countable sets. Proofs in this logic can also be coded by elements
of H(ω1). Such proofs have countable length.
One can give an example of a set of sentences Γ and a sentence σ from

the language of Lω1ω such that Γ |= σ, but there does not exist a proof
of σ from Γ in Lω1ω. The set Γ can be chosen in such a way that it is Σ1

in H(ω1); see for instance Bell 2016.
The set H(ω1) is closed with respect to the operations of forming count-

able subsets and sequences. But the fact mentioned immediately above
shows that it is not closed with respect to the operation of coding proofs
from Σ1 in H(ω1) sets of sentences. It is thus natural to look for such sets A
replacing the set H(ω1) that would be closed with respect to the opera-
tion of coding proofs and consideration of only such sentences which have
codes in A. This was one of the motivations for investigating the so-called
admissible fragments LA of the logic Lω1ω.
Barwise discovered that there exist countable sets (admissible sets)

A ⊆ H(ω1) which do satisfy these conditions. They are thus generalizations
of the hereditary finite sets which allow a reasonable recursion theory and
proof theory. He proved his famous compactness theorem: if A is a count-
able admissible set, then every set of formulas of the language LA which
is Σ1 in A and such that its every subset (being at the same time an ele-
ment of A) has a model, then the entire set in question also has a model.
This theorem has many applications; for instance one can prove that any
countable transitive model of ZFC has a proper end extension. Barwise’s
work is a subtle combination of research in model theory, recursion theory
and set theory.
The investigations of admissible sets can be conducted very smoothly

in the special set theory KP, proposed in the nineteen sixties by Kripke
and Platek. This is an elementary theory with ∈ as its non-logical constant,
which is a certain weakening of Zermelo-Fraenkel set theory. It does not
assume the full power set axiom and a special role is played by the axioms
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of ∆0-separation and ∆0-collection (counterparts of the axiom schemas of
separation and replacement) in which formulas of the class ∆0 occur. Tran-
sitive sets A such that (A,∈) is a model of KP are called admissible sets. An-
other theory considersed is KPU, that is, KP with urelements. A complete
exposition of the theory of admissible sets can be found in Barwise 1975.
A brief and accessible exposition of the recent state of the theory is for
instance Keisler and Knight 2004.

10. Final remarks

Is any of the recently-considered systems of infinitary logic close to
Zermelo’s original ideas? In particular, could KPU be a counterpart of Zer-
melo’s semi-formal constructions? Or perhaps systems of second-order logic
(or systems between first- and second-order logic) would be more appro-
priate in this respect? Zermelo himself was interested primarily in purely
mathematical reasoning, while logical reflection was of secondary impor-
tance for him. I think his position is expressed soundly in his own dictum:
mathematics is the logic of the Infinite.
The axiomatic systems of set theory, proposed by Zermelo in 1908

and 1930 (and improved by others), gained the acceptance of mathemati-
cians working in all domains right from the very beginning. Set theory is
still considered a firm foundation of all mathematical theories. There exist
other foundational systems, for instance category theory whose formalism
is useful in algebra and algebraic topology, but the role of set theory is still
dominant throughout mathematics. This is above all the legacy of Ernst
Zermelo.
“Normal” mathematicians, that is those who are not preoccupied with

foundational research in set theory and mathematical logic, seem to be per-
fectly satisfied with the present shape of set theory. It is believed that any
mathematical reasoning can in principle be fully formalized in some system
of logic, although mathematicians seldom stress this fact in everyday re-
search practice. The job of formalization is handed over to logicians. I dare
to say that many mathematicians share Zermelo’s view on logical depen-
dencies between mathematical statements.
Systems of logic are evaluated differently from the point of view of

logicians and that of mathematicians. Logicians are primarily interested
in deductive aspects of systems of logic, while mathematicians seem to put
more stress on their expressive power (obviously not forgetting the deductive
properties). Ion Barwise writes:
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But if you think of logic as the mathematicians in the street, then the logic
in a given concept is what it is, and if there is no set of rules which generate
all the valid sentences, well, that is just a fact about the complexity of the
concept that has to be lived with. (Barwise 1985, 7)

It should be added that the work Zermelo 1930 inspired logicians’ efforts
to develop set theory within the formalism of modern second-order logic;
see for instance Uzquiano 1999.
I am well aware that this paper is only a very sketchy presentation of

Zermelo’s ideas concerning his system of infinitary logic. Much more infor-
mation about this issue can be found in the monumental work Ebbinghaus,
Fraser and Kanamori 2010. All of Zermelo’s texts included in this work
are accompanied by introductory notes written by prominent contemporary
logicians.

N O T E S
1 The starting point for this paper was Pogonowski 2006, an article in Polish, published
in a journal of local coverage and related to a more comprehensive but still unpublished
work Infinitarna Logika Ernsta Zermela (The Infinitary Logic of Ernst Zermelo) written
for the research grant KBN 2H01A 00725 Metody nieskończonościowe w teorii definicji
(Infinitary methods in the theory of definitions) headed by Professor Janusz Czelakowski
at the Institute of Mathematics and Information Science of the University of Opole,
Poland. The final version of this paper contains essential improvements of the works
mentioned above. The work on this paper has been sponsored by the National Scientific
Center research grant 2015/17/B/HS1/02232 Extremal axioms: logical, mathematical and
cognitive aspects.
2 The original text, under the title “Der Relativismus in der Mengenlehre und der soge-
nannte Skolem’sche Satz” is included in Zermelo’s Nachlaß in the library of the Universität
Freiburg; it has been published together with the English translation in the paper van
Dalen, Ebbinghaus 2000, 145–161, and in Ebbinghaus, Fraser, Kanamori 2010, 602–605.
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Acta mathematica 32, 185–193.

707



Jerzy Pogonowski
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