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ABSTRACT. In this paper we study two-round key-alternating block ciphers
with round function f(z) = x(2t+1)25, where t, s are positive integers. An algo-
rithm to compute the distribution weight in respect to input and output masks
is described. Also, in the case t = 1 the correlation distributions depending on
input and output masks are completely determined for arbitrary pairs of masks.

1. Introduction

Linear cryptanalysis is one of the most powerful attacks on symmetric-key
block ciphers. It investigates the correlation between chosen bits of the input and
the output in order to make conclusions about some bits of the key. Nowadays
ciphers are designed to be resistant against linear cryptanalysis by analyzing
some statistical properties of the cipher.

The study presented herein is inspired by a paper [I, M. A. Abdelraheem,
M. Agren, P. Beelen and G. Leander]. In the paper the authors give an
example of two-round key-alternating block cipher (see Figure[ll) with correlation
distribution for masks (1, 1) that is behaving differently from what is expected.
It takes only five different values whereas previously it was assumed that the
distribution would be normal [7]. The cryptanalysis of two-round key-alternating
block ciphers is interesting because it is the basic step of the cryptanalysis of any
multi-round block cipher.
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FIGURE 1. Two round key-alternating cipher.

In this paper we consider the same cipher but with a round function of more
general form and we determine the correlation distribution in dependence of the
key for arbitrary input and output masks (o,w), where o,w € Fy, n odd.

Our methods are based on finite-field theory, see, e.g., [BIIOLITLI3] and some
general results on correlation analysis and linear cryptanalysis [5,8[12].

In the next section we give the necessary notions and notations. In Section 3,
we prove several general facts about correlation distribution and introduce the
notion distribution weight. In Section 4, we give some theoretical results and
describe how to compute the distribution weight for round function of the form
f(z) = z@*+D2° How to compute the correlation distribution in the case ¢ = 1
is described in Section 5. Computational results are presented in Section 6.
For the sake of reader’s convenience the proofs of the theorems in Section 2 are
given in Appendix [Al

2. Preliminaries

Let f:F} — FL be a bijection and (u,v) Y uvT = wv + -+ upvy be the

inner product of u and v. Note that (u,v) € Fo, thus, it takes values 0 or 1.

DEFINITION 2.1. The correlation of the linear approximation (u,v) of f
is referred to be the difference

er(u,v) % 2n1_1 (x € F | (u,x) + (v, f(x)) = 0}| - 1.

The vectors u and v are commonly called input and output masks of the
approximation.
Let f,g:F5 — FZ be bijections and let fj : F§ — 4 be defined by

fe(x) = f(x) +k, keFy.
Let us denote by F}, the composition F(x) = go fx(x) = g(f(x) + k).
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THEOREM 2.2.
e (u,v) = (1) Mep(u,v).

THEOREM 2.3.

cr,(u,v) = Z Cfr (u, W)CQ(W,V) = Z(_1)<W7k>cf<uaw)cg<wa v).

weRy weRy

Remark. Theorem 23] can be found in [5] formulated and proved in the terms
of correlation matrices. A different proof in manner that follows the style of this
paper is given in [9]. The proofs of Theorem [22] Theorem [Z3] and Theorem 2.7
are also given in Appendix [Al

THEOREM 2.4.
Zc%k (u,v)=2" Z c?(u, W)C?J (w,v).

keFy weFy

Theorems 2.1-2.3 concern the composition of two functions. They can be
generalized to composition of several functions:

f=/fro-faofi, fi 1 Fy — F23.

DEFINITION 2.5. A linear trail of length 7 is an ordered set of intermediate
masks

9:(90:u,91,...9T:w).

A linear hull is the set of all trails starting with the same input mask and
ending with the same output mask.

In this paper we deal only with trails of length two and refer the reader
to [6l, Chapter 7] for more information about the general case.

Another measure which is used for evaluating how well the round function f
is approximated by (u,v) is the following

DEFINITION 2.6. Fourier transformation (or Walsh transform) of f in re-
gard to (u,v) is a function f: Fy x FY — Z defined by

Fuv) = (e e o 97,

xeFy

The Fourier transformation of f gives some advantages when algebraic meth-
ods are involved. It is connected with correlation by the following equality.

PROPOSITION 2.7.

cr(u,v) = 2inf(u,v).
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Hence, whenever we say correlation distribution in this paper, we understand
the distribution of f(u,v) in dependence of the masks.

By fixing a basis of Fan over Fy we define a bijection between Fon and Fjy
and can identify f with a permutation polynomial over Fon. When this basis is
self-dual we have (u,v) = Tr(uv). Such a basis exists for any finite field with
characteristic 2, see [I3] 5.1.18]. We can obtain some advantages in computer
computation if the basis is also normal. Self-dual normal basis exists in Fan
if n 20 (mod 4), see [13] 5.2.23] and [10].

In this paper during our considerations, we assume that the chosen basis is
self-dual and normal, namely, o, a2, ..., %" with Tr(a2 a?’) = 0, where a
is a primitive element of Fan. The fact that the basis is normal has no effect
on the theoretical results but is useful for computations.

In the studied key-alternating cipher the nonlinear function f is the polyno-
mial f(x) = z* with a = 3.2% s integer, although we will prove some properties
in the more general case a = (2! + 1).2% s, t positive integers. In order to assure
that f is a permutation polynomial we assume that n is odd.

Since the keys ko and ko do not change the distribution, for simplicity we
do not consider them and denote k; = k. Let & € Fan correspond to the input
n-tuple x. Then the output X of the studied block cipher corresponds to

Fi(z) = f(f(z) + k) = (2" + k)"
Let x : Fon — {41} be the additive character of Fan defined by
def v (z
(@) (-1)")
Obviously, we have
X(@+y) =x(@)x(y) and x(2*) = x(z), @,y€ Fan.
Recall also the following well known property

PROPOSITION 2.8.

Z x(xz) =0.

zEFon
Now, we can write that

Fi(ow) = 3 (~1)Morteni)
zEFon

= Z x(oz + wFy ().

zEFon
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3. Several general results

Our goal is to determine the distribution of Fj(o,w) (instead of cp(o,w))
depending on the pair of masks (o,w) and the key k. To achieve this goal we
evaluate FZ(o,w).

LeMMA 3.1. For any o and w of Fon, and f : Fon — Fon

Plow) = Y [xlow+wf@) Y x(whle,y)].

zE€Fon yEFan
where h(z,y) = f(x +y) — f(x) — f(y).
Proof.

Plow = | D xloy+wf@)] | D xloz+wf(2))

yEFQn ZEFQTL

= Z Z (cy+wf(y))x(oz+wf(z))

yEFon z€Fn
= Z Z (cy+wf(y) + oz +wf(2)).
yEFon z€Fyn
Substituting z = = + y we obtain

FPlow = > > xloy+wfy) +olz+y) +wflz+y))

z€Fyn yelFaon

= > > xloztwfly) +wf(z+y))

rEFyn yEFon

= Z Z ax+wf )+wh(w,y))

rEFyn yEFon

- Z Z (ox +wf(z))x(wh(z,y)),

xEFQn yEFQn

where h(z,y) = f(z+y) — f(x) — f(y). -

Let us consider the set H(x) = {h(z,y) | y € Fan} C Fon. For many
polynomials f(z) the set H(x) = Fan and thus wH(z) = Fan for any w # 0.
Then, according to Proposition we have

Z x(wh(z,y)) = 0.

yEFon

Hence f2(o,w) (as we will see below) is a sum of a relatively small number
of addends and can be evaluated.
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LEMMA 3.2. Let f : Fon — Fon and g(x) = f(x)zt. For any o and w of Fan
§2<an> = f2<07 .u‘)a
2n—t

where [ = w

Proof. According to Lemma [3.1]

i*(o,w) = Z {X(Ux—l—wg(x)) Z X(wH(x,y))],

rEFyn yEFon

where H(z,y) = g(z +y) + g(x) + 9(y) = (f(z +y) + f(z) + f(y))?: h(z,y)*

Flow) = ;: :X(M)x(u2tf(:v)2t) EEF: x(u?h(ﬂvay)f)]
- ; :X(ax)x(,uf(x)) EXF: x(uh(x,y))]
— XF: :X(ox+,uf(x)) XF: x(uh(w,y))]
= g}i(:,u), o
where w = 2", -

As a corollary we obtain the following
LEMMA 3.3. Let f(z) = 2° and g(z) = 22" Then for any o € Fan

Gi(O’, 1) = FE(O', 1),

where 7 = k2"
a2t a2t a a2?t a a 2% 22t
Proof. Gp= (" +k)? = (2°+7)% = ((2*+7)*)" = F? (2).
Now Lemma gives the statement. d

Lemma [3.3] can be formulated for an arbitrary w, not only for w = 1, but it
is not necessary due to the statement given below.

Let f :Fon — Fon be a permutation polynomial with the property:

PROPERTY 3.4. For any \ € Fon there exists n = n(\) € Fan such that Af(z) =
f(nz) for any x.
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Let f,g : Fon — Fan be permutation polynomials with the above property.
Then for any o,w € Fan there exist A(w), n(w) € Fan such that

ox +wg(f(x) +k) =ox+g(\f(x)+ Ak) = oz + g(f(nz) + ko)
= oty +9(fy) + ko), (1)
where k., = \k.
Therefore we can formulate the following lemma:
LEMMA 3.5. For suitable n and ky, of Fan,
Fk(a, w) = ka (ot 1).

Proof. Let us first note that any permutation polynomial of the form f(z) =
satisfies the Property B.4] since there exists a unique n such that A = n®. Then
repeating ([Il) we get

o +wFi(x) = oz +wf(f(2) +k) = on 'y + f(f(y) + ko) = o~y + Fi, (y).
Hence

Zx(aerka(x)) = Zx(an_lerka(y)). 0

zEFon yEFon

The aforesaid shows that w has influence on the correspondence between
distributions and pairs (o, k) but not on the structure of the set of distributions.
If a given distribution corresponds to (o, w, k), it corresponds to (o™t 1,k,),
too. That is, the set of distributions (in regard to (o, k)) is one and the same
for all w. Therefore the case w = 1 assures enough generality for our study.
From now on we assume w = 1 and we will follow the ideas presented in [I]
in order to evaluate the correlation distribution depending on the triple (o, 1, k).

LEMMA 3.6.
En(02,1) = Fys(0,1)  and  Fya(o,1) = Fi(a'/2,1).
Proof. Since Fy(y?) = (y** + k)* = (y* + k/?)%? = F.1,2(y)? we have
Fp(0®,1) = Y x(o%x + Fi())

rEFyn

= > x(e*® + Fu(y?))

y€EFon

= Y x((ou + Fur)?)

y€EFon

o ZX(UZU + Fkl/z(y)) = Fk1/2 (0,1).
y€EFon

The proof of the second equality is similar. O
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In the case a = (2¢ 4 1)2° the following fact holds.
LEMMA 3.7. If f(x) = x(2t+1)2s, then for any k € Fon we have

Fk+1(0', 1) = —Fk(O', 1).

Proof. According to Lemma [3.3] with a = 2! + 1 it is sufficient to give a proof
only when f(z) = 221, Since

Fipa (o) = (2241 4+ b+ 1)@+
_ [(x@ ) 12 4 1] (@2 4 k4 1)

= Fu(z)+ (@ T + k)2 + @ k) + 1

and
X ((x2t+1 1 k)zt) — 5 <<x2t+1 n k;)) ’
we get
x(0x + Fry1(2)) = x(ox + Fi(x))x (( 241y k)>2 x(1)
= —x(ox + Fi(z)).
Therefore,

Fya(o,1) = Z x(0x + Fiya(x))

zEFon

:—Z 0'1‘—|—Fk x)) —Fk:<(7>1)'

zEFon

O

The previous lemma shows that for a given o the values of Fk(a, 1) separate
in pairs of opposite numbers. Hence the set of correlations values has the form

{DQ:0,:|:D1(0'),:|:D2(0’),...,:l:DS(O')}. (2)

Let Ag, A1,...,As denote the numbers of keys for which F,?(a,l) = D?
respectively. Obviously A; are even numbers and the following corollary holds.

COROLLARY 3.8.

Y AD}o) =W, =Y F(o,1).
=0

k€EFyn

Herein we call W, the distribution weight in respect to o.
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4. The number of nonzero trails and the distribution
weight in the case f(z) =221, t<n

Let f : Fan — Fon be a permutation polynomial and let us approximate
it linearly with masks ¢ and . Let g : Fon — Fon be another permutation
polynomial and let us linearly approximate it with masks 7 and w.

PROPOSITION 4.1. For any o,w € an the equality

Zﬁ’kaw Zf o, m)§*(m,w) (3)

k€Fsn 7T€F2'n.
holds.

Proof. According to Theorem 2.4 we have
Z g, (u,v) =2" Z cu, w)ch(w,v).
keFy weFy
Taking into account Proposition IZH we obtain
1 2 ( 2(
oan 2 Filow) = o Y Pl mi )
k€Fsn TEFyn

22n

Multiplying by we obtain the statement. g

The Proposition shows that we have to evaluate the number of intermediate
masks 7 for which the product f2(o,m)g?(m,w) # 0.
According to Lemma [3.] we have

f2<0',7'('): Z X(Ux—l—ﬂ'f(x)) Z X(ﬂ'h(l‘,y)) ,

zEFyn yEFan

where f(z +y) = f(z) + f(y) + h(z,y).
If f(z)=a2"*1, then (z+y)2 1= (z +y? )(x—i—y), thus h(z,y) =22 y+zy?.
Hence,

x(mh(z,y)) = x (WfEQty> +x (myzt) =X (W2tfv22ty2t> +x (myzt)
=y ((wztxzm + Wx)yzt) )

Therefore,

fPo,m) = Z X (am + 7m:2t+1> Z X ((wztxw + wm)y2t>

zEFon yEFon
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If
P (x) = 2 4 # 0,
then (72 22” + m2)y? runs through all elements of Fyn, thus

on i 2tx22t =0
Z X ((7T2t122t + Wx)yT) = Q ‘ +7 )
yEFon 0, otherwise.

Therefore,

flom)=2" Z X(O’ZE+7T.I‘2t+1).

P, (xz)=0

Similarly,

G (r, 1) =2" Z x(mz + x2t+1).
Py (z)=0

The equation
P (z) = 22 4z =0

has 27 solutions see [4, Theorem 3.1], where d = (t,n) for n odd. Indeed, the
set of roots coincides with the set xoFq4, where xg is an arbitrary root and
Fye = Fot NFan. One possible value is zg = 7~/ @+ Note also that

Fou = {0, 1,09,a%, ... ,a(zd_2)q} ,
where o is a primitive element of Fon and ¢ = (2" — 1)/(2% — 1).
Since for any x = zoy € Fya we have

1
oxoy + W(xoy)2t+1 = Uﬂ_ﬁy + 7T7T_1y2t+1 =on Zriy+y® (note d|t)

and then
x(oz + 7'('1‘2t+1) = X((ﬂr—rlﬂy + y2) =¥ ((0'7T_2’51T + 1)y> .
Therefore,

fz(a, T = 2" Z X ((O’T{'_ﬁ + 1)y>, (4)

y€F,q

i(r,1) = 2 Z X((W—I—l)y).

y€F,q
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4.1. The case d = 1.

For odd n < 19 the value of d differs from 1 only for n = 9, t = 3,6;
n=15t=3,6,9,12; and n = 15, t = 5,10.
For the rest values d = 1 and thus

_%
flom) = 2° (1 +x(on 7T+ 1)) —on <1 ~(—1)Telom +1>> 7
(5)
*(m1) = 2"(1+x(r+1)) =2" (1 — (—1)Tr(”+1)) _
Therefore,
fPlo,m) = 2t Tr(mr_ﬁ> =5
0, otherwise.
(6)
N ontlif Tr(m) =1,
g2<773 1) = ( )
0, otherwise.
The product f2(o,7)§%(m, 1) # 0 if and only if 7 belongs to the set
M, = {7‘(’ | Tr(m) = Tr (aﬂ-—ﬁ> — 1}.
Then according to Proposition E.1]
~ 1
_ 2 _ n+lon+1
W, = Fi(o,1)= 2722 2
k€Fon TEM,
Therefore,
W, = 2420 | ™)

Let us consider the product

(1 . (—1)Tr<”>) (1 - (—1)“(””1“)) .

It equals 2.2 = 4 for m € M, and zero otherwise. Hence

s=3" (1 - (f1)“<ﬂ>) <1 - (1)“<”_2&“>> — 4|M,).

wEFyn
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On the other side,

S =9 _ Z (71)T‘r(7r) - Z (71)T‘r(o7r_2t7:'1)

wEFon wEFon

1
b -y T

wEFyn
1

=2" 4 Z (—1)Tr<cr7r’2t+1 +7)
wEFon

_ Z |:1+(1)Tr(a7rﬁ+7r):|

wEFon

22’{7{' | Tr(mr_rlﬂ +7T> 20}‘.

1
Therefore, substituting 7 = 72"+t we obtain
THEOREM 4.2.

W, = 2"+2‘MU‘ = gntl HT | TI‘(O'T_l + T2t+1) = OH . (8)

In [I] a formula for |M,| when o = 1, thus for Wy, is given, namely
THEOREM 4.3 ( [I]). Foro =1 andt =1 we have
Wy =2"2"+1-25,),
where S, is power-sum of roots of x* + 23 + 2z 4+ 4 in C.

Unfortunately, the approach based on algebraic curves over F5 which is used
to find the above formula does not work in the case o # 1. But for a given Fon
it is not difficult (for reasonable size of n) to compute the number of

T with Tr(07_1 —I—th"'l) =0.

It can be done even only by shifting and permuting the elements of binary
vectors.

4.2. The case d > 1.

For any 2 € Fan the set {Tr(2F,4)} is a binary vector of length 2¢ and a zero
in the first position. Hence the elements of the set {Tr(F2».F,)} form a binary
linear space of vectors of length 2¢ — 1. Indeed it consists of all codewords of the
[2¢ — 1, d, 2971] simplex code (see [I4]) where each codeword is repeated 27~
times.
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Let T denote the set of z, for which Tr(zFya) is the zero vector. Hence

Z (—1)Te(=w)

yEF,a

equals 27 if z € T and equals zero, otherwise. Obviously, |T'| = 2"~¢. Therefore,

Plor) = ontd if g at +1eT,
’ 0, otherwise,
(9)
P1) = 2rtdif w4+ 1€T,
’ 0, otherwise.

In this case,
My,={r|re(1+T) and or 7 € (1+T)}.
Therefore,
M,=(1+T)N(1+T) F+DsE 1,
Let the symbol o denote the set of all powers whose exponents form the
cyclotomic coset C; of i for 2 modulo 2" — 1. E.g., ot = {a, 02,...,02" '}.

It is easy to see that T, 1-+T and (1+7)~(*1) are unions of subsets ot C Fn.
Unfortunately (1 4+ 7)~@+Dg(2+1) is not such an union. Nevertheless after
determining the set T' as a set of powers of the primitive element of Fon we can
compute W, working only with integers modulo 2™ — 1, that is, we can avoid
the computations in Fan.

ExAMPLE. Consider the case n = 9, t = 3, which are the smallest possible
parameters. In this case,

T={0}Ua®ua® Ua® Ua Ua®s Ua yai,
1+ T={1}Ua®Ua® Ua® Ua® Ua“ Ua”™ Ua®,

(1_|_T)—(2t+1) :{1} U a®s U G E! U aC13 U a©37 U aCs3 U oG U aCre7
Then

(14+T) N (1+T)~ " = {1} U o,

thus, for o = 1 we have W, = 21°.10. For o € o one can find that W, = 21°.8,
and so on.

According to Lemma [3.3] and Lemma [3.3] the results obtained in this section
hold for f(z) = (2 +12° too.
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5. Correlation distribution in the case f(z) = 2%%

In this section we determine the possible values for ﬁk(a, w) depending on the
triple (o, w, k). According to Lemma [B.3] and Lemma [3.5] we can assume without
loss of generality that f(z) = 2% and w = 1.

LEMMA 5.1. If f(z) = 23, then

A2
Fy(0,1)=2" ) xloz+ Fy(x) + &), (10)
z:Ly (2)=0
where
Li(z) = 2% + (' + kN 2% + (k% + k)2 + 2. (11)

Proof. Fy(x) = (23 + k)3, thus H(x,y, k) = k3 + Hy(z,y, k), where
Hy(z,y, k) = zy® + ka? y* + (K + ka') y® + (2° + K°2%) y.
We apply Lemma [3.1] and since
X(H(z,y,k)) = x(k*)x (Hi(z,y,k))
we have
(o,1)= Z { oz + Fy(z) + k%) Z X(Hl(x,y,k:))].
zEFon yE]an

But using the properties of x(.) we can write that

X(Hi(z,y.k) = x(zy® + K2t y® + (KPz + k") y® + (2® + k%2?)% ¢®)
= x([z+ k2" + (K®2* + k'2'%) + (2% + £'%21%)] ¢®)
= x(Li(2)y®).
Hence,

Fk2(a, 1) = Z [X(Jx + Fr(x) + k3) Z X(Lk(x)ys)] .

(EG]FQTL ’yE]F2n
If Li(x) # 0, then z = Ly (2)y® runs through all elements of Fy» and thus

> x(Ze(@)y®) =D x(z) =0.

yEFon z€EFsn

If Li(z) =0, then,

> x(Lr(@)y®) =D x(0) =2"

yEFon yEFon

This proves the lemma. ([l

122



CORRELATION DISTRIBUTION ANALYSIS

The polynomial Ly () is a linearized polynomial and Ly (z) = x £(x3), where
Uy) =" + (K + Ky + (K° + Ky + 1. (12)

It coincides with the polynomial P(x) studied in [I] and we can use the results
given there.

LEMMA 5.2 ([1]). The possible number of roots of Ly (x) in Fon is 2 or 8.

n+t1 n+3

THEOREM 5.3. [} (0,1) = {0, £2°5, +2"% }.
Proof. According to (I0)
A2
B (0,1)=2" Y x(ow+ Fy(x) + k),
x: Ly (z)=0

Denote, T'(z) = Tr(ox + Fi,(z) + k*). Then, x(oz + Fy(z) + k%) = (—1)T@),
Note also that T'(0) = 0.

Let L denote the set of roots of Li(x) in Fan. According to the properties
of linearized polynomials L is a linear subspace of Fon over Fs.

In the case |L| =2, i.e., L = {0,z0}, we have

Zx(ax + Fy(z) + k%) =1+ (=1)T@0) = {0 or 2}.
Hence )
Fy. (0,1) = {0 or 2711},

Let |L| = 8. Since L is a linear subspace over Fy, there are three elements

1,2, x3 of L which form a basis, that is

L ={x=axy +bxy+cx3|ab,celFa}.
Then T(z) = aT'(z1) + VT (z2) + ¢T(x3) = aT} + b1 + ¢T3 and we have
ZX(Ux+Fk(«%’) +k3) _ Z (71)aT1(71)bT2(71)cT3.
zel (a,b,c)

Depending on how many 7T; are zeros and how many ones, the following cases
are possible (up to permutation of a, b, ¢):

So1e1b1e,

3 101 (-1)c,
3;:X(Ux—i—Fk(x)—l—k: ) S 101 1),
(=) (=1 (1)
In any case, with the exception of the first one, the numbers of 1s and (-1)s are
equal, thus the sum is zero. In the first case the sum is equal to 8. Therefore,

£ (0,1) = {0 or 2743}
and the proof of the theorem is completed. O
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The proof of Lemma shows how to find 1,2, z3. The cubes z3, 23, x5

are the three roots of pi(y) = y* + k*y + 1, if Tr(k*) = 1 and the roots
of pa(y) = > + (k* + 1)y + 1 if Tr(k®) = 0, where p;(y)p2(y) divides £(y).

As a corollary of previous theorem and (7)) we have
Ay (0)2" T Ay(0)27 13 = 2712 M, |.
Hence we can formulate
THEOREM 5.4.
Ai(0) +445(0) = |{T €Fan | Te(r* + o77') = 0}].

Our main goal is to find the numbers A; and As for any o. After computing
the right side of the above equality it is sufficient to find only A; or As. Below
we describe a method for computing Ay (o).

{k%

Proof. Let x1, 72,23 be such that the cubes z3, 23, 23 are the three roots of
p1(y) = > +k%y+1, if Tr(k3) = 1 and the three roots of po(y) = y3+ (k+1)%y+1
if Tr(k®) = 0. It is easy to prove that xq,xs,z3 are linearly independent, thus
they form a basis of L when |L| = 8. The number As(0) is equal to the number

of keys with Fk2(a, 1) = 273, According to (I0)
Fil(0,1) = 20 S0 (1) Tlent B+ — g,
€L

if and only if Tr(ox;) = Tr(F)(x;) +k3) for i = 1,2, 3. But it can be proved that
Tr(Fy(x;) + k3) = 1. Therefore,

THEOREM 5.5.

AQ(O’) =2

p1(y) has 3 roots x3, x3, x3
Tr(ox;) = Tr(oxg) = Tr(oas) =1 ||

Fl(0,1) =23 ifand only if Tr(oz1) = Tr(ows) = Tr(ozs) = 1.

Since p1(y) = p2(y), by replacing k with k 4+ 1 and vice versa we can con-
clude that required number of sets {1, x2,z3} is two times the number of ones
obtained by p1(y).

Note: If 23,23, 23 are the three roots of p;(y) for a given k, they are
the roots of pa(y) but for k := k + 1. Also,

Tr((k+1)°%) = Tr(k® + 1) = 1 + Tr(k®).
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TABLE 1. Polynomials generating self-dual normal basis

Generating polynomial

n
3 lad+a%+1

5 | +at+a?4+a+1
7

9

2T+ a4t +1

2+t rab 4t 241

11| a4+ 20428+ 2" +28 +2°+1

13| aB 422420427 +24 423 +1

15 e+ 422429427+ 2% +1

17| 2" +2 %+ + 29 +ab b+t 23+ 1

Algorithm description

yeFs, : my) =0k =y* +y ! (i)k:y—i—yzn_l
While y runs trough F3,. we obtain all k£ for which p;(y) has a root. The values
of k that appear three times correspond to the case three roots. Also,

pi(y; k) =9y* +k*y+1=0 ifand only if p;(y*k?) =0.
Hence if yo = o' is a root of p1(y; a?), then p1(a®,a%) = 0, where C;, C; are
cyclotomic cosets and « is a primitive element of Fan.

Therefore the set of k for which p;(y; k) has 3 roots is a union of a® and
we have to check only for representatives if Tr(ox;) = 1.

6. Computations
In our computations we use self-dual normal basis «,a?,... ,a2n_1, where
a is a primitive element of Fon. The list of used generation polynomials (i.e, the
irreducible polynomials of «) for odd n is given in Table [

Let us consider the set of nonzero input masks as powers of the primitive
element o € Fon, that is, 0 : o a,a?,...,a? 2. Lemma [B.0] shows that the
elements of each set a® lead to one and the same distribution. Hence we can
compute distribution only for the leaders of the cyclotomic cosets. The same is
true for keys k, too.

We have determined the correlation distributions for odd n < 17 but the
tables are too large to be given in a paper. We present here only the results for
n=>5and n =7 (see Tables 2 and [3)
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TABLE 2. Correlation distribution for n = 5.

o #o|| -2 | 2% |0 |27 |2
o =a%; a7 6 0 6 20| 6 0
o=a%;a% || 10 1 4 22| 4 1
o=a%;a | 10 1 6 18] 6 1
o= aCs 5 0 8 16| 8 0

TABLE 3. Correlation distribution for n = 7.

n+3

1

o #o| -2 | 2% |0 | 2% |2
Co 1 0 22 84 | 22 0
aC1:aCs: a0 a0 | 28 3 20 |8 20 | 3
Cs 1 24 | 78| 24 | 1
O 1 26 | 74| 26 | 1
aCi3; qC19; 0C21; oCos | 28 3 22 78| 22 3
aC1s 2 24 76| 24 2
Cas 2 20 84| 20 | 2
aCer 4 22 76| 22 | 4
Cao 5 16 |8 | 16 | 5
aCs1; qCs 14 2 22 80| 22 2
o Cim 3 18 [86| 18 | 3
Co 2 28 | 68| 28 | 2

In this paper we study two-round key-alternating block ciphers with nonlinear
function f(z) = x® and prove several facts about their correlation distribution.
In the case a = 25(2' 4+ 1) we derive a formula for their distribution weights.
The correlation distribution is obtained completely only for ¢ = 1, but we hope
that the used approach will enable the general case to be also solved. As a future
work this analysis can be applied to a recently proposed lightweight block cipher
MiMC [2] which uses 23 as a round function.
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Appendix A. Proofs

We prove Theorems 2. 2H2.4lin terms which correspond better to the style and
terms of this paper.

A.1. Proof of Theorem [2.2]

x€Fy

Pr ((wx) + v, f(x)) = <vk>)={P L0

Hence

e (u,v) = {Cf(u’v) if (v, k) =0,
fe (s —cf(u,v) if (v,k) =1.

A.2. Proof of Theorem [2.3]

Let
Pr(wv) = Pr ((wx) + (v, Fy(x) =0).
Pr(uv) = Pr(fusx) (v fk<x>>=0>
Py(uv) = Pr((w.x)+ (v.g(0)=0).

But fi(z) is bijection, that is, { fix(z) | x € F5} = F5, thus, we can write

Py(u,v) = Pr ((u, fu(x)) + (v, g9(fr(x))) =0),

XEF"
= xan((  fe(3)) + (v, Fi(x)) = 0).
Since (u,x) + (v, Fr(x)) = 0 if and only if
(u,x) + (W, fr(x)) = (W, fu(x)) + (v, Fi.(x)).

128



CORRELATION DISTRIBUTION ANALYSIS

Let X,, and Y,, be the random binary variables (u,x) + (w, fx(x)) = 0 and
(W, fr(x)) + (v, Fr(x)) = 0, respectively. Then according to Piling-up lemma

1 1
o =2 (Prww) - 3) (B - )
1
= 2Py, (u,w)Py(w,v) — Py, (u,w) — Py(w,v) + 3
Hence

1
Pp,(u,v) = 5= > exuava

wely
1
=3 (2Pauw P w) = Prfw) = Pywov) + 3 )
wely

Therefore we have

cr, (W, v) =Y [Py, (0, W) Py(w,v) — 2P, (1, w) — 2P (w,v) + 1]

welFy

= (2P (u,w) = 1) (2P, (w,v) — 1)
welFy

= Z cr, (U, w)eg(w, v).
welFy

On the other hand,
Z cr (0, w)eg(w,v) = Z (2Pf, (u, w)—1) (2P, (w,v)—1)

weFy weFy
= [4Pys, (0, W) Py(w,v) = 2P, (1, W) 2Py (w, V) +1]
welFy
Hence

cp,(u,v) =2Pp (u,v)—1

= (4P, P,—2P;, —2P, +2)— 1
welFy

= Z cp, (U, W)cg(w, v).

welFy
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A.3. Proof of Theorem [2.4]

According to the previous theorem

o (wv) = [ D (D)™ er(u,wie (w, v)

welFy

< | Do (D (u t)eg(t, v)

teFy

Z Z (71)<k7w+t>cf (u, w)cg(w, v)er(u, t)cy (8, v).

weFy teF?

Hence,
Z C%k (u,v) = Z Z Z (_1)<k7w+t> Cf<u>W)Cg<waV)Cf<u>t)cg(tav)a
keFy weF? teF? \ keFy
But
S (et 0 WAHEED
= M wt=0.
Therefore,
Z C%'k (u7 V) = 2n Z Cf(u7 W)Cg (W7 V)Cf(u7 W)Cg (W7 V).
keFy welFy
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