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Nowadays, traffic engineers employ a variety of intelligent tools for decision support in the field of transportation planning 

and management. However, not a one available tool is useful without precise travel demand information which is actually the key 
input data in simulation models used for traffic prediction in urban road areas. Thus, it is no wonder that the problem of estimation 
of travel demand values between intersections in a road network is a challenge of high urgency. The present paper is devoted to this 
urgent problem and investigates its properties from computational and mathematical perspectives. We rigorously define the travel 
demand estimation problem as directly inverse to traffic assignment in a form of a bi-level optimization program avoiding usage of 
any pre-given (a priori) information on trips. The computational study of the obtained optimization program demonstrates that 
generally it has no clear descent direction, while the mathematical study advances our understanding on rigor existence and 
uniqueness conditions of its solution. We prove that once a traffic engineer recognizes the travel demand locations, then their values 
in the road network can be found uniquely. On the contrary, we discover a non-continuous dependence between the travel demand 
locations and absolute difference of observed and modeled traffic values. Therefore, the results of the present paper reveal that the 
actual problem to be solved when dealing with travel demand estimation is the problem of recognition of travel demand locations. 
The obtained findings contribute in the theory of travel demand estimation and give fresh managerial insights for traffic engineers. 
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1. Introduction  

Modern large cities demonstrate increasing dynamics of motorization which leads to various 
negative outcomes such as congestions, accidents, decreasing of average speed, traffic jams and noise, 
lack of parking space, inconveniences for pedestrians, pollution and environmental damage. The efficient 
traffic management is appeared to be the only way for coping with these problems since capacities of the 
actual road networks today are often close to their limits and already cannot be increased. However, the 
actual road networks are extremely huge and traffic engineers have to use the intelligent systems for 
decision-making support when planning or managing transportation processes. The reliability of such 
decisions highly depends on precision of travel demand information (e.g. Heydecker et al., 2007; 
Kitamura and Susilo, 2005; Lessan and Fu, 2019). On the other hand, travel demand estimation is a 
highly sophisticated problem itself. Indeed, the problem of travel demand estimation has been 
investigated by researchers during the last 40 years but there are still practical and theoretical gaps to be 
fulfilled (e.g. Frederix et al., 2013; Hernandez et al., 2019). 

1.1. Approaches and techniques 

Researchers deal with travel demand estimation (or origin-destination (OD) matrix estimation) by 
virtue of different approaches and techniques. From the mathematical point of view the simplest approach 
may refer to the gravity methods, which have been well described by Isard (1960) in context of spatial 
regional analysis. Another large class of approaches can be associated with a priori economic theorizing 
(see, for instance, Fisher (1962)). Such basic concepts have been developed and implemented in various 
ways by scientists from various fields. Moreover, development of technical facilities and devices, such as 
traffic counters or plate scanning sensors has not completely solved the above-mentioned problem, but 
has initiated investigations of emerging problem issues. Thus, Makowski and Sinha (1976) have 
developed a technique which could possibly help to overcome the incompleteness of data gathered by 
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plate scanners. In fact, even back then, incomplete data was a routine input condition when solving the 
travel demand estimation problem. 

Carey et al. (1981) minimized the difference between observations and model estimates in that 
regard. Zuylen and Willumsen (1980) and Bell (1983) proposed the methods to solve the problem by 
maximizing the entropy-based objective function while maintaining consistency between a priori and 
model estimates, where a priori estimates had been believed to be observed by traffic counters. Cascetta 
(1984), as well as McNeil and Hendrickson (1985) also contributed to this area of study by proposing 
several techniques based on the least square estimator. In turn, Spiess (1987) made some refinements to 
the maximum likelihood model, while Brenninger-Gothe et al. (1989) expanded an entropy-based model 
through multi-objective formulation. Furthermore, Bell (1991) continued investigation of estimation 
techniques based on least squares, whereas Watling (1994) contributed in techniques based on maximum 
likelihood estimation. 

First bi-level formulations of the OD-matrix estimation problem employing the user equilibrium 
assignment principle were made by Nguyen (1977) and Fisk (1988). Yang et al. (1992) reinforced this 
approach when clearly demonstrated various alternative bi-level problems with user equilibrium assignment 
(in lower level), which reflected the travel demand estimation process. Since those bi-level programs which 
had appeared, were actually NP-hard, Bell et al. (1997) proposed a single-level optimization model based on 
the stochastic user equilibrium concept to estimate path flows and hence, the travel demand. In turn, Bar-
Gera (2006) presented a method for estimating the set of routes and their flows under the static user-
equilibrium assignment principle. Lundgren and Peterson (2008) offered to cope with complication of the 
bi-level problem by means of heuristic methodology. Moreover, Shen and Wynter (2012) offered convex 
approximation of the bi-level program by single-level optimization. The stochastic user equilibrium 
principle was also employed by Wei and Asakura (2013) in order to avoid bi-level formulation of the 
travel demand estimation problem. 

Statistical model of the transport system with Poisson distributed OD-flows was given by Hazelton 
(2000) and Hazelton (2001). Gunn (2001) implemented the transferability analysis in the important 
problems concerning travel demand. First consideration of the travel demand estimation problem as an 
inverse general traffic assignment problem was made by Bierlaire (2002). The techniques for OD-matrix 
estimation based on a dynamic change of traffic conditions were offered by Sherali, and Park (2001), Li, 
and Moor (2002) and Zhou and Mahmassani (2007). Further development of entropy-based approaches 
and approaches based on the least squares was made by Nie et al. (2005), Xie et al. (2010) and Xie et al. 
(2011). Parry and Hazelton (2012) contributed in likelihood-based approaches adapted for travel demand 
estimation. Moreover, in this regard let us also mention the researches made by Cheng et al. (2014) and 
De Grange et al. (2017). We also refer to the current works of Yang et al., (2019) and Cantelmo et al., 
(2019) as these are the most recent researches on the topic.  

Models and methods for travel demand estimation also appeared to be fruitful in several areas of 
study related to traffic flows. Ohazulike et al. (2013) showed how employment of OD-data results in social 
benefits via the mechanism of toll pricing. Wang et al. (2018) developed this idea by creating the set of 
practical extensions and improvements. Moreover, the developed approaches appeared to be useful for 
geographic distribution of air travel demand. Indeed, Lia and Wanb (2019) implemented the bi-level 
optimization model for estimation of emerging air travel demand and its geographic distribution in airports. 

1.2. Traffic data collection 

Generally, the travel demand estimation problem implies that travel demand values are unknown variables 
to be found through the traffic values observed in a road network. Hence, the way of solving this problem highly 
depends on technical devices available for traffic observation and collection of traffic data. Quandt and Baumol 
(1966) were one of the first researchers who pointed out the problems concerning traffic data collection. 
Nowadays, the traffic data collection issue is clearly understood by researchers as a very important one (e.g. Yang 
and Fan, 2015, Yang et al., 2018). Thus, let us itemize the main groups of devices which are the most frequently 
mentioned by researchers with regard to gathering traffic data. 

Counters. A traffic counter calculates the precise amount of vehicles crossing it. In other words, a traffic 
engineer can collect precise traffic data on roads (arcs of graph of a presented road network) with pre-installed 
counters. The key advantages of traffic counters are their simplicity and cheapness. Moreover, the counters collect 
information on amount of vehicles and do not collect any personal data on their owners. Many researchers base 
their investigations of the travel demand estimation problem on traffic counters as a source of initial data (e.g. 
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Yang et al., 1991; Yang et al., 1992; Yang and Zhou, 1998; Chootinan et al., 2005; Ehlert et al., 2006; Gan et 
al., 2005; Eisenman et al., 2006; Viti et al., 2014). The auxiliary problem raised here is a search for optimal 
location of such sensors (e.g. Yang and Zhou, 1998; Hu et al., 2009; Ng 2012; Simonelli et al., 2012; Ng, 2013; 
Bianco et al., 2014). 

Plate scanning sensors. A plate scanning sensor recognizes plate numbers of vehicles crossing it. On the 
one hand, a traffic engineer can collect the precise traffic data on roads (arcs of graph of a presented road network) 
with pre-installed plate scanning sensors. On the other hand, a traffic engineer can reconstruct actual routes by sets 
of roads which were crossed by the scanned vehicles. However, the plate scanning sensors collect both 
information on amount of vehicles and personal data on their owners which appears to be the key disadvantage of 
application of such devices. Nevertheless, large cities are already equipped with a big amount of plate scanning 
sensors which are mostly used for traffic regulations control. Thus, no wonder that many researchers base their 
investigations of the travel demand estimation problem on plate scanning sensors as a source of initial data 
(Makowski and Sinha, 1976; Watling, 1994; Castillo et al., 2008; Castillo et al., 2008; Minguez et al., 2010; Li 
and Ouyang, 2011).  

Combining devices. Some researchers combine data collected by both traffic counters and plate scanning 
sensors when solving the travel demand estimation problem or searching the optimal location of sensors (Medina 
et al., 2002; Doblas and Benitez, 2005; Rajagopal and Varaiya, 2007; Castillo et al., 2008; Zhou and List, 2010; 
Parry and Hazelton, 2012; Castillo et al., 2013). No doubt that intelligent tools purposed for day-to-day solving of 
the travel demand estimation problem shall be able to process both types of initial data. 

Online services. Modern services such as Google.Maps or Yandex.Maps provide information on traffic 
congestions online. Actually, due to such services it is possible to find the average speed of vehicles on any arc of 
a road network in the online mode. To the best of our knowledge, Krylatov, Shirokolobova, and Zakharov (2016) 
were first to reveal the application of online services as sources of initial data when solving the travel demand 
estimation problem. 

1.3. Contribution of the present paper 

In the present paper we investigate the travel demand estimation problem in a form of the bi-level 
optimization program which is directly inverse to equilibrium traffic assignment search. Important 
properties of obtained bi-level program by virtue of mathematical and computational analysis are 
revealed. First of all, we prove that the travel demand estimation problem has the unique solution if the 
origin-destination locations are known. Secondly, we show that if actual origin-destination pairs are 
unknown, then numerous travel demand patterns are able to approximate the traffic observed at the same 
level of accuracy. Therefore, the data on location of the travel demand pairs is appeared to be sufficient a 
priori information required in order to estimate travel demand in an urban area uniquely. Obtained 
findings allow traffic managers to avoid generation of a priori information about trips when searching 
travel demand but to concentrate only on recognition of actual origin-destination locations. Eventually, let 
us emphasize that the result of the traffic assignment search can be obtained both in link-based form or 
path-based form so, consequently, the inverse problem is well compatible with all the available sources of 
initial data such as traffic counters, plate scanning sensors or online services. 

2. Travel Demand Values and Traffic Flow Assignment 

Travel demand estimation and traffic assignment search are the tasks which are highly interrelated. 
Indeed, the solution variables of the travel demand estimation problem are natural input data for traffic 
assignment search, while the solution variables of the traffic assignment problem are natural input data 
for travel demand estimation. Moreover, one of the most popular approaches to cope with travel demand 
estimation is based on such a bi-level optimization program that exploits the traffic assignment problem at 
the lower level when it approximates the travel demand values by the traffic flows observed and by the a 
priori information on trips (see Yang et al., 1992). Let us consider this type of approaches carefully. 

2.1. Estimation of Travel Demand Values 

Generally, the bi-level optimization program for travel demand estimation has the following form: 

1 2min ( , ) ( , )
F

Z F F Z x x    (1) 
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subject to 

: ,F x   (2) 

Where F and x reflect the desired travel demand and corresponding traffic flows, while    and    are pre-
given a priori travel demand and actually observed traffic flows respectively. Moreover, a flow 
assignment x is believed to be an image of the desired F by virtue of some given mapping  . Function Z1 
represents a measure of distance between a priori and desired travel demand, and function Z2 represents a 
measure of distance between the observed traffic flows and the traffic flows corresponding to desired 
travel demand. Thus, when solving the bi-level program (1)–(2) one seeks to minimize the distance 
between a priori travel demand and desired travel demand, as well as the distance between observed 
traffic flows and traffic flows corresponding to the desired travel demand. 

Let us consider a road network presented by a directed graph G = (V, E) with the set of origin-
destination pairs      . For the directed graph any     can be associated with a non-zero travel 
demand value Fw and, hence, the travel demand F can be expressed by the vector of all non-zero travel 
demand values, i.e. F = (…, Fw, …)T. Moreover, any arc      can be associated with the traffic flow xe 
and so the traffic flows x can be expressed by the vector of all non-negative traffic flows, i.e.  
x = (…, xe, …)T. The traffic flows are believed to be depended on the travel demand by virtue of some 
mapping (2). For instance, in case of a non-congested network the flow does not affect the arc travel time 
and   is appeared to be such a linear function that x = PF with a fixed matrix P. However, in real road 
networks the influence of flows on the travel time seems to be highly important and shall be taken into 
account. Thus, the relation between x and F can be so sophisticated that in order to estimate the travel 
demand by virtue of the observed traffic flows   , one need to exploit the vector of the pre-specified travel 
demand values   . One of the most popular explicit forms of the bi-level program (1)–(2) is 

1 1min ( ) ( ) ( ) ( ) ,
F

F F F F x x F F         Q U  (3) 

with the lower level of the following type: 

          (4) 

subject to 

, if  is origin of pair ,

, if is destination of pair , , ,
0, otherwise,v v

w

w w w
e e

e E e E

F v w

x x F v w v V w W
  


     



   (5) 

0 , ,w
ex e E w W     (6) 

and 

,
e

w
x e

w W
x e E



   (7) 

where Q,U are weight matrices,       is a set of output edges, while       is a set of input edges for 
the node .v V  Here, the condition (5) is a typical flow conservation condition, (6) requires the flows to 
be non-negative, while the goal function can be represented by the function of special type. 

2.2. Traffic Assignment Search 

The most frequently used lower-level optimization program for traffic assignment search has the 
following form: 

0

min ( ) ,
ex

ex e E
t u du


   (8) 
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subject to 

,
w

w w
r

r R
f F w W



    (9) 

0 , ,w w
rf r R w W     (10) 

with definitional constraints 

, ,
w

w w
e r e r

w W r R
x f e E

 

     (11) 

where ( )e et x  is a smooth increasing function that models the travel time on the arc e E  depending on 

the traffic flow , w
ex R  determines the set of feasible routes between the origin-destination pair 

, w
rw W f  is introduced as the traffic flow through the route wr R  between the OD-pair .w W  

Thus, the flow conservation condition (5) is replaced by the demand allocation rule (9) and non-negativity 
of the traffic flows is guaranteed by (10) and (11) since ,

w
e r  is such that 

,
1, if the arc belongs to the route ,

, , .
0, otherwise,

w
e r

e r
e E r R w W


      


 

The traffic assignment *x  obtained as a solution of the optimization problem (8)–(11) is called 
user equilibrium and proved to satisfy the following condition 

*
*

, *

if 0,,
( ) , ,

if 0,,

ww
rw

e e e r ww
e E r

ft
t x r R w W

ft




      


  (12) 

subject to 

* *
, , ,

w

w w
e r e r

w W r R
x f e E

 

     

where 0wt   is equilibrium travel time through any actually used route between the OD-pair .w W   
Let us mention that (12) actually reflects the user equilibrium principle which was for the first 

time formulated by Wardrop (1952) as follows “the journey times in all actually used routes are equal and 
less than those that would be experienced by a single vehicle on any unused route”. The first 
mathematical formulation of this behavioral principle was given by Beckman, McGuire, and Winsten 
(1956) and it appeared to be very fruitful for modeling route choices under traffic congestions (e.g. Sheffi, 
1985; Patriksson, 1994; Krylatov et al., 2020). Indeed, according to the principle of Wardrop, no driver 
can unilaterally reduce his/her travel costs by shifting to another route. Therefore, competitive 
equilibrium search seems to be the best way for assessment of selfish behavior of drivers in congested 
urban road areas. Hence, (8)–(11) helps a traffic engineer to predict congestions on arcs of the road 
network when the information on travel demand is available. We believe it seems natural to consider the 
travel demand information search as a directly inverse problem to prediction of congestions. 

3. Inverse Traffic Assignment Problem and Travel Demand Estimation 

The first consideration of the travel demand estimation problem as the inverse traffic assignment 
problem was made by Bierlaire (2002). However, he formulated the inverse problem in very general 
terms where the locations of OD-pairs as well as a matrix of route choice were believed to be given. One 
of the main purposes within the present paper is to eliminate the excessive use of pre-given and a priori 
information when estimating the travel demand. Indeed, the usage of an a priori OD-matrix in the 
objective function of the problem (3)–(7) leads the travel demand estimation problem to the standard 
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deviation search: in fact, the problem of travel demand estimation is reduced to the problem of iterative 
updating of the travel demand information for a given set of origin-destination pairs. 

We believe the assumption on existence of a priori OD-matrix is too strict when considering the 
travel demand estimation and we formulate this problem in such a way so we could avoid the pre-given or 
a priori information. First of all, let us introduce the set of all feasible travel demand patterns 

 0wF F w V V      for the network G  and the set of all feasible traffic assignment patterns 

 ,( ) , , 0, ,w w
w w w w w w

e r e r r rw V V r R r RF x x f e E f F f r R w V V
   

             
 
for 

any given F . Secondly, we define the mapping m, :    , where m
  is a nonnegative 

orthant of the vector space of dimension m, m E , with the following function 

( )
0

( ) arg min ( ) .
ex

ex F e E
F t u du

 

     

One can see that the mapping   establishes the correspondence between all the feasible 
equilibrium flow assignment patterns and all the feasible travel demand patterns in the network G . Thus, 
we can consider the primal generalized traffic assignment problem for the network G  as the search of 
the image Im  of 

m

( )
0

: , ( ) arg min ( ) ,
ex

ex F e E
F t u du  

       (13) 

while the inverse generalized traffic assignment problem for the transportation network G  can be 
considered as the search of the function ( )x of the mapping 

: Im .   (14) 

The solutions of the inverse generalized traffic assignment problem for the networks of non-
interfering routes were already obtained explicitly by Krylatov et al. (2016) under linear travel time 
functions and by Krylatov (2016) under non-linear travel time functions. Despite the fact that generally 
the function ( )x cannot be obtained explicitly, one can seek to minimize the following deviation 

min ( )
F

F x


   (15) 

subject to 

( )
0

( ) arg min ( ) ,
ex

ex F e E
F t u du

 

     (16) 

that is appeared to be the actual travel demand estimation problem which avoids usage of a priori data. 

4. Computational Study of Travel Demand Estimation Problem 

Let us study the bi-level optimization problem (15)–(16) from computational perspectives. First of 
all, we need to find a source of information on average congestions in actual road networks to obtain x . 
Nowadays, online map services can be considered as such type of sources since they show traffic jams in 
real time. Indeed, Google or Yandex provide such GIS services which monitor and provide the data on daily 
dynamics of city traffic and display it on city maps. For instance, Figure 1 demonstrates traffic congestions 
in real-time in the Saint Petersburg road network taken from Yandex (https://yandex.com/maps/). Yandex 
associates the specific color tone with traffic intensity in each arc of a road network: green color means free 
travel, red means traffic jam. Moreover, each color tone corresponds to a specific speed value: green – the 
highest speed (60 km/h within city limits), red – the lowest speed (1-5 km/h). 
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Figure 1. Congestions in the road network of Saint Petersburg in real time 

Therefore, a traffic engineer is able to collect data on intensity (speed) in each arc of a road network. 
Once a traffic engineer gets to know the average travel speed in an arc and the length of this arc, he/she 
can immediately calculate the average travel time in this arc. Moreover, the travel time function, e.g. the 
most popular BPR (Bureau of Public Roads) function 

4
0( ) 1 0.15 e

e e e
e

xt x t e E
c

  
        

 (17) 

with given 0
et  and ec  as a free travel time and a capacity of the arc respectively, can, thus, allow the 

traffic engineer to reconstruct the average arc-flows x  when the travel time ( )e et x  is known for all 
e E . For more details on BPR-functions one can refer to Horowitz (1991). 

Let us consider toy example of the Saint Petersburg road network presented by 253 nodes and 
1012 arcs. Each node is associated with its exact geographical coordinates while each directed arc is 
characterized by a pair of nodes, its length and capacity. Moreover, for academic and research purposes 
only we obtained information on average speed in 1012 arcs of toy model of Saint Petersburg road 
network using the open databases of Yandex and then reconstructed the corresponding information on the 
average traffic arc-flows x . All the input data gathered for our computational study is available at 
http://www.apmath.spbu.ru/ru/sta_/krylatov/_les/CongestedStPetersburg.csv.  

We exploited the continuous optimization technique to solve the travel demand estimation 
problem (15)–(16) for a considered road network. Despite we call this network as toy model, its graph 
presented by 253 nodes and 1012 arcs is still quite large. We dealt with the problem under 5, 6, 7, 8 and 9 
OD-pairs: the minimal achieved values of (15) for all these cases are given in the Table 1. Let us mention 
that the amount of OD-pairs influences the computational time drastically. 

Table 1. Minimal values of the goal function (15) for different amount of OD-pairs 

 5 OD-pairs 6 OD-pairs 7 OD-pairs 8 OD-pairs 9 OD-pairs 

Deviation 3041.7 3042.2 3045.3 3047.1 3052.8 
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Continuous optimization implies that small changes of the variables' values lead to a small change 
of the goal function value. Therefore, our computational study (Table 1) demonstrates that the amount of 
OD-pairs does not influence directly on the value of the goal function (15) when solving the travel 
demand estimation problem. In other words, the descent direction of the problem (15)–(16) does not 
depend directly on increasing or decreasing of the amount of OD-pairs. Moreover, Figure 2 demonstrates 
four different solutions for 5 OD-pairs. As one can see, these solutions lead to very close values of the 
goal function (15) subject to highly diverse locations of OD-pairs. Thus, a solution of (15)–(16) is 
appeared to be totally depended on locations of OD-pairs at the initial iteration of an optimization 
algorithm. 

The computational study we have conducted allows us to draw the two following conclusions 
which are important. The first one states that, in fact, the travel demand estimation problem (15)–(16) 
possesses two independent types of unknown variables such as locations of OD-pairs and travel demand 
values. Indeed, decreasing of the goal function can be achieved by changing of the travel demand values 
as well as by relocation of the OD-pairs. Moreover, both of these types of variables influence on the goal 
function equally critically. The second conclusion states that generally the travel demand estimation 
problem does not have a unique solution – different travel demand patterns can lead to close deviation 
values. Further mathematical investigation of these issues can reveal additional rigorous properties on the 
solution existence and its uniqueness for the travel demand estimation problem. 

 

 
Figure 2. Four travel demand patterns with close goal function values under 

5. Mathematical Study of Travel Demand Estimation as Inverse Equilibrium Traffic 
Assignment Problem 

The previous section revealed a set of difficulties which appear when one seeks to solve the travel 
demand estimation problem directly by computational techniques. Within this section let us investigate 
the properties of the mappings   and   from mathematical perspectives in order to handle the revealed 
difficulties. 
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Lemma 5.1. If the graph G  is strongly connected, the functions ( )e et x  are continuous and 

( ) 0e et x   for 0,ex e E  , then the mapping   is a surjection. 

Proof. Let us prove this Lemma by contradiction. Let us suppose that there is an element F , 
that is not an image of all Imx  . Hence, according to the Theorem 2.4 from Patriksson (1994), if the 
graph G  is strongly connected, and the functions ( )e et x  are continuous, and ( ) 0e et x   for 

0, ,ex e E  then the solution of the problem (8)–(11) exists. In other words 

m : ( ) Im .x x F x        

Thus, we come to a contradiction, and therefore the mapping   is a surjection. 

Remark 1. The surjectivity of the mapping   guarantees the existence of a solution of the 
inverse problem to the traffic assignment problem. However, it does not guarantee the uniqueness. 

Let us consider a transportation network presented by a directed graph with 4 nodes and 4 arcs 
(Fig. 3). According to Lemma 5.1, a solution to the problem inverse to the traffic assignment problem 
does exist. We suppose that there is a traffic flow on each arc, which is equal to 10. It is clear that there 
are many feasible solutions for the travel demand estimation problem: for example, (1,3) 10F   and 

(3,1) 10F   or (2,4) 10F   and (4,2) 10F   (Fig. 3). 
 

 
Figure 3. Transportation network of 4 nodes 

Thus, one can see that generally the travel demand estimation problem has multiple feasible solutions. So, 
the mapping   is neither injective, nor a fortiori bijective. 

Theorem 5.2. Let the graph G  be strongly connected, the functions ( )e et x  be smooth and 

strictly increasing, ( ) 0e et x   for 0,ex e E  , and W V V   is a given set. If 

 0 , 0 \w wF F w W F w V V W         , then the mapping   is a bijection. 

Proof. The conditions specified in the theorem satisfy the Lemma 5.1, and the mapping   is a 
surjection. So, we just need prove the injectivity of the mapping  . 

For the reasons of §convenience, let us represent the relations (9) in a matrix form: 

 (18) 

where 
1

n, r, (1, ,1) w
w

w Rw W
W R R A


     for all 1,nw  , and 1 n( , , )F FF  , 

and r 1f f  . In turn, the relations (11) in a matrix form are 



Transport and Telecommunication Vol. 22, no.3, 2021 

296 

 (19) 

and m 1x x   while  1 n, ,f f f , where 
1

1 , , w
wR

w w w
R

f f f


   
 

 for all w W . 

Since the set W  is given, the primal generalized problem (13) is reduced to the traffic assignment 
problem (8)–(11) on the graph G . According to the Theorem 2.5 from Patriksson (1994), if the graph G  
is strongly connected, and the functions ( )e et x  are smooth and strictly increasing, ( ) 0e et x   for 

0,ex e E  , then the traffic assignment problem (8)–(11) has a unique solution. In other words, under 

given conditions, the image of   is a single element of the set m * * m: Im ,R x x R    . Therefore, we 

just have to show that only one F  maps into * * mIm ,x x R   . We prove it by a contradiction. 

Let us suppose that there are 1F   and 2F   such that *
1 2( ) ( )x F F    . We represent 

the matrices 1F  and 2F  as vectors 1F  and 2F . Hence, according to (18) and (19), the following 
equalities hold: 

1 2
1 2* *and

A A
f f

x x

F F      
              

. 

Since *x  is a user equilibrium assignment for 1F  and 2F , both systems are compatible, i.e. there 
exist two distinct non-zero vectors 1f  and 2f  which are the solutions of these systems of linear 
equations. Subtracting one system from another, we obtain the following expression: 

  1 2
1 2 *

A
f f

x

F F  
       

. 

Thus, there exists a non-zero route-flow assignment  1 2f f f   which corresponds to the zero 

link-flow assignment * *x x x  . Consequently, we come to a contradiction. 
 

Remark 2. The bijectivity of the mapping   guarantees the uniqueness of the solution of the inverse 
equilibrium traffic assignment problem. Therefore, if the set of OD-pairs is given, then the travel demand 
estimation problem has a unique solution. 

6. Discussion 

The paper is devoted to the travel demand estimation problem. This problem is formulated as an 
inverse problem to traffic assignment search. Two important points are revealed: 

(1) generally speaking, the inverse equilibrium traffic assignment problem has no unique 
solutions; 

(2) if the location the OD-pairs is known, then the inverse equilibrium traffic assignment problem 
has the unique solution. 

Hence, once the travel demand locations are specified, then the obstacles concerning OD-pairs 
search are disappeared. Otherwise, the upper-level goal function demonstrates fuzzy behavior and 
continuous optimization cannot cope with the problem. Thus, the present paper contains the following set 
of theoretical results: 

(1) a useful class of inverse equilibrium traffic assignment problems is introduced; 
(2) the existence and uniqueness conditions of the inverse equilibrium traffic assignment problem 

are found; 
(3) a bi-level model for travel demand estimation, which avoids a priori travel demand estimates, 

is given. 
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Therefore, the results of the present paper reveal that the actual problem to be solved when dealing 
with travel demand estimation is the problem of recognition of the travel demand locations. The obtained 
findings contribute in the theory of travel demand estimation and give fresh managerial insights for traffic 
engineers. 

7. Conclusion 

In the present paper we investigated the travel demand estimation problem in a form of a bi-level 
optimization program which is directly inverse to equilibrium traffic assignment search. The important 
properties of the bi-level program obtained by virtue of mathematical and computational analyses are 
revealed. First of all, we proved that the travel demand estimation problem has a unique solution if the 
origin-destination locations are known. Secondly, we showed that if actual origin-destination pairs are 
unknown then the numerous travel demand patterns are able to approximate the observed traffic at the 
same level of accuracy. Therefore, the location of travel demand pairs is appeared to be sufficient a priori 
information required in order to estimate the travel demand in an urban area uniquely. The findings 
obtained allow traffic managers to avoid generation of a priori information about trips when searching the 
travel demand but to concentrate only on recognition of actual origin-destination locations. 
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