1. bookTom 60 (2015): Zeszyt 4 (December 2015)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1508-5791
Pierwsze wydanie
25 Mar 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
access type Otwarty dostęp

SACSESS – the EURATOM FP7 project on actinide separation from spent nuclear fuels

Data publikacji: 30 Dec 2015
Tom & Zeszyt: Tom 60 (2015) - Zeszyt 4 (December 2015)
Zakres stron: 809 - 814
Otrzymano: 09 Oct 2015
Przyjęty: 09 Oct 2015
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1508-5791
Pierwsze wydanie
25 Mar 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Abstract

Recycling of actinides by their separation from spent nuclear fuel, followed by transmutation in fast neutron reactors of Generation IV, is considered the most promising strategy for nuclear waste management. Closing the fuel cycle and burning long-lived actinides allows optimizing the use of natural resources and minimizing the long-term hazard of high-level nuclear waste. Moreover, improving the safety and sustainability of nuclear power worldwide. This paper presents the activities striving to meet these challenges, carried out under the Euratom FP7 collaborative project SACSESS (Safety of Actinide Separation Processes). Emphasis is put on the safety issues of fuel reprocessing and waste storage. Two types of actinide separation processes, hydrometallurgical and pyrometallurgical, are considered, as well as related aspects of material studies, process modeling and the radiolytic stability of solvent extraction systems. Education and training of young researchers in nuclear chemistry is of particular importance for further development of this field.

Keywords

1. Bourg, S., Hill, C., Caravaca, C., Rhodes, C., Ekberg, C., Taylor, R., Geist, A., Modolo, G., Cassayre, L., Malmbeck, R., Harrison, M., de Angelis, G., Espartero, A., Bouvet, S., & Ouvrier, N. (2011). ACSEPT - Partitioning technologies and actinide science: Towards pilot facilities in Europe. Nucl. Eng. Des., 241, 3427-3435. DOI: 10.1016/j.nucengdes.2011.03.011.10.1016/j.nucengdes.2011.03.011Search in Google Scholar

2. Salvatores, M., & Palmiotti, G. (2011). Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges. Prog. Part. Nucl. Phys., 66, 144-166.10.1016/j.ppnp.2010.10.001Search in Google Scholar

3. SACSESS report summary, http://cordis.europa.eu/result/rcn/158019_en.html.Search in Google Scholar

4. Modolo, G., Wilden, A., Geist, A., Magnusson, D., & Malmbeck, R. (2012). A review of the demonstration of innovative solvent extraction processes for the recovery of trivalent minor actinides from PUREX raffinate. Radiochim. Acta, 100, 715-725. DOI: 10.1524/ract.2012.1962.10.1524/ract.2012.1962Search in Google Scholar

5. Wilden, A., Modolo, G., Schreinemachers, C., Sadowski, F., Lange, S., Sypula, M., Magnusson, D., Geist, A., Lewis, F. W., Harwood, L. M., & Hudson, M. J. (2013). Direct selective extraction of actinides(III) from PUREX raffi nate using a mixture of CyMe4BTBP and TODGA as 1-cycle SANEX solvent. Part III: Demonstration of a laboratory-scale counter-current centrifugal contactor process. Solvent Extr. Ion Exch., 31, 519-537. DOI: 10.1080/07366299.2013.775890.10.1080/07366299.2013.775890Search in Google Scholar

6. Modolo, G., Asp, H., Schreinemachers, C., & Vijgen, H. (2007). Development of a TODGA based process for partitioning of actinides from a PUREX raffinate. Part I: Batch extraction optimization studies and stability tests. Solvent Extr. Ion Exch., 25, 703-721. DOI: 10.1080/07366290701634578.10.1080/07366290701634578Search in Google Scholar

7. Wilden, A., Modolo, G., Kaufholz, P., Sadowski, F., Lange, S., Sypula, M., Magnusson, D., Muellich, U., Geist, A., & Bosbach, D. (2015). Laboratory-scale counter-current centrifugal contactor demonstration of an innovative-SANEX process using a water soluble BTP. Solvent Extr. Ion Exch., 33, 91-108. DOI: 10.1080/07366299.2014.952532.10.1080/07366299.2014.952532Search in Google Scholar

8. Carrott, M., Geist, A., Hérès, X., Lange, S., Malmbeck, R., Miguirditchian, M., Modolo, G., Wilden, A., & Taylor, R. (2015). Distribution of plutonium, americium and interfering fi ssion products between nitric acid and a mixed organic phase of TODGA and DMDOHEMA in kerosene, and implications for the design of the “EURO-GANEX” process. Hydrometallurgy, 152, 139-148.10.1016/j.hydromet.2014.12.019Search in Google Scholar

9. Poinssot, C., Rostaing, C., Baron, P., Warin, D., & Boullis, B. (2012). Main results of the French program on partitioning of minor actinides, a signifi cant improvement towards nuclear waste reduction. Procedia Chem., 7, 358-366. DOI: 10.1016/j. proche.2012.10.056.Search in Google Scholar

10. Rostaing, C., Poinssot, C., Warin, D., Baron, P., & Lorrain, B. (2012). Development and validation of the EXAm separation process for single Am recycling. Procedia Chem., 7, 367-373.10.1016/j.proche.2012.10.057Search in Google Scholar

11. Modolo, G., Kluxen, P., & Geist, A. (2010) Demonstration of the LUCA process for the separation of americium(III) from curium(III), californium(III), and lanthanides(III) in acidic solution using a synergistic mixture of bis(chlorophenyl)dithiophosphinic acid and tris(2-ethylhexyl)phosphate. Radiochim. Acta, 98, 193-201. DOI: 10.1524/ract.2010.1708.10.1524/ract.2010.1708Search in Google Scholar

12. Bollesteros, M. -J., Calor, J. -N., Costenoble, S., Montuir, M., Pacary, V., Sorel, C., Burdet, F., Espinoux, D., Hérès, X., & Eysseric, C. (2012). Implementation of americium separation from a PUREX raffinate. Procedia Chem., 7, 178-183.10.1016/j.proche.2012.10.030Search in Google Scholar

13. Chapron, S., Marie, C., Arrachart, G., Miguirditchian, M., & Pellet-Rostaing, S. (2015). New insight into the americium/curium separation by solvent extraction using diglycolamides. Solvent Extr. Ion Exch., 33(3), 236-248.10.1080/07366299.2014.1000792Search in Google Scholar

14. Narbutt, J., Wodyński, A., & Pecul, M. (2015). The selectivity of diglycolamide (TODGA) and bis-triazine--bipyridine (BTBP) ligands in actinide/ lanthanide complexation and solvent extraction separation - a theoretical approach. Dalton Trans., 44(6), 2657-2666. DOI: 10.1039/c4dt02657h.10.1039/C4DT02657HSearch in Google Scholar

15. Bryantsev, V. S., & Hay, B. P. (2015). Theoretical prediction of Am(III)/Eu(III) selectivity to aid the design of actinide-lanthanide separation agents. Dalton Trans., 44(17), 7935-7942. DOI: 10.1039/c4dt03275f.10.1039/C4DT03275FSearch in Google Scholar

16. Mincher, B. J., Elias, G., Martin, L. R., & Mezyk, S. P. (2009). Radiation chemistry and the nuclear fuel cycle. J. Radioanal. Nucl. Chem., 282, 645-649.10.1007/s10967-009-0156-xSearch in Google Scholar

17. Inoue, T. (2002). Actinide recycling by pyro-process with metal fuel FBR for future nuclear fuel cycle system. Prog. Nucl. Energy, 40, 547-554.10.1016/S0149-1970(02)00049-5Search in Google Scholar

18. Koyama, T., Sakamura, Y., Iizuka, M., Kato, T., Murakami, T., & Glatz, J. -P. (2012). Development of pyro-processing fuel-cycle technology for closing actinide cycle. Procedia Chem., 7, 772-778.10.1016/j.proche.2012.10.117Search in Google Scholar

19. Soucek, P., Malmbeck, R., Nourry, C., & Glatz, J. -P. (2011). Pyrochemical reprocessing of spent fuel by electrochemical techniques using solid aluminium cathodes. Energy Procedia, 7, 396-404.10.1016/j.egypro.2011.06.052Search in Google Scholar

20. Chmielewski, A. G. (2008). Nuclear fi ssile fuels worldwide reserves. Nukleonika, 53(Suppl. 2), S11-S14.Search in Google Scholar

21. http://asgardproject.eu/Search in Google Scholar

22. www.talisman-project.euSearch in Google Scholar

23. http://cinch-project.eu/Search in Google Scholar

24. John, J., Lehto, J., Koivula, T., & Omtvedt, J. P. (2015). Cooperation in education and training in nuclear- and radiochemistry in Europe. J. Radioanal. Nucl. Chem., 304, 459-466.10.1007/s10967-014-3624-xSearch in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo