Cite

1. Achtelik H., Lachowicz C., Łagoda T., Macha E. (1997), Life time of the notched specimens of 10HNAP steel under proportional bending with torsion, Proceedings and presented in 1st annual fatigue group meeting of Copernicus Contract CIPA, Smolenice, 60-69.Search in Google Scholar

2. Basan R., Franulović M., Prebil I., Črnjarić-Žic N. (2011), Analysis of strain-life fatigue parameters and behaviour of different groups of metallic materials, International Journal of Fatigue, 33, 484-491.10.1016/j.ijfatigue.2010.10.005Search in Google Scholar

3. Boller C., Seeger T. (1987), Materials Data for Cyclic Loading, Materials Science, Monographs, 42, Elsevier Publisher.Search in Google Scholar

4. Chopra O.K. (1998), Effects of LWR coolant environments of fatigue design curves of austenitic stainless steels, U.S. Nuclear Regulatory Commission, NUREG/CR-5704, ANL-98/31.Search in Google Scholar

5. Gorash Y., Chen H. (2013), On creep-fatigue endurance of TIG-dressed weldments using the linear matching method, Enineering Failure Analysis, 34, 308-323.10.1016/j.engfailanal.2013.08.009Search in Google Scholar

6. Kandil F.A. (2000), The Determination of Uncertainties in Low Cycle Fatigue Testing, Standards Measurement & Testing Project No. SMT4-CT97-2165, 1, 1-26.Search in Google Scholar

7. Karolczuk A., Kurek M., Łagoda T. (2015), Fatigue life of aluminium alloy 6082 T6 under constant and variable amplitude bending with torsion, J. of Theoretical and Aookied Mechanics, 53(2), 521-430.10.15632/jtam-pl.53.2.421Search in Google Scholar

8. Krzyżak D., Kurek M., Łagoda T. Sówka D. (2014), Influence of changes of the bending plane position on the fatigue life, Materialwissenschaft und Werkstofftechnik, 45(11), 1018-1029.10.1002/mawe.201400203Search in Google Scholar

9. Kurek A., Kulesa A., Łagoda T. (2015), Stress-life curve for a range of low and high number of cycles (in Polish), 54. Sympozjon „Modelowanie w Mechanice”, 87-88.Search in Google Scholar

10. Langer B.F. (1962), Design of Pressure Vessels for Low-Cycle Fatigue, ASME Journal of Basic Engineering, 84, 389-402.10.1115/1.3657332Search in Google Scholar

11. Lee K. S., Song J. H. (2006), Estimation methods for strain-life fatigue properties from hardness, International Journal of Fatigue, 28, 386-40010.1016/j.ijfatigue.2005.07.037Search in Google Scholar

12. Manson S.S (1979), Inversion of the strain-life and strain-stress relationships for use in metal fatigue analysis, Fatigue of Engineering Matarials and Structures, 1, 37-57.10.1111/j.1460-2695.1979.tb00366.xSearch in Google Scholar

13. Manson S.S. (1965), Fatigue: A complex subject-some simple approximations, Experimental Mechanics, 5(4), 193-226.10.1007/BF02321056Search in Google Scholar

14. Manson S.S., Muralidharan U. (1987) Fatigue life prediction in bending from axial fatigue information, Fatigue & Fracture Engineering Materials & Structures, 9(5), 357-372.10.1111/j.1460-2695.1987.tb00462.xSearch in Google Scholar

15. Marcisz E., Niesłony A., Łagoda T. (2012), Concept of fatigue for determining characteristics of materials with strengthening, Material Science Forum, 726, 43-48.10.4028/www.scientific.net/MSF.726.43Search in Google Scholar

16. Megahed M.M. (1990), Prediction of bending fatigue behaviour by the reference stress approach, Fatigue & Fracture of Engineering Materials & Structures, 13(4), 361-374.10.1111/j.1460-2695.1990.tb00607.xSearch in Google Scholar

17. Niesłony A., el Dsoki C., Kaufmann H., Krug P. (2008), New method for evaluation of the Manson–Coffin–Basquin and Ramberg–Osgood equations with respect to compatibility, International Journal of Fatigue, 30, 1967-197710.1016/j.ijfatigue.2008.01.012Search in Google Scholar

18. Niesłony A., Kurek A., EL Dsoki Ch., Kaufmann H. (2012), A Study of Compatibility Between two ical Fatigue Curve Models based on Some Selected Structural Materials, International Journal of Fatigue, 39, 88-94.10.1016/j.ijfatigue.2011.03.002Search in Google Scholar

19. Radhakrishnan V.M. (1992), On bilinearity of Manson-Coffin low-cycle-fatigue relationship, NASA Technical Memorandum 105840, NASA-TM-105840, E-7283, NAS 1.15:105840, 11.Search in Google Scholar

20. Shul’ginov B. S. (2008), Determination of parameters of an exponential function in the description of a fatigue curve, Strength of Materials, 50(3), 343-349.10.1007/s11223-008-9020-4Search in Google Scholar

21. Troschenko V. (1996), High-cycle fatigue and Inelasticity of Metals, Multiaxial and Fatigue Design, ESIS 21, (Edited by A. Pinueau, G. Cailletaud and T. C. Lindley), Mechanical Engineering Publications, London, 335-348.Search in Google Scholar

22. Walat K., Łagoda T., Kurek M. (2015), Life time assessment for and aluminium alloy under complex low cycle fatigue loadings, Materials Testing, 57, 160-16410.3139/120.110692Search in Google Scholar

23. Zhao Y. X., Yang B., Zhai Z. Y. (2007), The framework for a strain-based fatigue reliability analysis, International Journal of Fatigue, 30, 493-50110.1016/j.ijfatigue.2007.04.006Search in Google Scholar