Acceso abierto

Multivariate Modelling of Effectiveness of Lubrication of Ti-6al-4v Titanium Alloy Sheet using Vegetable Oil-Based Lubricants


Cite

1. Trzepiecinski T., Lemu H.G.: Recent developments and trends in the friction testing for conventional sheet metal forming and incremental sheet forming. Metals 10 (2020) 47. Search in Google Scholar

2. Trzepieciński T., Fejkiel R.: On the influence of deformation of deep drawing quality steel sheet on surface topography and friction. Tribology International 115 (2017) 78–88. Search in Google Scholar

3. Zafaruddin F., Dolas D.R.: Experimental investigation of organic brake pad. International Journal of Advance Research and Innovative Ideas in Education 2(6) (2016) 213–219. Search in Google Scholar

4. https://mail.pk.edu.pl/~kmiernik/dydaktyka/materialy/obrplast/lab3.pdf (dostęp: 25.03.2021). Search in Google Scholar

5. Dou S., Xia J. Analysis of sheet metal forming (stamping process): A study of the variable friction coefficient on 5052 aluminum alloy. Metals 9 (2019) 853. Search in Google Scholar

6. Dyja K., Adamus J.: Badania nad doborem smarów technologicznych do tłoczenia blach aluminiowych i tytanowych. Tribologia 3 (2014) 19-28. Search in Google Scholar

7. Jaworski J., Trzepiecinski T.: Research on durability of turning tools made of low-alloy high-speed steels. Kovove Materialy-Metallic Materials 54(1) (2016) 17–25. Search in Google Scholar

8. Jaworski J., Kluz R., Trzepiecinski T.: Operational tests of wear dynamics of drills made of low-alloy high-speed HS2-5-1 steel. Eksploatacja i Niezawodnosc-Maintenance and Reliability 18(2) (2016) 271–277. Search in Google Scholar

9. Ma J., Yang H., Li H., i in.: Tribological behaviors between commercial pure titanium sheet and tools in warm forming. Transactions of Nonferrous Metals Society of China 25 (2015) 2924–2931. Search in Google Scholar

10. Martínez C., Briones F., Araya N. i in.: Influence of the synthesis technique on tribological behavior of a Ti-6Al-4V alloy. Materials Letters 281 (2020), 128627.10.1016/j.matlet.2020.128627 Search in Google Scholar

11. Makhkamov A.: Tribology in sheet metal forming. PhD Thesis, Universidade do Porto, Porto 2017. Search in Google Scholar

12. Lovell M.R., Kabir M.A., Menezes P.L. i in.: Influence of boric acid additive size on green lubricant performance. Philosophical Transactions of the Royal Society A. 368 (2010) 4851–4868. Search in Google Scholar

13. Trzepieciński T.: Tribological performance of environmentally friendly bio-degradable lubricants based on a combination of boric acid and bio-based oils. Materials 13 (2020) 3892. Search in Google Scholar

14. Fydrych D., Świerczyńska A., Rogalski G. i in.: Application of multivariate analysis methods in welding engineering. Biuletyn Instytutu Spawalnictwa 5 (2018) 137–145.10.17729/ebis.2018.5/15 Search in Google Scholar

15. Ikpambese K.K., Lawrence E.A. Comparative analysis of multiple linear regression and artificial neural network for predicting friction and wear of automotive brake pads produced from palm kernel shell. Tribology in Industry 40(4) (2018) 565–573.10.24874/ti.2018.40.04.05 Search in Google Scholar

16. Sudheer M., Prabhu R., Raju K. i in.: Modeling and analysis for wear performance in dry sliding of epoxy/glass/PTW composites using full factorial techniques. International Scholarly Research Notices 2013 (2013) 624813. Search in Google Scholar

17. Monikandan V.V., Jacob J.C., Joseph M.A. i in.: Statistical analysis of tribological properties of aluminum matrix composites using full factorial design. Transactions of the Indian Institute of Metals 68 (2015) 53–57. Search in Google Scholar

18. Egala R., Jagadeesh G.V., Setti S.G.: Experimental investigation and prediction of tribological behavior of unidirectional short castor oil fiber reinforced epoxy composites. Friction 9 (2021) 250–272. Search in Google Scholar

19. Yunus M., Alsoufi M.S.: Multi-output optimization of tribological characteristics control factors of thermally sprayed industrial ceramic coatings using hybrid Taguchi-grey relation analysis. Friction 4(3) (2016) 208–216. Search in Google Scholar

20. ASTM B348. Standard specification for titanium and titanium alloy bars and billets. Search in Google Scholar

21. ASTM F1108 – 14. Standard specification for titanium-6Aluminum-4Vanadium alloy castings for surgical implants. Search in Google Scholar

22. Bahari A., Lewis R., Slatter T.: Friction and wear phenomena of vegetable oil-based lubricants with additives at severe sliding wear conditions. Tribology Transactions 61 (2018) 207–219. Search in Google Scholar

23. Karmakar G., Ghosh P., Sharma B.K. Chemically modyfying vegetable oils to prepare green lubricants. Lubricants 5 (2017) 44. Search in Google Scholar

24. Mobarak H.M., Mohamad E.N., Masjuki H.H. i in.: The prospects of biolubricants as alternatives in automotive applications. Renewable and Sustainable Energy Reviews 33 (2014) 34–43. Search in Google Scholar

25. Trzepiecinski, T. Effect of the plastic strain and drawing quality on the frictional resistance of steel sheets. Acta Metallurgica Slovaca 26(2) (2020) 42–44.10.36547/ams.26.2.553 Search in Google Scholar

26. Sulaiman M.H., Christiansen P., Bay N.: Influence of tool texture on friction and lubrication in strip reduction. Procedia Engineering 207 (2017) 2263–2268. Search in Google Scholar

27. Puc M. Artificial neural network model of the relationship between Betula pollen and meteorological factors in Szczecin (Poland). International Journal Biometeorology 56 (2012) 395–401.10.1007/s00484-011-0446-1327862821573820 Search in Google Scholar

eISSN:
2083-4799
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials